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Abstract 

In this paper, numerical computations are carried out to investigate the seismo-electromagnetic signals arising from 
the motional induction effect due to an earthquake source embedded in 3-D multi-layered media. First, our numeri‑
cal computation approach that combines discrete wavenumber method, peak-trough averaging method, and point 
source stacking method is introduced in detail. The peak-trough averaging method helps overcome the slow conver‑
gence problem, which occurs when the source–receiver depth difference is small, allowing us to consider any focus 
depth. The point source stacking method is used to deal with a finite fault. Later, an excellent agreement between our 
method and the curvilinear grid finite-difference method for the seismic wave solutions is found, which to a certain 
degree verifies the validity of our method. Thereafter, numerical computation results of an air–solid two-layer model 
show that both a receiver below and another one above the ground surface will record electromagnetic (EM) signals 
showing up at the same time as seismic waves, that is, the so-called coseismic EM signals. These results suggest that 
the in-air coseismic magnetic signals reported previously, which were recorded by induction coils hung on trees, can 
be explained by the motional induction effect or maybe other seismo-electromagnetic coupling mechanisms. Fur‑
ther investigations of wave-field snapshots and theoretical analysis suggest that the seismic-to-EM conversion caused 
by the motional induction effect will give birth to evanescent EM waves when seismic waves arrive at an interface 
with an incident angle greater than the critical angle θc = arcsin(Vsei/Vem), where Vsei and Vem are seismic wave velocity 
and EM wave velocity, respectively. The computed EM signals in air are found to have an excellent agreement with the 
theoretically predicted amplitude decay characteristic for a single frequency and single wavenumber. The evanescent 
EM waves originating from a subsurface interface of conductivity contrast will contribute to the coseismic EM signals. 
Thus, the conductivity at depth will affect the coseismic EM signals recorded nearby the ground surface. Finally, a 
fault rupture spreading to the ground surface, an unexamined case in previous numerical computations of seismo-
electromagnetic signals, is considered. The computation results once again indicate the motional induction effect can 
contribute to the coseismic EM signals.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/.

Open Access

*Correspondence:  renhx@sustech.edu.cn
1 Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration 
Technology, Southern University of Science and Technology, 
Shenzhen 518055, Guangdong, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-9197-1563
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-021-01458-5&domain=pdf


Page 2 of 21Ren et al. Earth, Planets and Space          (2021) 73:130 

Introduction
In the companion paper (Sun et al. 2021), which is part 
I of current work, a set of systematic semi-analytical 
solutions of the seismo-electromagnetic signals aris-
ing from the motional induction in 3-D multi-layered 
media due to an earthquake source was obtained. In 
addition to the seismic and electromagnetic (EM) sig-
nals in the solid, EM signals in the air can also be cal-
culated by the derived semi-analytical solutions. In the 
derivation process, Sun et al. (2021) utilized the linear 
superposition principle, applied the analytical regu-
larization approach (Chen 1999; Ren et  al. 2010a) by 
introducing two artificial interfaces infinitely close to 
the source, and adopted the Luco–Apsel–Chen (LAC) 
generalized reflection and transmission (GRT) method 
(Luco and Apsel 1983; Chen 1993, 1999; Ren et al. 2007, 
2010b, 2012, 2016a, 2016b, 2020). These measures bring 
higher efficiency and stability to the numerical compu-
tation of the semi-analytical solutions.

Although the motional induction effect has been pro-
posed as a possible generation mechanism of seismo-
electromagnetic phenomena since nearly three decades 
ago (Gershenzon et  al. 1993), quantitative investiga-
tions on this topic are very few. To our knowledge, only 
two works (Yamazaki 2012; Gao et  al. 2019) provide 
solutions and conduct computations for seismo-elec-
tromagnetic signals arising from motional induction 
effect in multi-layered media. Considering a simple 
situation in which seismic waves are approximated by 
plane waves and the electrical conductivity of the 
Earth’s crust has a stratified structure, Yamazaki (2012) 
derived analytical solutions of the EM responses and 
conducted numerical analysis. The numerical computa-
tions of Yamazaki (2012) aimed at some given periods 
(or frequencies) of seismic waves and did not require 
wavenumber integration. It should be noted that the 
solutions of Yamazaki (2012) are only applicable in the 
far-field condition because of the applied approxima-
tion of seismic plane waves. Considering 2-D case, Gao 
et  al. (2019) used the global matrix method to derive 
the solutions of seismo-electromagnetic signals that 
are expressed as wavenumber integrations. They com-
puted these wavenumber integrations to achieve the 
space-domain solutions. As shown by Eqs. (21) and 
(22) of Gao et  al. (2019), 2-D solutions concerned in 
their work can be computed by inverse Fourier trans-
form with respect to the wavenumber, because they 
applied a space-to-wavenumber Fourier transform to 

the involved wavefields. The 2-D solutions of Gao et al. 
(2019) are only applicable for a special case in which 
the fault plane is perpendicular to the wave propaga-
tion plane. For the 3-D case considered in this work, 
although the semi-analytical solutions (Sun et al. 2021) 
are also expressed as wavenumber integrations, they 
should be regarded as the summation of several inverse 
Hankel transforms (see Appendix A). Therefore, the 
3-D semi-analytical solutions (Sun et  al. 2021) cannot 
be computed by the inverse Fourier transform. Instead, 
they can be computed using the well-known discrete 
wavenumber method (Bouchon and Aki 1977; Bouchon 
1981, 2003). It should be mentioned, for both 2-D and 
3-D cases, a slow convergence problem will occur in 
the numerical computation of the solutions when the 
source and receiver are located at close or same depths. 
This slow convergence problem has not been solved in 
the work of Gao et al. (2019).

The discrete wavenumber method, which introduces 
an infinite set of secondary sources of concentric rings 
distributed at equal radial intervals Lp (spatial periodic-
ity) to transform the wavenumber integration into sum-
mation (Bouchon and Aki 1977; Bouchon 1981, 2003), 
has been applied in the numerical modelling studies 
of electrokinetic effect (e.g., Haartsen and Pride 1997; 
Garambois and Dietrich 2002; Ren et al. 2012). In these 
numerical computations of seismo-electromagnetic 
signals induced by electrokinetic effect, it was found 
using largest seismic wave velocity to determine the 
spatial periodicity Lp is sufficient to guarantee the accu-
racy of numerical solutions. In this work, we also apply 
the discrete wavenumber method to numerically com-
pute the semi-analytical solutions of Sun et  al. (2021). 
We adopt the peak-trough averaging method (Zhang 
et  al. 2001, 2003) to overcome the slow convergence 
problem. Besides, we utilize the point source stacking 
method (Olson and Apsel 1982; Ren et al. 2012) to deal 
with the case of a finite fault.

The remainder of this paper is organized as fol-
lows. First, we introduce our numerical computation 
approach enabling us to deal with any focus depth 
and to consider either a double couple point source 
or a finite fault. Second, we try to verify the proposed 
method by comparing with another numerical method 
for the seismic wave solutions. Last, we conduct 
numerical investigations that are different from those 
of Yamazaki (2012) and Gao et  al. (2021). The coseis-
mic characteristic of the EM signals, the generation of 
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evanescent EM waves on interfaces, and the effect of 
conductivity at depth on EM signals are presented and 
discussed.

Numerical computation approach
In the following context, we specify the detailed imple-
mentation of the discrete wavenumber method (Bouchon 
and Aki 1977; Bouchon 1981, 2003), the peak-trough 
averaging method (Zhang et  al. 2001, 2003), and the 
point source stacking method (Olson and Apsel 1982; 
Ren et al. 2012) in our numerical computation of seismo-
electromagnetic signals arising from the motional induc-
tion due to a double couple point source or a finite fault 
embedded in a 3-D multi-layered media.

Discrete wavenumber method
According to Bouchon and Aki (1977) and Bouchon 
(1981, 2003), the spatial periodicity of secondary sources 
Lp determines the wavenumber sampling ∆k used in 
summation:

Considering a cylindrical coordinates system with a 
source located at (0, 0, zs) and a receiver located at (r, θ, 
z), the spatial periodicity Lp should satisfy the condition 
that "pseudo" waves generated by the secondary sources 
do not enter the observational time window t ∈ [0, tmax], 
that is, there will be no interference from the nearest 
secondary source to the receiver’s recording before the 
time of t = tmax. This specific condition can be written as 
follows:

where vmax should be, in principle, the maximum 
wave velocity in the medium. Consequently, when con-
sidering the propagation of coupled seismic and EM 
waves, the value of vmax theoretically should be the larg-
est EM wave velocity, which implies a very large peri-
odicity Lp. Thus, according to Eq.  (1), we should use a 
very small wavenumber sampling ∆k to ensure the cor-
rectness of the calculation results, which leads to unac-
ceptably long computation time in practice. However, 
for the converted EM waves whose phase velocity is 
1
/√

µ(ε + iσ/ω) (where μ is magnetic permeability; ε 
is electrical permittivity; σ is conductivity; ω is the cir-
cular frequency), we have numerically verified that the 
computed synthetic signals are identical whether vmax 
is based on the largest seismic or EM wave velocity. 

(1)�k =
2π

Lp
.

(2)Lp > 2r,

√

(Lp − r)2 + (z − zs)2 > vmaxtmax

The reason is that, although secondary sources also 
give birth to converted EM waves that propagate in 
both air and solid with EM wave velocity of the media, 
those converted EM waves contributed from secondary 
sources show a rapid amplitude decrease as the offsets 
between secondary sources and receiver increase. A 
spatial periodicity Lp satisfying Eq.  (2) with vmax based 
on the largest seismic wave velocity can guarantee that 
the secondary source–receiver offsets are long enough 
for the attenuation of the converted EM waves from 
secondary sources. As a result, the amplitudes of EM 
waves generated by secondary sources are always neg-
ligible with respect to the EM waves generated by the 
principal source. Such a measure of using largest seis-
mic wave velocity as vmax to determine Lp has been 
adopted in some previous studies that numerically 
calculated seismo-electromagnetic signals induced by 
electrokinetic effect (e.g., Haartsen and Pride 1997; 
Garambois and Dietrich 2002; Ren et al. 2012).

To perform the summation of secondary sources, 
one needs to remove the singularities of the integrands 
from the real k-axis. This can be achieved by giving the 
real circular frequency ωR a small imaginary part ωI . 
Hence, we use a complex circular frequency:

when a time dependence of e−iωt is considered. In this 
way, the singularities are located in the first and third 
quadrants of the complex k plane on the straight line 
passing through the origin, eliminating the singularities 
on the real k-axis (Aki and Richards 1980). The value of 
ωI is usually chosen to be (Haartsen and Pride 1997):

The introduction of complex frequencies leads to 
a smoothing effect on the spectrum, because it can 
relatively increase the strength of earlier-arriving sig-
nal. Besides, it can also reduce the interference gen-
erated from the nearest secondary source (Bouchon 
and Aki 1977). The influence of the imaginary part of 
the complex frequency can be removed from the final 
time-domain solutions using the inverse Fourier trans-
formation with the kernel exp(−iωRt + ωI t).

Peak‑trough averaging method
According to Sun et al. (2021), the semi-analytical solu-
tions of seismic waves or EM signals due to an arbitrary 
point seismic source buried in a multi-layered media 
can be expressed as a summation of the products of the 

(3)ω = ωR + iωI , with ωI > 0,

(4)ωI =
π

tmax
.
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radiation patterns and the following type of oscillatory 
integrals:

where r is the epicentral distance; z is the receiving point 
depth; zs indicates the source depth; k is the horizontal 
wavenumber; ω is the circular frequency; Jn(kr) is the 
nth order Bessel function of the first kind; S(k, z, zs, ω ) 
represents the kernel function containing the attenu-
ation factor. If the source–receiver depth difference 
becomes smaller, the attenuation factor contained in the 
kernel function will have weaker effect. Then, under the 
combined action of the kernel function and the Bessel 
function, the convergence of wavenumber integration 
becomes extremely slow. Thus, to obtain accurate com-
putation results, one has to take a large upper limit of 
truncated integral, which leads to extremely low compu-
tation efficiency (Zhang et al. 2001, 2003).

The peak-trough averaging method (Zhang et  al. 
2001, 2003), which is mathematically simple and easy 
to implement in practice, has been proven an effective 
and efficient method to overcome this slow convergence 
problem. When the wavenumber is greater than a cer-
tain critical value, the integral value oscillates around a 
certain value as the integral upper limit increases, and 
its envelope is a monotonous and smooth attenuation 
curve, which is characterized by slow convergence. The 
peak-trough averaging method can utilize a small num-
ber of peak and trough values to achieve the purpose of 
efficient and high-precision computation. The reason is 
that the peak-trough distribution of the slow convergence 
integral also appears as a monotonically decayed alter-
nating sequence. Therefore, the peak and trough values 
of the integration curve can be extracted to form a slow-
convergent sequence, whose convergence value (i.e., the 
integral value when the upper limit of the integral tends 
to infinity) can be obtained quickly and accurately using 
the repeated average method (Dahlquist and Björck 
1974). The specific process of the peak-trough averaging 
method can be divided into the following 3 steps:

Determine the critical wave value kc
When k > kc, the envelope of the integral value appears as 
a monotonic attenuation curve, so we first determine the 
critical wave value kc, which can be given by the following 
empirical formula:

(5)In(r, z, zs,ω) =
+∞
∫

0

S(k , z, zs,ω) · Jn(kr)dk ,

(6)kc = α

√

(ω
2

R + ω2
I )

/

vmin,

where vmin is the minimum velocity of the structure 
model; ωR is the real circular frequency; ωI is the imagi-
nary circular frequency; α is an empirical coefficient, 
which is sufficiently large to ensure the decaying prop-
erty of the integral at k > kc. As suggested by Zhang et al. 
(2001, 2003), we use an empirical coefficient of 1.5 in our 
numerical computations.

Determine the peak and trough values
When k > kc, we first need to determine the initial peaks 
and troughs. Therefore, we record the positions of each 
adjacent three integral sampling points ki and corre-
sponding function values (ki, Gi) (i = 1, 2, 3). If G2 is 
greater or smaller than G1 and G3, then (k2,G2) is an ini-
tial position of a peak or trough. If not, it proves that 
there is no peak or trough in this interval. In either case, 
move one point forward to form a new group of three 
successive integration sampling points and correspond-
ing function values, and then repeat the above process, 
continuously increasing the wave number k by a fixed 
step ∆k, which is specified by Eq. (1), until enough peaks 
and troughs are obtained.

The accuracy of the peak-trough averaging method 
depends on the accuracy of the function values of the 
peaks and troughs. However, due to the limitation of the 
step size, the accuracy of the initial peaks and troughs 
determined through the above screening process is often 
not accurate enough and must be further improved. 
Zhang et  al. (2001, 2003) proposed using the quadratic 
interpolation technique to find the accurate peaks and 
troughs within the allowable range of computation error. 
According to the above steps, enough initially deter-
mined peaks or troughs positions (k2, G2) with their 
adjacent points (k1, G1) and (k3, G3) have been recorded. 
Although the location of the peak or trough is rough, it 
can be judged that the accurate peak or trough is located 
in the (k1, k3) interval. Thus, the following quadratic 
interpolation polynomial can be constructed:

where a = 2G3 ‒ 4G2 + 2G1, b = 4G2 ‒ G3 ‒ 3G1 and c = G1. 
The exact coordinates of the peak (a < 0) or trough (a > 0) 
is 
(

k1 − b
2a (k3 − k1),G1 − b2

4a

)

 . Using the above method, 
a series of accurate peaks and troughs can be obtained.

Determine the integral convergence value
After finding a series of accurate peaks and troughs, and 
composing them into an oscillating slow convergence 
sequence, one can use the repeated average method 

(7)G(k) = a

(

k − k1

k3 − k1

)2

+ b

(

k − k1

k3 − k1

)

+ c,
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(Dahlquist and Björck 1974) to obtain the convergence 
value, i.e., the required integral value.

The point source stacking method
It is known that, a fault can be considered as a double 
couple point source under the far-field condition. How-
ever, under near-field condition, a finite fault must be 
considered as a non-point source, because the point-
source approximation in this case will result in unaccep-
table errors of the wavefields computed (Ren et al. 2012). 
It is usually difficult to directly calculate the field gener-
ated by a finite fault. One solution to this problem is the 
point source stacking method (Olson and Apsel 1982; 
Ren et al. 2012).

For a finite fault, the generated seismic or EM wave-
fields at one spatial point are the integral of Green’s 
function over the area of the finite fault. In the numeri-
cal computation, integral is carried out by summation. 
Therefore, the finite fault can be discretized into a lot of 
cells. Each can be approximately treated as a point source 
located at the cell center when its area is sufficiently 
small. In this way, the finite fault can be represented by 
the serried distribution of numerous point sources in 
the fault area. Thus, the seismic or EM wavefields at one 
spatial point are the stacking of wavefields generated by 
each point source, which can be numerically computed 
through the semi-analytical solutions derived by Sun 
et al. (2021).

In theory, smaller cell size leads to more accurate 
numerical solutions. However, in actual numerical cal-
culations, smaller cell size also means longer the calcula-
tion time. Therefore, we need to select a suitable cell size, 
which can not only reduce the computation time as much 
as possible but also satisfy the required precision. This 
aim can be achieved by the following steps (which take 
seismic wave solutions as an example): (i) Given a discre-
tization scheme, for instance, ∆s = (L/M)(W/N) (where L 
and W indicate the length and width of the finite fault; 
M and N are positive integers; ∆s is the cell area), we 
compute the seismic wave solutions u(1) for the receiver 
point; (ii) Double the positive integers (2M → M and 
2N → N) and recompute the seismic wave solutions u(2); 
(iii) Calculate the residual error eres through the following 
formula:

(iv) Compare the residual error eres with the required 
precision preq. If eres < preq, the used cell size will be con-
sidered suitable and the computation results will be taken 
as the correct solutions. Otherwise, repeat the steps 

(8)

eres =
√

∑

i

∣

∣u(2)(ti)− u(1)(ti)
∣

∣

2

/

√

∑

i

∣

∣u(1)(ti)
∣

∣

2;

(ii)–(iv) until the correct solutions are obtained. The 
above steps should also be applied to the solutions of EM 
fields. A required precision of preq = 10–6 is adopted in 
this study.

In the following numerical computation, the North, 
East and downward directions are set to be x-, y- and 
z-directions, respectively.

Validation of the computed seismic waves
At present, there are still very few quantitative studies 
(Yamazaki 2012; Gao et  al. 2019) of the seismo-electro-
magnetic signals arising from the motional induction 
effect. Since Yamazaki (2012) did not compute the time-
domain full waveforms and Gao et  al. (2019) only pro-
vided 2-D solutions, our work is the first one capable 
of computing full waveform of seismo-electromagnetic 
solutions in 3-D multi-layered media due to the motional 
induction. Therefore, we cannot find another method 
to compare both seismic waves and EM signals for this 
exact case. However, there are many existing methods, 
such as finite-difference method, that can compute seis-
mic waves for the case concerned. The curvilinear grid 
finite-difference method (CGFDM) has been verified to 
be accurate for the modeling of seismic wave propaga-
tion in solid media (Zhang and Chen 2006; Zhang et al. 
2012; Sun et al. 2016, 2018). Therefore, we compare our 

z

s4 material

s1 material

s2 material

s3 material

Double couple point source (z=10 km) 

2
1

3
4

5

z=0 km

z=8 km

z=20 km

z=40 km

Fig. 1  Configuration of a four-layer model used for verifying the 
validity of the seismic waves computed by the proposed method. 
Five receivers marked as 1–5 are located on the ground surface z = 0 
km. Their horizontal coordinates are (20, 20) km, (30, 20) km, (40, 20) 
km, (50, 20) km, and (60, 20) km, respectively

Table 1  Elastic properties of the s1, s2, s3, and s4 materials

Properties s1 s2 s3 s4

Lamé constant λ (GPa) 18.74 36.27 50.62 81.75

shear modulus G (GPa) 15.44 37.04 46.96 65.84

density ρ (103 kg/m3) 2.45 2.78 2.95 3.31

P wave velocity vp (km/s) 4.50 6.30 7.00 8.03

S wave velocity vs (km/s) 2.51 3.65 3.99 4.46
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numerical results with those obtained from the CGFDM 
by considering only seismic waves.

A four-layer model (as illustrated in Fig. 1) is adopted. 
The four layers, from top to the bottom, consist of s1, s2, 
s3, and s4 materials, respectively. Their elastic proper-
ties are listed in Table  1. A double couple point source 
is located at (0, 0, 10) km. The spectrum of the source 
moment tensor M(ω) can be expressed as

where Mxx, Mxy, Mxz, Myy, Myz, and Mzz, are the moment 
tensor components and s(ω) is the source time function. 
The adopted source is assumed to represent a fault whose 
strike, dip, and rake angles are 30º, 72º, and 65º, respec-
tively. The seismic moment is set to be 5.56 × 1017 N·m, 
which corresponds to a M5.8 earthquake. Therefore, 
the moment tensor components are given by: Mxx = − 
2.67 × 1017 N·m, Mxy = 2.40 × 1017 N·m, Mxz = 1.41 × 1017 
N·m, Myy = -0.29 × 1017 N·m, Myz = -3.89 × 1017 N·m, and 
Mzz = 2.96 × 1017 N·m. In this study, the adopted source 
time function s(ω) is a Ricker wavelet which can be writ-
ten as

where ω is the circular frequency; fp and t0 are the peak 
frequency and the time delay, respectively. For this four-
layer model, we set fp = 1 Hz and t0 = 2 s.

Five receivers marked as triangles with specific num-
bers 1–5 (see Fig. 1) are considered. They are located on 
the ground surface z = 0  km and have the same y-coor-
dinate y = 20 km. Their x-coordinates are x = 20, 30, 40, 
50, 60 km. In Fig. 2, the seismic waves computed by our 
method (red lines) are compared with the CGFDM solu-
tions (blue lines) for the five receivers with numbers 1–5. 
The three rows show the three components of seismic 
vibration velocity vx, vy, and vz. One can find a perfect 
agreement between the two sets of numerical results, 
which, to a certain extent, verify the correctness of the 
semi-analytical solutions derived by Sun et al. (2021) and 
the validity of the numerical computation approach pro-
posed by us.

For current problem, both the seismic and EM solu-
tions can be regarded as summation of several inverse 
Hankel transforms (see Appendix A). Due to this similar-
ity of mathematical expressions, there is a high possibility 
that the discrete wavenumber method and peak-trough 
averaging method, which have been developed for calcu-
lating seismic waves, can also be applied to compute EM 
fields. A more complete and convincing validation that 

(9)M(ω) =





Mxx Mxy Mxz

Mxy Myy Myz

Mxz Myz Mzz



 · s(ω),

(10)s(ω) = 4
√
π

ω2

(2π fp)3
eiωt0−ω2

/

(2π fp)
2
,

also takes into account the computed EM signals may be 
carried out in the future when another method capable 
of computing seismo-electromagnetic solutions for 3-D 
multi-layered media is available.

Numerical investigations
In the following section, we carry out numerical com-
putations to investigate the characteristics of seismo-
electromagnetic signals arising from motional induction. 
The air medium above the ground surface is assumed to 
be insulated and its magnetic permeability and electri-
cal permittivity are set to be those values of the vacuum. 
Attenuations which are often represented by quality 
factors exhibit for both P and S waves in the real Earth 
(Press 1964). Therefore, quality factors of P and S waves 
(i.e., Qp and Qs) are considered in the following numerical 

vx

a

vy

b

vz

c

Fig. 2  Comparison of the synthetic vx, vy, and vz components for 
the five receivers marked as triangles with specific numbers 1–5 (see 
Fig. 1). The read lines indicate the results computed by our method, 
while the blue lines indicate the numerical solutions obtained by the 
CGFDM
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computation. Correspondingly, the slownesses of P and S 
waves (sp and ss) are calculated by following formulas:

where ρ, λ and G represent density, Lamé constant and 
shear modulus, respectively.

Synthetic recordings of an air–solid two‑layer 
model
To facilitate analysis, we first consider a simple model, 
an air–solid two-layer model, which consists of an air 
upper half-space and a solid lower half-space. The solid 
lower half-space is made up of s5 material, whose prop-
erties are listed in Table 2. The ground surface is chosen 
to be the plane z = 0 km. The source is a double couple 
point source located at (0, 0, 40) km. It is assumed to rep-
resent a fault with strike, dip, and rake angles of 0°, 72°, 
and 65°. Its seismic moment is 2.76 × 1017  N·m, which 
corresponds to a M5.6 earthquake. The ambient geomag-
netic field has an intensity of 5 × 10–5  T. Its inclination 
and declination angles are 45° and 10°, respectively. The 
source time function is a Ricker wavelet with a peak fre-
quency of 0.8 Hz and a time delay of 2.5 s. Seismo-elec-
tromagnetic signals are checked for two receivers nearby 
the ground surface. One is buried 0.1  m underground, 
while the other one is 2 m above the ground surface. Both 
of the two receivers have the same horizontal coordinates 
of x = 95.76 km and y = 80.35 km.

Figure  3 shows the seismic vibration velocity (vx, 
vy and vz), electric field (Ex, Ey and Ez), and magnetic 
induction intensity (Bx, By and Bz) computed for the 

(11)sp =
√

ρ
/

(�+ 2G)
[

1+ i
/(

2Qp

)]

(12)ss =
√

ρ
/

G
[

1+ i
/

(2Qs)
]

,

underground receiver (yellow lines), as well as EM sig-
nals (Ex, Ey, Ez, Bx, By, and Bz) calculated for the other 
receiver in the air (thin blue lines). In exception to the 
Ez components, the other five EM components (Ex, 
Ey, Bx, By, and Bz) are continuous across an interface. 
Besides, the two receivers are close enough, since their 
distance is negligible compared with the seismic wave-
length. As a result, an overlap of the yellow and blue 
lines occurs for those five EM components (Ex, Ey, Bx, 
By, and Bz). Seismic arrivals of P and S waves, which 
start to show up at ~ 24.5 s and ~ 42 s, respectively, are 
obvious in both seismic and EM signals. Therefore, the 
EM signals displayed in Fig. 3 show up simultaneously 
with seismic arrivals. They are the so-called coseismic 
EM signals. This numerical result confirms that the 
motional induction effect is one of the possible genera-
tion mechanisms of coseismic EM signals associated 
with natural earthquakes (Iyemori et al. 1996; Honkura 
et al. 2000, 2004; Matsushima et al. 2002; Ujihara et al. 
2004; Tang et  al. 2010). Since the blue lines (in Fig. 3) 
correspond to the receiver above the ground surface, 
our numerical results suggest that coseismic EM signals 
can be recorded by receivers in the air. Actually, such 
a phenomenon was already reported in field obser-
vation by Ujihara et  al. (2004). They set up induction 
coils hung in the air between trees to record magnetic 
signals. The observed magnetic field after band-pass 
filtering operation also exhibited the coseismic charac-
teristic. Therefore, our computational result indicates 
that motional induction effect could be one of the pos-
sible generation mechanisms for the coseismic mag-
netic signals recorded in the Earth’s near-surface air 
(Ujihara et al. 2004). Other possible generation mecha-
nisms include the electrokinetic effect, the piezomag-
netic effect and so on. Further efforts to validate this 
idea could be made in the future.

Table 2  Properties of the s5, s6, s7, s8, s9, s10, and s11 materials

Properties s5 s6 s7 s8 s9 s10 s11

Lamé constant λ (GPa) 26.38 6.92 27.67 27.67 36.94 48.36 71.27

Shear modulus G (GPa) 27.65 0.88 30.4 30.4 35.91 45.33 58.34

Density ρ (103 kg/m3) 2.7 1.97 2.63 2.63 2.74 2.92 3.17

P wave velocity vp (km/s) 5.5 2.1 5.8 5.8 6.3 6.9 7.7

S wave velocity vs (km/s) 3.2 0.67 3.4 3.4 3.62 3.94 4.29

P wave quality factor Qp 500 200 320 320 400 450 500

S wave quality factor Qs 200 80 130 130 160 180 200

Conductivity σ (S/m) 0.001 0.01 1 0.001 0.001 0.001 0.001

Relative electrical permittivity εr 10 6 15 4 4 4 4

Relative magnetic permeability μr 1 1 1 1 1 1 1
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Fig. 3  Seismo-electromagnetic signals computed for two receivers nearby the ground surface of an air–solid two-layer model. Seismic vibration 
velocity (vx, vy and vz), electric field (Ex, Ey and Ez), and magnetic induction intensity (Bx, By and Bz) computed for the underground receiver at (95.76, 
80.35, 0.0001) km are indicated by the yellow lines, whereas the blue lines display the EM signals (Ex, Ey, Ez, Bx, By, and Bz) computed for the other 
receiver at (95.76, 80.35, − 0.002) km, that is, 2 m above the ground surface
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Wave‑field snapshots
Still using the air–solid two-layer model, we investigate 
the propagation of the seismic and EM wavefields by 
computing snapshots at different times for a rectangular 
area that has an epicentral (radial) distance range from 0 
to 100 km, an azimuthal angle of 40°, and a depth range 

from − 5 to 15 km. The wave-field snapshots are deter-
mined at 401 × 81 receiver positions. The receiver spac-
ing is 0.25  km in either epicentral (radial) direction or 
vertical direction.

Figure  4 displays the snapshots of seismic vibration 
velocity vx component at times of 10.23, 14.23, 18.23, 

Fig. 4  Snapshots of seismic vibration velocity vx component at times of 10.23, 14.23, 18.23, 22.23, and 26.23 s. They are displayed for a rectangular 
area with an epicentral distance range from 0 to 100 km, an azimuthal angle of 40°, and a depth range from -5 to 15 km
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22.23, and 26.23 s. In the top snapshot (i.e., at the time of 
t = 10.23 s), the direct S wave is still propagating upward, 
whereas the direct P wave has arrived at the ground sur-
face (z = 0 km) giving birth to the reflected PP and PSV 
waves that start to propagate downward. At the time of 
t = 14.23  s (the second snapshot), the direct S wave just 
reaches the ground surface and the reflected PP and 
PSV waves are separated from each other, since they 
have propagated downward for a while. The third snap-
shot (t = 18.23 s) exhibits the SS and SVP waves reflected 
downward off the ground surface in addition to the direct 
P and S waves and reflected PP and PSV waves. The signal 
strength of the reflected PP wave becomes much weaker 
in comparison with other waves. In the bottom two snap-
shots computed at times of t = 22.23 s and t = 26.23 s, all 
the waves further propagate outward as time elapses.

Under the ambient geomagnetic field Ba, seismic vibra-
tion in a conductive medium gives birth to the induction 
electric current σv × B

a , where σ and v are the material 
conductivity and the seismic vibration velocity, respec-
tively. This induction electric current causes accumu-
lation and depletion of electric charges that naturally 
result in an electric field. Under this electric field, electric 
charges has to move forming the conductive current σE . 
In a homogeneous medium, the induction electric cur-
rent and the conductive current will be counterbalanced 
by each other and an equilibrium will be reached eventu-
ally. The curl electric field will further generate magnetic 
field. Therefore, EM fields accompanying seismic waves 
will be induced in a conductive medium. They are local 
responses to the seismic waves passing by and hence can 
be called localized EM fields.

Figures 5 and 6 show the snapshots of electric field Ex 
component and magnetic field Bx component, respec-
tively, for the same times and the same area as Fiugre 
4. For the area below the ground surface, one can eas-
ily identified part of the localized electric field, which 
accompanies the S waves (including the direct S wave, 
the reflected PSV wave and the reflected SS wave), as 
well as the localized magnetic field, which accompanies 
all seismic waves. The localized electric field accompany-
ing the P waves (including the direct P wave, the reflected 
PP wave and the reflected SVP wave) actually also exists 
but its signal strength is much weaker than those asso-
ciated with the S waves. The cause of this result is that 
of the solid half-space (s5 material) has a conductivity 
of 0.001 S/m. For such a conductivity value, Gao et  al. 
(2014) showed that the localized electric field of P waves 
could be more than two orders of magnitude weaker than 
that of S waves at the frequency of 1 Hz. Hence, the sig-
nal strength characteristic of the localized electric field in 
Fig. 5 is consistent with the analysis of Gao et al. (2014). 
Besides, Gao et  al. (2014) also showed that the P and S 

waves’ capacity of inducing localized electric field gener-
ally become closer when the conductivity increases from 
0.0001 to 1 S/m for a frequency of 0.1, 1, 10, or 100 Hz. 
We also computed the snapshots by changing the con-
ductivity of the solid half-space to 0.1 S/m. For that case, 
the localized electric field associated with both P and S 
waves can be clearly identified. The snapshots of that case 
are not displayed here to save space.

The localized EM fields exist in the solid but is absent 
in the air. Thus, they cannot be continuous across the 
ground surface. To satisfy the EM boundary condition, 
i.e., the continuity requirement of the total EM tangential 
components at an interface, corresponding non-localized 
EM fields are then generated. As a result, EM fields can 
also be observed in the air. Those in-air EM fields decay 
rapidly when moving away from the ground surface (see 
Figs. 5 and 6).

If we use k to indicate the horizontal wavenumber of 
seismic waves arriving at the ground surface, the local-
ized EM fields will have the same horizontal wavenum-
ber, which is given by k = sin θ(ω

/

Vsei) , where Vsei is the 
seismic wave velocity, and θ is the incident angle of the 
seismic waves arriving at the ground surface. Thereafter, 
as a result of the continuity boundary condition of EM 
fields at the ground surface, the horizontal wavenumber 
of non-localized EM fields in the air should also be equal 
to k. This means the horizontal wavenumber also satis-
fies the equation k2 − (γem)

2 = (ω/Vem)
2 , where Vem 

is the speed of light when we consider the EM fields in 
the air and γem =

√

k2 − (ω/Vem)2 is i times the verti-
cal wavenumber of the non-localized EM fields. There is 
no down-going EM fields in the top layer (i.e., in the air); 
thus, a depth-dependent factor exp(γemzrcv) (where zrcv 
indicates the depth of an in-air receiver, i.e., − zrcv repre-
sents the distance from an in-air receiver to the ground 
surface z = 0  m) exists for the non-localized EM fields 
(Sun et  al. 2021). Since seismic wave velocity is much 
lower than the speed of light, there is a high possibility 
that the value of k exceeds the value of ω/Vem. Thus, there 
is a critical incident angle θc satisfying

If θ ≤ θc, γem will be an imaginary number and the cor-
responding non-localized EM fields will be radiation 
EM waves. If θ > θc, then we obtain k > ω/Vem and γem is 
a positive real number. Thus, the depth-dependent factor 
exp(γemzrcv) represents an exponential decay suggesting 
the corresponding non-localized EM fields will be eva-
nescent waves whose amplitudes decay rapidly along the 
normal direction of the interface.

The speed of light usually could be 5 orders of mag-
nitude greater than the seismic velocity Vsei. Conse-
quently, the critical incident angle θc is a very small 

(13)θc = arcsin(Vsei

/

Vem).
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value suggesting only the seismic waves with a nearly 
normal incident angle can generate radiation EM 
waves. We call them interfacial radiation EM waves, 
because they result from the seismic-to-EM conversion 
at an interface. Another kind of direct radiation EM 
waves can be directly converted from the earthquake 

source (Gao et al. 2014). For a receiver in non-epicen-
tral area, both the direct and the interfacial radiation 
EM waves can arrive earlier than seismic P wave by sev-
eral seconds or more, because they propagate with EM 
wave velocity. However, these radiation EM waves are 
so weak that they are usually invisible in the EM sig-
nals (see Fig. 3). Some 2-D numerical investigations of 

Fig. 5  Snapshots of electric field Ex component computed for the same times and the same area as Fig. 4
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the radiation EM waves caused by motional induction 
effect were conducted by Gao et al. (2019).

For the non-epicentral area on the ground surface, the 
incident angles of seismic waves are usually large enough 
and evanescent EM waves are induced. Therefore, the in-
air EM fields shown in Figs. 5 and 6 are mainly contrib-
uted by evanescent EM waves. It should be mentioned 

the evanescent EM waves are also induced at the lower 
side of the ground surface, but they can hardly be identi-
fied unless separated from the localized EM fields.

Considering the electrokinetic effect, seismo-electro-
magnetic signals caused by an earthquake source have 
been numerically investigated in the last two decades 
(e.g., Pride et al. 2004; Hu and Gao 2011; Ren et al. 2012, 

Fig. 6  Snapshots of magnetic field Bx component computed for the same times and the same area as Fig. 4
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2016a; Zhang et  al. 2013; Huang et  al. 2015; Sun et  al. 
2019). The evanescent EM waves arising from the elec-
trokinetic effect was identified for the first time by Ren 
et  al. (2016a). Based on further numerical modellings, 
Ren et al. (2016b) proposed the electrokinetically gener-
ated evanescent EM waves have significant contribution 
to the coseismic EM signals. This idea was later adopted 
by Dzieran et al. (2019), who used observational data of 
coseismic electric signals generated by natural earth-
quakes to analyze the frequency-domain seismoelectric 
spectral ratio, i.e., the ratio of observed electric field to 
the seismic ground acceleration. They found the seismo-
electric spectral ratio showed a decreasing characteristic 
for increasing frequency and this characteristic cannot 
be reasonably explained unless the evanescent EM waves 
were taken into consideration. Recently, Ren et al. (2020) 
further proposed evanescent EM waves can also be gen-
erated by motional induction effect or other seismo-elec-
tromagnetic coupling mechanisms. Now, this viewpoint 
is confirmed at least for the motional induction effect, 
because the generation of evanescent EM waves due 
to the motional induction effect can be deduced from 
the semi-analytical solutions (Sun et  al. 2021) if one 
notices that the EM field expansion coefficients contain 

factors like exp(γemzrcv) (for an in-air receiver), in which 
γem =

√

k2 − ω2/V 2
em ( Re{γem} > 0 is defined when γem 

has a non-zero real part). The numerical results in Figs. 5 
and 6 also provide supporting evidence.

Amplitude decay characteristic
The amplitude decay characteristic of evanescent EM 
waves can be used to verify the validity of our computa-
tion approach. Still using the air–solid two-layer model, 
we compute EM fields for 16 receivers in the air, which 
are evenly spaced in a vertical line segment with coordi-
nates of x = 95.76 km, y = 80.35 km and − 1.5 ≤ z ≤ 0 km. 
As shown in Fig.  7, all the EM components include 
two groups of signals showing up around 26 s and 44 s, 
respectively, which are the times when P and S waves 
arrive at the position (95.76, 80.35, 0) km. They exhibit 
an amplitude decay characteristic for increasing distance 
from the receiver to the ground surface. These EM sig-
nals actually are the evanescent EM waves, since these 
receivers are obviously located in a non-epicentral area. 
As illustrated in Appendix B, the evanescent EM waves 
have an amplitude decay factor fdecay related to circu-
lar frequency ω , seismic incident angle θ, seismic wave 
velocity Vsei, and the depth of an in-air receiver zrec as

Fig. 7  EM fields in the air computed for 16 receivers evenly spaced in a vertical line segment with coordinates of x = 95.76 km, y = 80.35 km and 
-1.5 ≤ z ≤ 0 km
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Further investigations are carried out to check whether 
the synthetic EM signals displayed in Fig.  7 have the 
decay characteristic described by equation (14). These 
signals are filtered by a frequency-domain Hanning func-
tion that can be written as

where f1 and f2 are the cutoff frequencies. After filtering, 
the frequency component at f = 0.5(f1 + f2) will remain 
the same, while the other frequency components will be 
suppressed.

Figure  8 shows one group of EM signals, which are 
induced by direct P waves and filtered by the Hanning 
function at 0.72 < f < 0.88  Hz. The signals in the left two 
plots are normalized by the maximum amplitude of all 
receivers’ synthetic recordings. In Fig. 8(c), the maximum 
amplitude of each receiver is normalized by the corre-
sponding maximum amplitude of the ground surface 
receiver, i.e., the one located at (95.76, 80.35, 0) km. The 
solid line with dot mark and the dashed line with square 

(14)fdecay(ω, z) ≈ exp

(

ω
sin θ

Vsei
zrcv

)

.

(15)

Rfilter(f )

=











0, f ≤ f1

0.5− 0.5 cos[2π(f − f1)/(f2 − f1)], f1 < f < f2

0, f ≥ f2

.

mark denote the amplitude decay speed of the simulated 
Ex and By signals, respectively. The yellow line is the theo-
retical decay curve determined by

where 8.7044 × 10–4 is the value determined by the peak 
frequency 0.8  Hz, the incident angle 0.4014π (which is 
determined by arctan(125/40), since the ground sur-
face receiver has an epicentral distance of 125  km and 
the focal depth is 40 km), and the P wave velocity of the 
solid half-space. Obviously, the decay curves of Ex and By 
are overlapped with the theoretical decay curve. A simi-
lar situation is shown by Fig. 9 for another group of EM 
signals, which are induced by direct S waves and whose 
theoretical decay curve is given by

Therefore, the computed EM signals in air show an 
excellent agreement with the theoretically predicted 
amplitude decay characteristic for a single frequency 
and single wavenumber. This fact might be regarded as a 
special validation of the EM fields computed by the pro-
posed numerical approach.

(16)fdecay = exp(8.7044 × 10−4zrcv),

(17)fdecay = exp(14.9606× 10−4zrcv).
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Fig. 8  Synthetic recordings of a electric field component Ex and b magnetic field component Bx, which are induced by the direct P waves and 
filtered by a Hanning function at 0.72 < f < 0.88 Hz. c The amplitude decay curves of the simulated EM signals (Ex and Bx) in comparison with the 
theoretical decay curve determined by fdecay = exp(8.7044× 10−4

zrcv) , where zrec represents the depth of an in-air receiver
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Influence of conductivity at depth
For receivers located in the shallow subsurface (e.g., at a 
depth of 0.1 m), which could be a common situation in 
field survey, the amplitude of the recorded EM fields will 
be affected by the conductivity of the medium in which 
the receivers are located, because the induction electric 
current σv × B

a , which acts as the source in the Max-
well’s equations to generate EM fields, is evidently influ-
enced by the conductivity σ . The amplitudes of the EM 
fields generally increase for a higher conductivity of the 
shallow subsurface. This point was already verified by 
Yamazaki (2012) and Gao et  al. (2019). In this section, 
we investigate another interesting but unexamined ques-
tion: how the conductivity at depth affects the waveforms 
of the EM fields recorded by receivers in the shallow 
subsurface?

The adopted model is modified from the air–solid 
two-layer model used in the above by enhancing the 
conductivity of the solid medium in the depth range of 
200 ≤ z ≤ 600  m. This makes it a high conductive layer, 
which often exists in the Earth’s crust. We use σ2 to indi-
cate the enhanced conductivity. Figure 10 shows the EM 
fields computed for a receiver located at (95.76, 80.35, 
0.0001) km, i.e., in the shallow subsurface, when σ2 is set 
to be 0.1, 0.3, and 0.9  s/m, respectively. The computed 
seismic signals are the same as those shown as yellow 
lines in the top three rows of Fig.  2, because the elastic 

properties are unchanged. The EM signals showing up 
around 26 and 44  s in Fig.  10 are the coseismic signals 
associated with direct P and S waves, respectively. All 
the three magnetic components (Bx, By, and Bz) show an 
obvious and uniform variation trend, that is, enhanced 
amplitude for higher σ2 . However, the behavior of the 
electric field is kind of disordered. The coseismic Ex sig-
nals around 26 s exhibit first a slight amplitude decrease 
for σ2 changed from 0.1 S/m to 0.3 S/m and then an 
amplitude increase for σ2 further changed to 0.9 S/m. For 
these signals, a waveform variation along with the change 
of σ2 takes place and a phase reversal can be observed 
between the result of σ2 = 0.1 S/m and σ2 = 0.9 S/m. The 
coseismic Ex signals around 44 s seemingly display a vari-
ation trend of decreasing amplitude for higher σ2 . The 
signal strength of the coseismic Ey component is gener-
ally enhanced for higher σ2 , but its amplitude variation 
is less dramatic than those of the three magnetic com-
ponents. For the coseismic Ez component, neither the 
amplitude nor the waveform shows evident variation.

Summing up the above, in exception to the Ez compo-
nent, the EM fields are obviously influenced by the con-
ductivity at depth. Such kind of influence actually results 
from the evanescent EM waves. For a subsurface inter-
face of conductivity contrast, the localized EM fields are 
discontinuous, and thus interfacial radiation EM waves 
and evanescent EM waves are induced to satisfy EM 
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c

Fig. 9  Synthetic recordings of a electric field component Ex and b magnetic field component Bx, which are induced by the direct S waves and 
filtered by a Hanning function at 0.72 < f < 0.88 Hz. c The amplitude decay curves of the simulated EM signals (Ex and Bx) in comparison with the 
theoretical decay curve determined by fdecay = exp(14.9606× 10−4

zrcv) , where zrec represents the depth of an in-air receiver
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fields’ continuity boundary condition. The evanescent 
EM waves will go through amplitude decay along the 
normal direction of the interface and be recorded by the 
receiver nearby the ground surface. When the subsurface 
interface is close to the ground surface, i.e., the distance 
between them is relatively small in comparison with seis-
mic wavelength, the evanescent EM waves will seem-
ingly accompany seismic waves and contribute to the 
coseismic EM fields. Therefore, the conductivity at depth 
affects the coseismic EM fields through the evanescent 
EM waves generated at subsurface interfaces. Yamazaki 
(2012) considered only Rayleigh waves and also showed 
that the conductivity at depth can influence the magnetic 
field. That result can also be explained by the evanescent 
EM waves.

Dealing with fault rupture spreading to the ground 
surface
For a shallow-focus big earthquake, fault rupture spread-
ing to the ground surface often happens and causes 
devastating destructions. Such case has not been con-
sidered in previous numerical investigations of seismo-
electromagnetic signals (e.g., Hu and Gao 2011; Ren 
et al. 2012). We now adopt a model of such case and use 
our numerical computation approach, which combines 
discrete wavenumber method, peak-trough averaging 
method, and point source stacking method, to compute 
the seismo-electromagnetic signals.

The adopted model (see Fig.  11) is made up of an air 
layer and six solid layers consisting of s6, s7, s8, s9, s10, and 
s11 materials, whose properties are listed in Table 2. This 
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Fig. 10  EM fields computed for a receiver located in the shallow subsurface when σ2 , the conductivity of the solid medium in the depth range of 
200 ≤ z ≤ 600 m, is set to be 0.1, 0.3, and 0.9 s/m, respectively
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seven-layer model is designed by referring to CRUST 
1.0 for the velocity structure at the location of (32.5°N, 
130.5°E). The second and third solid layers (made up of 
s7 and s8 materials) have the same elastic properties but 
different electric properties. The earthquake source is a 
rectangular finite fault of 20 × 12.6175 km2 penetrating 
the top four solid layers. Its strike, dip, and rake angles 

are 0°, 72°, and 65°, respectively. Distribution of the maxi-
mum slip displacement on the fault plane is displayed in 
Fig. 12. The fault rupture starts from the position of (0, 
0, 7) km, propagates in the fault plane with a constant 
speed 2.7  km/s, and spreads to the ground surface. Its 
seismic moment is 4.65 × 1018  N·m, which corresponds 
to a M6.4 earthquake. Once again, the source time func-
tion is set to be a Ricker wavelet with a peak frequency 
of 0.8 Hz and a time delay of 2.5 s. Referring to the data 
of IGRF13 (Alken et  al. 2021) for the geomagnetic field 
at (32.5°N, 130.5°E), we set an ambient geomagnetic field 
with an intensity of 4.74786 × 10–5 T, an inclination angle 
of 47.15°, and a declination angle of − 7.3°. The receiver is 
located at (76.60, 64.28, 0.0001) km.

Adopting the point source stacking method, we discre-
tize the finite fault into 100 × 60 cells. The seismic and 
EM signals generated by each cell are computed by jointly 
using the discrete wavenumber method and peak-trough 
averaging method. The finally obtained seismic and EM 
wavefields are displayed in Fig.  13. Compared with the 
computational result of the air–solid two-layer model 
(Fig.  3), the waveforms of both seismic and EM sig-
nals become more complicated, which is surely reason-
able because of the multiple reflections occurring on the 
interfaces. The computational time of this model is about 
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Fig. 11  Side view along x-direction of a seven-layer model. It consists 
of an air layer and six solid layers. A finite fault penetrates the top four 
solid layers and touches the ground surface
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7.4  h when a 72-worker parallel computation is imple-
mented on Matlab platform. Generally speaking, the EM 
fields in Fig. 13 still exhibit the coseismic characteristic, 

which once again demonstrates the motional induction 
effect is likely to contribute to the coseismic EM signals 
recorded during natural earthquakes (Iyemori et al. 1996; 
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Honkura et  al. 2000, 2004; Matsushima et  al. 2002; Uji-
hara et al. 2004; Tang et al. 2010).

Conclusions
In this study, a numerical computation approach is intro-
duced on basis of the semi-analytical solutions of Sun 
et  al. (2021) to calculate seismo-electromagnetic signals 
arising from the motional induction effect due to a dou-
ble couple point source or a finite fault embedded in a 
3-D multi-layered media. The accuracy and reliability of 
the proposed method is partially verified by the compari-
son with CGFDM for the seismic waves propagating in 
a multi-layered media. The existence of the evanescent 
EM waves resulting from the motional induction effect 
is identified and the influence of the conductivity at 
depth to the coseismic EM signals is demonstrated. Our 
numerical results support the viewpoint that motional 
induction effect is a possible explanation of the coseismic 
EM phenomena observed during earthquakes (Iyemori 
et al. 1996; Honkura et al. 2000, 2004; Matsushima et al. 
2002; Ujihara et al. 2004; Tang et al. 2010). Based on the 
numerical examples shown in this paper, we conclude 
that the numerical computation approach proposed 
here provides a useful tool for the quantitative studies of 
seismo-electromagnetic signals. Future case studies of 
applying the proposed approach can help quantify how 
much the motional induction effect actually contribute to 
the coseismic EM signals.

Appendix A: Semi‑analytical solutions expressed 
as wavenumber integrations
According to Eqs. (30) and (31) of Sun et al. (2021) and 
utilizing recurrence formulas of Bessel function, once the 
expansion coefficients of seismic displacement uT,m(z, 
k), uS,m(z, k), and uR,m(z, k) are obtained, the radial, azi-
muthal, and vertical components of seismic displacement 
ur, uθ, and uz (i.e., seismic solutions) can be written as

Similarly, according to Eqs. (31), (66), and (67) of Sun 
et al. (2021), EM solutions can be written as
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Obviously, both the seismic and EM solutions, i.e., 
Eqs. (A1, A2, A3, A4, A5, and A6), are integrations 
with respect to wavenumber k. The order ‘m’ in above 
equations will be limited as |m|≤ 2 if a ‘source-center’ 
cylindrical coordinate system is chosen to let the point 
source located in z-axis (Chen 1993, 1999). The above 
wavenumber integrations can be regarded as summa-
tion of several inverse Hankel Transforms, because 
Bessel function of first kind is contained in every 
integrand.

Appendix B: Amplitude decay factor 
of the evanescent EM waves
Evanescent EM waves are generated at an inter-
face when θ > θc (or k > ω/Vem) which causes γem 
( =

√

k2 − ω2/V 2
em ) to have a non-zero real part. Follow-

ing Sun et  al. (2021), we can assume the general solu-
tions of the non-localized EM waves (which have EM 
phase velocity) contain factors like exp(γemzrcv − iωt) , 
where Re{γem} > 0 and zrcv represents the depth of 
an in-air receiver. In this work, we consider the z axis 
downward positive. Thus, zrcv < 0 and − zrcv is the nor-
mal distance from the in-air receiver to the ground sur-
face (z = 0 m). Then, the amplitude decay factor of the 
evanescent EM waves fdecay is determined by

Considering the relation k = sin θ(ω
/

Vsei) , we can 
obtain

where csc is the cosecant, i.e., cscθ = 1/sinθ. Substituting 
the above equation into equation (B1) gives

The EM wave velocity Vem is usually much greater 
than the seismic wave velocity Vsei; therefore, the ine-
quation Vseicscθ/Vem ≪ 1 is usually satisfied unless the 
seismic incident angle θ is a small value close to zero. 
Thus, the amplitude decay factor will be determined by
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(B1)fdecay(ω, z) = exp(γemzrcv).

(B2)γem = k
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1− (Vsei csc θ/Vem)2,

(B3)

fdecay(ω, z) = exp
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k
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.
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(

ω
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Vsei
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)

.

The above equation suggests that the amplitude decay 
speed of the evanescent EM waves greatly depends on 
the frequency ω, seismic incident angle θ, and seismic 
wave velocity Vsei.
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