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Abstract 

We present the results of an effort to model quiet-time vertical plasma drifts in the low-latitude F-region ionosphere 
using the random forest machine learning technique. The model is capable of describing the climatological variation 
of the drifts as a function of universal time, day of the year, solar flux, and altitude (200–600 km). The model has been 
trained using measurements of the vertical plasma drifts made by the incoherent scatter radar of the Jicamarca Radio 
Observatory ( 11.95◦ S , 76.87◦ W, ∼ 1

◦ dip lat). In our analysis, we compare our machine learning model results with the 
Scherliess and Fejer (J Geophys Res 104:6829–6842, 1999) model (SF99 model), a widely used empirical model of the 
vertical drifts developed using a different set of Jicamarca measurements. We find that the machine learning model 
is able to capture the overall features of the diurnal variation of the equatorial drifts for different seasonal and solar 
flux conditions. The model is also capable of capturing the mean height variation of the drifts, particularly the height 
gradient enhancements that have been observed near sunrise and sunset. Finally, the model can easily be expanded 
and improved as more drift measurements are made and become available for training.
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Introduction
The zonal component of the ionospheric electric field in 
the magnetic equatorial region plays an important role 
in the dynamics of the geospace environment with impli-
cations for space weather. For instance, this electric field 
is one of the main drivers of ionospheric plasma trans-
port at low- and mid-latitude regions (e.g., Klobuchar 
et al. 1991). During daytime, the zonal component of the 
equatorial ionospheric electric field is typically eastward, 
which creates upward E × B drifts of the ionospheric 
plasma (Scherliess and Fejer 1999). These upward drifts 
lift the equatorial ionospheric plasma to higher altitudes. 
Then, pressure and gravitational forces will cause the 
plasma to diffuse poleward along magnetic field lines. 
This “fountain” effect results in ionization peaks at higher 
magnetic latitudes, a phenomenon referred to as the 
equatorial ionization anomaly (EIA) or Appleton anom-
aly (Schunk and Nagy 2009).

The zonal electric field is also one of the main drivers 
of ionospheric plasma instabilities leading to the develop-
ment of severe ionospheric irregularities at low latitudes 
(e.g., Fejer et al. 1999; Abdu 2001; Smith et al. 2015). For 
instance, the linear growth rate of the ionospheric Gener-
alized Rayleigh–Taylor (GRT) instability is proportional 
to the magnitude of the vertical drifts (Sultan 1996). Near 
sunset, when drifts reverse from upward to downward, 
a pre-reversal enhancement (PRE) of the drifts is com-
monly observed (Eccles et al. 2005) producing favorable 
conditions for the GRT instability and for the develop-
ment of ionospheric irregularities. These irregularities 
are capable of disrupting radio-based systems used for 
communications, navigation, and remote sensing (Basu 
et al. 1998; Carrano et al. 2012; Kintner et al. 2007).

Therefore, a description of the equatorial vertical drifts 
is useful when trying to understand or even predict ion-
ospheric behavior. A climatological description of the 
drifts, in particular, is useful when trying to understand 
the average behavior of phenomena observed in the low- 
and mid-latitude ionosphere. Scherliess and Fejer (1999) 
developed an empirical, climatological global model of 
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quiet-time equatorial vertical plasma drifts which is com-
monly used in ionospheric studies. The model, hereby 
referred to as the SF99 model, was developed using meas-
urements made by the Jicamarca incoherent scatter radar 
(ISR) between 1968 and 1992. It was expanded to longi-
tudes outside the Peruvian sector using measurements 
made by in  situ sensors on the Atmospheric Explorer-E 
(AE-E) satellite between 1977 and 1979.

To develop their model, Scherliess and Fejer (1999) 
considered the variability of quiet-time drifts with 
respect to local time, day of the year, longitude, and solar 
flux. The SF99 model uses univariate normalized cubic-B 
splines of order 4 to describe the local time and longitu-
dinal variability of the vertical drifts, as well as a linear 
dependence to describe the variation of the vertical drifts 
with solar flux. The SF99 model uses a simple linear 
interpolation scheme to transition between seasons, and 
coefficients that represent the best-fit model to the data 
were determined using a least-squares procedure. Finally, 
the SF99 model provides a height-averaged estimate of 
the drifts.

In addition to the SF99 model, other empirical mod-
els of the vertical drifts have been derived using artificial 
neural networks applied to magnetometer measurements 
(e.g., Anderson et al. 2004; Anghel et al. 2007; Dubazane 
and Habarulema 2018; Chaitanya and Patra 2020). These 
models relate measurements made by latitudinally 
spaced magnetometers to vertical drift measurements 
made by an independent sensor. The independent sensor 
is, in most cases, a coherent scatter radar system capa-
ble of estimating vertical drifts from the so-called 150-
km echoes (e.g., Anderson et al. 2004; Anghel et al. 2007; 
Chaitanya and Patra 2020). The main advantage of such 
an approach is that an expensive, high power ISR system 
is not needed to provide the data for a model. The 150-
km echoes and drifts derived from them, however, are 
limited in range (around 150 km altitude) and to daytime 
hours (e.g., Kudeki and Fawcett 1993; Chau and Wood-
man 2004). Dubazane and Habarulema (2018) have also 
used in situ drift measurements made by sensors on the 
C/NOFS Low-Earth-Orbit satellite (de La Beaujardiére 
2004) over the African sector. While satellite measure-
ments can provide nighttime measurements, there are 
limitations associated with the orbit (e.g., limited passes 
over site, different altitudes, etc.). Finally, the observa-
tions available did not allow these studies to address the 
height variability of the drifts.

Motivated by the increasing use of machine learning in 
various fields of study, we present here the results of the 
application of the random forest technique to the empiri-
cal modeling of quiet-time equatorial ionospheric vertical 
drifts. Here, we opted for a technique that is significantly 

less computationally expensive for training and optimiza-
tion than neural networks. This choice is encouraged by 
the potential of improving the model as new observations 
and data sources become available.

To develop this model we use measurements made by 
the Jicamarca ISR between 1996 and 2018. Advances in 
Jicamarca’s radar capabilities since the development of 
the SF99 model allowed us to take into consideration 
the height variability of the drifts in our model. It has 
been shown that the height variability can be significant 
near sunrise and sunset (e.g., Pingree and Fejer 1987; 
Fejer et  al. 2014; Shidler et  al. 2019; Shidler and Rodri-
gues 2019). Therefore, the model takes a step further and 
describes the quiet-time behavior of vertical drifts as a 
function of universal time, day of the year and solar flux 
as well as altitude.

In the following section, we provide a description of the 
radar measurements used in this study, and our selection 
of usable observations. We also present a brief descrip-
tion of the random forest technique. In “Results and dis-
cussion” section, we present and discuss the results of the 
random forest technique to modeling of ionospheric drift 
data, including overall model performance, comparisons 
with the SF99 model, case studies, examining the pre-
dicted height variation of the vertical drifts, and poten-
tial adjustments in model parameters. The conclusion 
summarizes our main results and provides concluding 
remarks.

Measurements and model
We now describe the dataset used in our development 
of an empirical model of vertical drifts using machine 
learning. We also describe how higher quality data were 
filtered, and how measurements considered to have been 
made under geomagnetically quiet-time conditions were 
selected. Finally, we describe the random forest tech-
nique, which was used to develop the model.

Measurements: Jicamarca radar drifts
The dataset used for the development of our model con-
sists of measurements of F-region vertical plasma drifts 
made by the incoherent scatter radar (ISR) of the Jicama-
rca Radio Observatory—JRO ( 11.95◦S , 76.67◦W , ∼ 1◦ dip 
angle) between 1996 and 2018. The observations are pub-
licly available in the Madrigal database.

The Jicamarca ISR is capable of providing semi-routine 
(10–45 days/year) measurements of the vertical drifts 
as a function of local time and height. The range of alti-
tudes covered by the Jicamarca radar goes from about 
200 km and can extend beyond 600 km during high solar 
flux conditions. Typical height resolution is about 15 km 
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and time resolution is approximately 5 min (Kudeki et al. 
1999).

The main objective of this study is to develop a model 
of the vertical drifts during geomagnetically quiet condi-
tions. To create this model, we devoted efforts to select 
only adequate measurements of the highest quality. 
First, we selected only measurements that were made 
under geomagnetically quiet conditions. The selection of 
quiet-time observations follows the approach described 
by Fejer and Scherliess (2001) where observations con-
sidered quiet were only those preceded by 6 h of AE 
indices below 300 nT. Given the availability of data and 
our objective to ensure, to the best of our ability, that 
only quiet-time observations were used, we extended 
the requirement of the AE index below 300 nT to 12 h. 
That is, for each measurement we found the hourly AE 
index at the time of the measurement plus the previous 
11 hourly AE values. Observations where none of the 12 
AE values exceeded 300 nT were assumed to be made 
under geomagnetically quiet conditions and were used in 
our development of the quiet-time drifts. Requiring more 
than 12 h of low AE index would be impractical for most 
types of datasets including the Jicamarca drifts. It would 
severely reduce the number of observations. In addition, 
we have also removed measurements occurring during 
both minor and major sudden stratospheric warming 
(SSW) events, which occur primarily in January and Feb-
ruary (e.g., Chau et al. 2009, 2012).

Next, we inspected the measurements and removed 
potential outliers, that is, drift measurements that were 
not derived from purely incoherent scatter echoes. The 
outliers are caused, in most part, by irregularities asso-
ciated with equatorial spread F (ESF), interference from 
artificial radio sources, and echoes from low Earth orbit 
(LEO) satellites. These echoes cause abnormal increases 
in the signal-to-noise ratio (SNR) height profiles and 
abrupt variations in the vertical drift height profiles.

ESF irregularities typically occur in the post-sunset 
sector (Sultan 1996). Recent studies show, however, high 
occurrences rates of ESF irregularities in the post-mid-
night sector during low solar flux conditions (e.g., Ajith 
et  al. 2015; Zhan et  al. 2018). Measurements that were 
contaminated by the presence of ESF (or satellite ech-
oes) were detected and removed based on large signal-
to-noise ratios (SNR). More specifically, measurements 
with SNR values greater than 1 dB were removed from 
the dataset.

In addition, we run the data through a final filter to 
remove low quality or unrealistic measurements. In the 
equatorial F-region ionosphere, the vertical plasma drifts 
vary with height by a few meters per second per 100 km 
(Shidler and Rodrigues 2019). Measurements where the 
drifts varied by more than 5 m/s from one range gate to 

the next (typically 15 km) were considered unrealistic 
and were removed from the dataset.

Finally, extreme outliers that were not detected using 
the above filtering process were removed using the inter-
quartile range (1.5× IQR ) rule (Baron 2013).

Model: random forest
The random forest is an ensemble machine learning tech-
nique that consists of several individual decision trees, 
each of which contributes to the final model prediction, 
and can be used for either supervised regression or clas-
sification problems (Breiman 1996). In this study, we 
used the random forest, which is part of the Scikit-learn 
Python package (https://scikit-learn.org), to perform 
supervised regression on Jicamarca ISR measurements of 
the vertical plasma drifts.

Scikit-learn’s Random Forest Regressor machine learn-
ing algorithm uses binary decision trees that are con-
structed using the Classification and Regression Trees 
(CART) algorithm. Each binary decision tree consists of 
several internal nodes with the data in each node being 
split into one of two child nodes based on a splitting cri-
terion. In our model, splits are chosen so as to best mini-
mize the variance (or the mean square error—MSE) of 
the data in the two child nodes. More specifically, the 
weighted average of the MSE for the child nodes is calcu-
lated for all available split points, and the split point that 
minimizes this value is chosen. This process continues 
iteratively until a stopping criterion is met at which point 
the nodes are referred to as “leaves”. The average of the 
data in each leaf is then a possible output of the decision 
tree.

A drawback of using individual trees is that they exhibit 
high variance. That is, the output of a decision tree is 
sensitive to changes in the training dataset used. Ran-
dom forests attempt to minimize this variance by aver-
aging the output over several individual trees that are 
randomly constructed (Biau 2012). There are two sources 
of randomness associated with a random forest: (1) each 
decision tree is trained using a bootstrap re-sample of 
the data, and (2) constructing the trees relies on select-
ing split points from a random sub-sample of the input 
features.

A number of factors led us to choose this machine 
learning technique. First, the ensemble random for-
est is computationally inexpensive to train and can be 
done in parallel. Second, the large number of decision 
trees used in the model helps to improve performance 
and minimize over-fitting (Breiman 2001). Another 
factor considered was the relative ease of optimiz-
ing the hyperparameters for model performance. The 
hyperparameters we chose to tune included (a) the 
number of trees in the ensemble, (b) the maximum 
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number of input features to consider when looking for 
the best node split, (c) the minimum number of sam-
ples required for a node split and (d) the minimum 
number of samples required in the leaves after a node 
split. Scikit-learn’s default values were used for all other 
parameters.

The first parameter we optimized was the number of 
decision trees used in the random forest. Theoretically, 
the root-mean-square error (RMSE) is a monotonically 
decreasing function of the number of trees in the random 
forest (Probst and Boulesteix 2018), and models will only 
improve by adding more trees. Finding the optimal num-
ber of trees is therefore done by analyzing the trade-offs 
between improvements in model performance with addi-
tional trees and the amount of computational resources 
available. In this study, we use 250 trees in our random 
forest. This number was large enough that adding addi-
tional trees resulted in negligible improvements in model 
performance using the RMSE as the metric, but did 
not make the computational run-times for training and 
cross-validation prohibitively long. We then tuned the 
parameter that determines the number of input features 
to consider when looking for the best split. In the ensem-
ble package used, we can specify whether to use all input 
features or a randomly selected sub-sample of the input 
features when considering node splits. We found the best 
performance when a maximum of half of the input fea-
tures were considered. The optimal numbers for param-
eters (c) and (d) were optimized by doing an exhaustive 
grid-search using Scikit-learn’s GridSearchCV method 
using five fold cross-validation. For our final settings we 
used 250 decision trees in the random forest, a minimum 
of 29 samples required for a node to split, and a mini-
mum of 10 samples required in each leaf of the decision 
tree.

The model takes the day of the year (DOY), altitude, 
universal time (UT), and solar flux ( F10.7 index) as input 
features with the equatorial vertical plasma drifts as the 
single output. These features were chosen as to allow 
comparisons between our machine learning model of 
the vertical drifts and the well-tested, widely used SF99 
model. We point out that the two models were developed 
using different datasets. It also should be noted that the 
SF99 model only used observations from altitudes where 
SNR of the ISR echoes were the highest, which was typi-
cally between 300 and 400 km. Therefore, the SF99 does 
not include altitude as an input feature.

Results and discussion
A total of 402 days of measurements made between 1996 
and 2018 were available to this study. We must point out, 
however, that only a few hours of observations were made 
in some of these days. For our analyses, we randomly 

selected 20 days of measurements from the original set of 
observations to serve as a testing subset for model valida-
tion. The remaining 382 days of measurements were shuf-
fled and further subdivided into 20 unique subsets. We 
then created 20 random forest models with each model 
using one of the unique subsets as a validation set and the 
remaining 19 subsets as a training subset. The random 
forest model that minimized the RMSE of the validation 
subset was used in our analysis. The number of measured 
drift values in the testing subset corresponds to about 9% 
of the total number of measurements available.

Overall model performance
The overall performance of our model is presented in 
Fig. 1. It shows the distribution of model predicted values 
versus measurements, for the training (green) and test-
ing (red) subsets. We also used the RMSE and the coef-
ficient of determination ( R2 ) to evaluate the performance 
of our model results. As expected, the performance of the 
model for the training subset exceeds the performance 
for the testing subset. The model produced results with 
an RMSE of 2.85 m/s and R2 = 0.97 for the training sub-
set and results with an RMSE of 8.60 m/s and R2 = 0.71 
for the testing subset.

One of the sources for the  large RMSE of the testing 
subset is the intrinsic day-to-day variability present in 
the ionosphere (Fejer et  al. 1989). While the model can 
capture the overall behavior the drifts, it does not capture 
the short-term variations in the drifts associated with, 

Fig. 1  Random Forest Regression; Overall performance of our 
random forest model for drifts in the training subset (green) and 
testing subset (red)
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for instance, small-scale density (conductivity) struc-
tures, atmospheric gravity waves, and changes in tidal 
and planetary wave forcing (Fejer and Scherliess 1997). In 
addition, it is possible that our 12-h AE index filter did 
not completely eliminate all the drifts’ measurements 
affected by disturbance electric fields of magnetospheric 
origin. Disturbed dynamo electric fields can occur more 
than 12 h after the observed high latitude disturbances 
(Fejer et al. 1991).

A benefit of the ensemble random forest technique is 
that it provides information on  the importance of the 
input parameters. Figure 2 summarizes the importance 
of each input (feature) for model predictions. The fea-
ture importance is a normalized factor indicating how 
much a feature contributes to model output. Scikit-
Learn quantifies feature importance by examining the 
layer depth of a feature used at an internal node. Fea-
tures used at nodes near the top layers of the tree will 
contribute to the final prediction of a larger fraction of 
the input samples than nodes near the bottom of the 
tree, and will therefore have a greater relative impor-
tance. Additional details about the feature importance 
are provided by Louppe (2015). The results indicate 
that universal time (UT) is the dominant feature for 
predicting the drifts. This is expected given that verti-
cal drifts have a strong diurnal variation. The results 
also show that solar flux ( F10.7 ) and day of year (DOY) 
have similar levels of importance. The overall diurnal 
behavior of the drifts does not vary much with solar 
flux and season. However, some features of the drifts 
such as the pre-reversal enhancement (PRE) near sun-
set are strongly controlled by season (Abdu et. al 1981; 

Tsunoda 1985) and solar flux conditions (Scherliess and 
Fejer 1999; Smith et al. 2015; Shidler et al. 2019).

The least important feature in the model is altitude. 
This is most likely a result of the weak height variation 
of the drifts within main F-region heights during most 
times. Previous studies, however, have pointed out that 
significant height variations occur near the termina-
tors (e.g., Pingree and Fejer 1987; Shidler and Rodrigues 
2019). The random forest model, nevertheless, is still 
able to detect and model the behavior of the drifts with 
height. We will return to the height variability of the 
drifts later in this discussion.

Case studies
We now turn our attention to a more focused inspection 
of our model results with respect to the training and test-
ing subset, and a comparison of our model results with 
those of the SF99 model.

Training subset
Figure  3 shows drift values predicted by our machine 
learning model (red markers) versus measurements 
(black markers) for 20 days chosen randomly from our 
training subset. The year, DOY and F10.7 for each day are 
indicated on the top of each panel. These drift values cor-
respond to an altitude of 360 km. The SF99 model predic-
tion is also shown for comparison (solid green line).

These example cases serve to show that our model 
captures well the overall behavior of the drifts used in 
the training. The results indicate, in particular, that our 
model does not overfit on days with increased local time 
variability. See, for instance, day 31 and day 188 of 2010. 
There is a relatively large fluctuation in the drift values 
observed between 0400 and 0600 LT. These fluctuations 
are caused by very low plasma densities over Jicama-
rca and that are probed by the ISR in the late night and 
pre-sunrise sector at times. The reduced plasma density 
causes low SNR echoes, large uncertainties in the meas-
urements and the observed variability in the drifts. The 
relatively large residuals between predictions and actual 
measurements during these hours contribute to the 
spread of the training subset in Fig. 1.

We can also see from Fig.  3 that the SF99 captures 
important features of the drifts. As expected the SF99 
does not perfectly match the observations since it is a cli-
matological model  and cannot (is not intended to) cap-
ture the quiet-time day-to-day variability of the drifts.

Testing subset
We now compare our model predictions to the subset of 
testing measurements and to SF99 model predictions. 

Fig. 2  Estimated Feature Importance; Estimated importance of each 
input feature
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Figure 4 shows the comparison for 20 days that were ran-
domly selected from the original set of Jicamarca meas-
urements and were not used in the training of our model. 

Our model results and the measurements are for an alti-
tude of 360 km. The results show that our model is able 
to capture the expected diurnal variation of the drifts, 

Fig. 3  Local Time Plots of Measured and Predicted Vertical Drifts for Training Subset; Scatter plots of measured vertical drifts (black) and predicted 
vertical drifts (red) corresponding to an altitude of 360 km for 20 days chosen randomly from our training dataset. The green line shows the SF99 
model predictions

Fig. 4  Local Time Plots of Measured and Predicted Vertical Drifts for Testing Subset; Scatter plots of measured vertical drifts (black) and predicted 
verticals (red) corresponding to an altitude of 360 km for the 20 days of testing data. The green line shows the SF99 model predictions
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with upward drifts during the day and downward drifts at 
night. Our model also predicts the occurrence of the PRE 
peak fairly well. We point out that the horizontal axis in 
Fig.  4 is in universal time, and the PRE typically occurs 
around 1900 LT, which corresponds to 2400 UT.

The comparison of our model with measurements and 
with the SF99 model shows that, in general, our model 
predicts the same overall behavior. In some cases, the 
behavior predicted by both models is virtually the same. 
For instance, see curves for DOY 76 of 2000, DOY 334 
of 2016 and DOY 47 of 2018. There are a few cases, how-
ever, where the machine learning model seems to predict 
an unusual behavior of the drifts that is not predicted by 
the SF99. For instance, our model is capable of predict-
ing the abrupt change in the drifts observed near sunrise 
(1000 UT) on DOY 347 of 2001. It is also able to predict 
the weak drifts observed between 1100 and 1700 UT on 
DOY 350 of 2007. As expected, we find larger errors in 
the testing predictions during pre-sunrise hours due to 
the reduced accuracy of the ISR drift measurements dur-
ing this time.

To better evaluate the performance of our model with 
respect to the SF99, we computed the RMSE for both 
model predictions with respect to the testing subset. Fig-
ure 5 shows the results of our evaluation. It shows scatter 
plots of the measurements (actual) versus modeled pre-
dictions for the SF99 model (green) and for our machine 
learning model (red) for three different altitudes: 250, 
360, and 500 km. We found that the machine learning 
model outperformed the SF99 model at each altitude but 
only slightly. We must point out that this comparison 
takes into consideration measurements made at all local 
times. While the drifts do not vary much with height dur-
ing most local times, the variation might be important 

near sunrise and sunset. This is discussed further in the 
following section.

Height variation
Our machine learning modeling approach takes into con-
sideration the height variation of the vertical drifts. While 
this variation is weak during most hours, especially if 
average values are considered, it can be significant near 
sunrise and sunset (Shidler and Rodrigues 2019).

To examine the height variation predicted by the 
machine learning model, we ran predictions for a full 
year with the solar flux set to 150 SFU. Then, for each 
universal (or local) time we estimated the height varia-
tion by fitting a linear model to the drift profiles for alti-
tudes between 200 and 500 km. The results are presented 
in Fig.  6. The black curve represents the mean height 
gradient of the drifts for each local time. The error bars 
represent the variability (standard variation) of the drift 
values for each local time. Our model is able to predict 
the expected behavior of the height variation of the verti-
cal drifts throughout the day. It shows that the gradients 
are mostly positive before ∼1200 LT, and mostly negative 
after that time which were also found in previous stud-
ies and observations (Pingree and Fejer 1987; Chau and 
Woodman 2004; Rodrigues et al. 2015; Shidler et al. 2019; 
Shidler and Rodrigues 2019). In addition, the model pre-
dicts the enhancements in height gradients for the verti-
cal drifts near sunrise and sunset that have been found 
in previous analyses of Jicamarca drifts carried out by 
Shidler and Rodrigues (2019).

For comparison, the red curve shows the results of 
Shidler and Rodrigues (2019). The curve represents 
the local time variation of the mean height gradients 

Fig. 5  Regression Plots Comparing SF99 Versus Our Machine Learning Model; Scatter plots for actual measurements versus predictions using the 
SF99 model (green) and machine learning model (red) at 250 km (left), 360 km (middle), and 500 km (right). Each panel shows the coefficient of 
determination ( R2 ) and the RMSE values for the machine learning and SF99 models
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of vertical drifts. These mean height gradients were 
obtained averaging individual height gradients estimated 
from drift profiles measured by the Jicamarca radar. One 
can see the positive (negative) gradients before (after) 
local noon, and the enhancements near the termina-
tors. We must point out that differences between the 
observed mean gradients and the gradients derived from 
our model are most likely caused by differences in how 
the quantities were computed. For instance, the observed 
mean gradients (red curve) were estimated from 
observed drift profiles made over a wide range of solar 
flux conditions (mean F10.7 = 150 SFU and values vary-
ing from 105.4 to 277.4 SFU) and non-uniform distribu-
tion of days throughout the year. The gradients derived 
from our model were for a fixed F10.7 of 150 SFU and 
for every day of an entire year. In addition, the observed 
mean gradients were computed for 1-h wide bins. The 
model gradients were computed for specific times (i.e. no 
local time binning).

On the minimum samples per leaf
As mentioned earlier, some of the hyperparameters were 
tuned using Scikit-learn’s GridSearchCV method. The 
best performing hyperparameters were determined by 
the lowest average RMSE using fivefold cross-validation. 
However, when examining the model output we found 
some excessive variations in the model drift curves, par-
ticularly in the pre-sunrise sector. These variations are 
caused by, in most part, by the larger variability in the 
measured drifts around that time. This larger variabil-
ity is a result of the low SNR of the observed echoes and 

large uncertainties in the measured drifts used to train 
the model.

We anticipate that excessive variations in the drift 
curves might not be adequate when using them to drive 
physics-based numerical models of the ionosphere such 
as SAMI2 (Huba et al. 2000). We found that it is possi-
ble to smooth out the local time prediction of the verti-
cal drifts by increasing the minimum number of samples 
required in each leaf of a decision tree.

Figure  7 shows the machine learning predictions for 
the days in the testing subset using a model trained with 
a minimum of 10 samples required per leaf (red) and a 
model trained with a minimum of 150 samples required 
per leaf (blue). The actual measurements for the testing 
subset are shown in black. Increasing the minimum sam-
ples per leaf has little impact on the daytime drifts but 
can substantially smooth out model predictions in the 
early morning.

We must note that this is to illustrate that smooth pre-
dictions can be obtained for certain applications. The 
choice for the minimum samples per leaf to be used is 
a result of trial-and-error, and increasing this parameter 
resulted in a larger RMSE for the testing subset.

Conclusions
We present the results of an effort to model quiet-time 
vertical plasma drifts in the low-latitude F-region ion-
osphere using the random forest machine learning 
technique. The model is capable of describing the clima-
tological variation of the drifts as function of universal 
time, day of the year, solar flux, and altitude (200–600 
km).

Fig. 6  Predicted Height Gradients of Vertical Drifts for 150 SFU; Mean and standard deviation of the predicted height variation of the vertical drifts 
over the period of one year for F10.7 = 150 SFU
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The model has been trained using 382 days of meas-
urements of the vertical plasma drifts made by the inco-
herent scatter radar of the Jicamarca Radio Observatory 
( 11.95◦S , 76.87◦ W, ∼ 1◦ dip lat) between 1996 and 2018. 
In our analysis, we compare our machine learning model 
results with the Scherliess and Fejer (1999) model (SF99 
model), a widely used empirical model of the vertical 
drifts developed using a different set of Jicamarca meas-
urements. Both models were tested on a dataset com-
prising 20 days of observations of the vertical drifts from 
Jicamarca that were not used in the training of either 
model.

We found that the machine learning model can 
describe the overall behavior of the drifts with a slightly 
smaller root mean square error (RMSE) than the SF99 
model. In addition, the model is capable of capturing the 
diurnal variation of the gradients including the gradient 
enhancements near sunrise and sunset, which is in good 
agreement with physical expectations and with previous 
studies and observations. Finally, the model can easily be 
expanded and improved as more drift measurements are 
made and become available for training. One can envi-
sion, for instance, expanding the model to include distur-
bance electric fields with the time history of the AE index 
as an additional input.
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