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Polarization measurements of unusual 
cases of medium frequency burst emissions 
extending below 1.5 MHz
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Abstract 

Auroral medium frequency burst (MFB) is a radio emission of natural auroral origin associated with substorm expan-
sion phase and observable at ground level. The emission usually occurs at frequencies above 1500 kHz, but occasion-
ally it extends to a sharp lower cutoff frequency at 1300–1500 kHz depending on the observing site, with a frequency 
gap below the cutoff and sporadic emission below the gap extending to frequencies as low as 1000 kHz. These 
low-frequency MFB components lie below the electron gyrofrequency and hence could represent either whistler or 
LO-modes. Recently, using crossed antennas and a two-channel receiver at Toolik Lake, Alaska, polarization of these 
low-frequency MFB components was measured for the first time and found to be left-hand. This observation elimi-
nates whistler mode as a possibility and requires the low-frequency components be LO-mode in the ionosphere, 
which constrains their source location since it requires that the frequency exceeds the L-cutoff frequency. In these 
occasional events marked by a cutoff and low-frequency MFB components, the latter probably originate at high alti-
tudes ( > 800 km) and reach the ground through extraordinary low-density polar cap ionosphere.
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Introduction
Radio emissions detectable at ground level provide a 
window into auroral plasma physics processes and con-
ditions. At least four types occur, and while all of them 
occur during substorms, two of them, medium fre-
quency burst (MFB) and impulsive auroral hiss, stand 
out because of their specific association with the expan-
sion phase (Makita 1979; LaBelle et al. 1994; reviews by 
Sazhin et  al. 1993; LaBelle and Treumann 2002). MFB 
is a broadband left-hand polarized emission of typically 
a few minutes duration at substorm onset (Weatherwax 
et al. 1994; LaBelle et al. 1997, 2005; Sato et al. 2008). It 
is best observed from a station poleward of the onset 
location. Radio interferometry at such stations shows 
that the emission direction of arrival moves in parallel 
with the poleward-most expanding substorm arc (Bunch 

et al. 2009), and observation of the emission ceases when 
the arc comes overhead of the station due to absorption 
of MFB signals in the enhanced D-region underneath 
the arc created by impact ionization from the auroral 
electrons.

Recent studies show MFB is not a featureless impulsive 
emission, as suggested by low-resolution measurements, 
but rather consists of complex fine structures, most com-
monly shifting downward in frequency by 100–300 kHz 
over tens of ms (Bunch and LaBelle 2009). LaBelle (2011) 
put forth an explanation involving Langmuir wave exci-
tation over a range of altitudes, hence range of plasma 
frequencies, in the topside auroral ionosphere. The 
group delay of the Langmuir waves, which depends on 
the magnitude of the downward spatial gradient in elec-
tron density, can explain time delays of 10s of ms. A 
simple one-dimensional model suggests that relatively 
low-energy parallel electron beams are required for this 
mechanism to explain the observed delays, exactly the 
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characteristics of Alfvenically accelerated electron beams 
which have been inferred to compose the poleward-
expanding substorm arc based on IMAGE satellite data 
(Mende et  al. 2003). If this is true, it implies that MFB 
and its complex structure provide a tool to remotely 
sense and study the temporal and spatial dynamics of 
the Alfvenic aurora. Subsequent investigations provide 
some support for the topside generation of MFB (e.g., 
Broughton et al. 2012), but the mechanism has not been 
proven and many uncertainties remain. One reason for 
these is absence of in  situ data from the MFB source 
region due to its relatively small size, rapid motion, and 
few minutes duration which makes it nearly impossible 
to target with a rocket launch.

Lack of in  situ data motivates a search for alternative 
remote sensing methods of probing the physics underly-
ing MFB. In this regard, important clues may come from 
nulls and cutoffs which occasionally occur in the MFB 
spectrum. One of these, investigated in this paper, is a 
low-frequency cutoff near 1.5  MHz, depending on the 
observing location, which is sometimes accompanied by 
a burst of lower-frequency MFB emission below a fre-
quency gap below the cutoff. Because this cutoff is near 
the electron gyrofrequency in the ionosphere above the 
observing station, LaBelle and Treumann (2002) specu-
late that the mechanism of MFB perhaps radiates into 
two different modes depending on frequency: LO-mode 
above the gyrofrequency and whistler mode below. Polar-
ization measurements are needed to test this suggestion, 
and they have hitherto been unavailable, partly due to the 
rarity of the phenomenon. However, recently a polari-
zation experiment tuned to the appropriate frequency 
range has been operated from Toolik Lake, Alaska. “Data 
presentation” section presents results of this experiment, 
and “Discussion” section presents some broader data 
analysis which contributes to interpreting the results.

Data presentation
Over the years, Dartmouth College has operated LF/MF/
HF receivers at various high-latitude sites in both the 
northern and southern hemispheres. Until recently, the 
bulk of these measurements was conducted with stepped 
frequency receivers having frequency and time resolu-
tions of about 10 kHz and 1 s, respectively. In some cases, 
multiple antennas were deployed to measure polariza-
tion (e.g., Shepherd et  al. 1997) or direction of arrival 
(e.g., Hughes et al. 2001; Bunch et al. 2008, 2009). In the 
past decade, techniques have changed radically with the 
advent of high-speed analog to digital conversion, soft-
ware-defined radio, and large-capacity disk drives. For 
example, the most recent experiment deployed at Toolik 
Lake, Alaska, directly samples signals from six antennas 
at rates of 10–20 MHz continuously for many hours per 

night, resulting in polarization and direction of arrival 
information with resolution generally limited only by the 
bandwidth and stationarity of the phenomenon. These 
experiments collect several terabytes of information daily 
and rely on regular monitoring, with full resolution data 
archived only for selected events.

Figure 1 shows six example spectrograms recorded with 
instruments described above at five high-latitude sites: 
Churchill, Manitoba (58.7684N, 94.1650W, 69.12 inv. 
lat.); Baker Lake, Nunavut (64.3176N, 96.0220W, 74.10 
invariant); South Pole, Antarctica (90S, 74.25 inv. lat.); 
Sondrestrom, Greenland (66.9873N, 50.9448W, 72.85 
inv. lat.); and Toolik Lake, Alaska (68.6318N, 149.6060W, 
68.72 inv. lat.). The most prominent feature in each panel 
is MFB emission, in these cases spanning from below 
1500  kHz to as high as 3000  kHz. These examples have 
been selected to show a rare and unexplained property 
of MFB: when it extends to the lowest part of its normal 
1500–4500  kHz frequency range, it exhibits a distinct 
lower cutoff in the range 1300–1500 kHz, depending on 
site. This cutoff frequency is close to the electron gyrofre-
quency in the ionosphere above the observing site, as dis-
cussed below. Above the cutoff frequency, MFB appears 
as broadband impulsive emission on the time resolution 
of these measurements, although it has been shown to 
have complex fine structure when viewed at higher time 
resolution (Bunch and LaBelle 2009).

Below the 1300–1500 kHz cutoff frequency, there is a 
frequency gap in which no MFB occurs. The width of this 
gap ranges from a few kHz to > 100 kHz in the examples 
shown. Below this gap, intermittent bursts of MFB occur 
extending to frequencies as low as 1000  kHz. In every 
example, the MFB observed below the cutoff, compared 
to that above the cutoff, occurs for a much smaller frac-
tion of the total duration of the event and is generally less 
intense.

Below 1000  kHz, impulsive LF auroral hiss is often 
observed, a whistler mode emission which like MFB 
occurs at substorm onsets (e.g., Makita 1979; Morgan 
1977; LaBelle et al. 1994). In some cases, intense bursts of 
auroral hiss are correlated with the bursts of MFB below 
the 1300–1500 kHz cutoff. The association of auroral hiss 
with MFB, and with bursts of MFB below the electron 
gyrofrequency in particular, as well as the existence of the 
distinctive cutoff and gap, motivates speculation that the 
portion of MFB below the gyrofrequency might be whis-
tler mode. According to this scenario, the MFB genera-
tion mechanism produces either LO-mode or W-mode 
depending on the emission frequency (LaBelle and Treu-
mann 2002, p. 406). In the absence of polarization meas-
urements, this interpretation remained speculative.

The multi-antenna measurements conducted at Too-
lik Lake imply that for the examples in the bottom two 
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panels of Fig. 1, polarization of the signals can be deter-
mined. This is done by measuring the phase difference, 
after correcting for variable cable lengths and delays in 
the electronics, between the MFB signals detected by 
two identical antennas oriented at 90◦ to one another. 
Using cross-spectral analysis, this phase difference can be 
measured for each frequency component. Figure 2 shows 
the results for the event occurring at 0754-0758 UT on 
October 19, 2017. The bottom panel of Fig. 2 shows the 
power spectrum versus time, the same information as 
in the lower right panel of Fig.  1, but from a different 
antenna. The upper panel of Fig. 2 shows the phase differ-
ence which indicates the polarization, with blue and red 
representing ninety degree negative and positive phase 
differences, corresponding to right-hand and left-hand 
polarization, respectively. As expected, the MFB above 
the electron gyrofrequency is left-hand polarized, and the 
whistler mode hiss below the gyrofrequency is right-hand 
polarized. The surprising new result concerns the com-
ponents of MFB below 1.5  MHz: these are clearly and 
unambiguously left-hand polarized, like the MFB above 
the cutoff and in contrast to the whistler mode hiss.

Figure  3 shows another example, 0920-0924 UT on 
September 17, 2017, in the same format as Fig.  2. This 
example confirms the result of Fig.  2 concerning the 
polarizations of the MFB signals above and below the 
frequency gap near the electron gyrofrequency: both are 
left-hand polarized, in contrast to the auroral hiss.

Discussion
The new result, demonstrating that the polarization of 
< 1.5  MHz MFB emissions is left-hand, implies that 
these, like higher frequency MFB, propagate in the LO-
mode in the ionosphere, which constrains the source 
to locations where the MFB frequency exceeds the 
L-cutoff frequency ( fL ). Figure  4a is a spectrogram of 
the event observed at Toolik Lake, 0754-0758 UT on 
October 19, 2017 (also shown in bottom right panel of 
Fig. 1 and bottom panel of Fig. 2). Figure 4b shows, with 
the same frequency scale, altitude profiles of fce , fpe , 
fuh = (f 2pe + f 2ce)

1/2 , and fL = ((f 2ce + 4f 2pe)
1/2

− fce)/2 . 
These are calculated using magnetic field from the Inter-
national Geomagnetic Reference Field (IGRF), and elec-
tron density from the International Reference Ionosphere 
(IRI) Bilitza et al. (2011) for the Toolik Lake location and 
date of the observation.

The electron density from the IRI is not expected to 
be accurate for the ionosphere under the poleward-
expanding substorm auroral arc which is the source the 
MFB. It may better represent density profiles in the quiet 
polar cap poleward of the arc, through which the MFB 
rays propagate to reach Toolik Lake. Interestingly, in this 
case the distinct lower cutoff of the MFB near 1.5 MHz 
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Fig. 1  Spectrograms showing six examples of MFB emissions 
observed at five sites. The events are all of an unusual type, in which 
the MFB has a distinct lower cutoff at 1.3–1.5 MHz, with a gap below, 
and sporadic emissions extending from below the gap to as low as 
1.0 MHz. In some cases, auroral hiss is observed below 1.0 MHz
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corresponds approximately to the maximum value of 
the L-cutoff frequency in the ionosphere ( fL,max ), and 
the maximum observed frequency of MFB corresponds 
approximately to the maximum value of the plasma fre-
quency in the ionosphere ( fpe,max ). If this is true, the bulk 
of the MFB at 1.5–2.0  MHz conforms to predictions of 
the topside generation mechanism proposed by LaBelle 
(2011), in which MFB originates as Langmuir waves 
generated over a range of altitudes at frequencies up to 
f = fpe,max and reaching the ground under the condi-
tion that f > fL,max . Broughton et al. (2012) showed that 
a large number of MFB events observed at Sondrestrom, 
Greenland, obeyed this relationship.

Unfortunately, although this profile together with 
the generation mechanism proposed by LaBelle (2011) 
explains the bulk of the MFB at frequencies above 
1.5  MHz and may explain the majority of MFB events 
which contain only frequencies above about 1.5  MHz, 
it fails to account for the occasional occurrences of 
MFB below 1.5  MHz in the Toolik Lake data shown in 
Fig.  4a. These < 1.5  MHz components are now known 
to be L-polarized and hence must also propagate in 
the LO-mode above the L-cutoff in the ionosphere. An 

alternative scenario must therefore be developed for this 
particular MFB observation and the others like it.

The locations in Fig. 4b where fpe lies in the range 1.0–
1.5 MHz are at low altitudes < 250 km and high altitudes 
> 500 km. The low-altitude source region can be elimi-
nated because at these altitudes the emission frequencies 
would lie below the electron gyrofrequency. Below fce , 
the Landau resonant Langmuir waves couple naturally to 
the W-mode not the LO-mode, and the resulting radia-
tion should be right-hand polarized. According to the 
electron density profile in Fig. 4b, the high altitude source 
region would suffer from the same problem, since the 
plasma frequency lies below the gyrofrequency in that 
region as well.

Furthermore, even if LO-mode signals below 1.5 MHz 
could be produced in high altitude sources, according to 
Fig. 4b they would lie below the maximum value of the 
L-cutoff frequency and hence could not penetrate to 
ground level. To explain penetration of LO-mode signals 
to ground level requires unusually low electron densi-
ties. Figure 4c shows a modified version of the IRI den-
sity profile, rescaled so that the maximum L-cutoff lies at 
1.0   MHz, low enough to allow the lowest left-polarized 
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Fig. 2  Spectrograms of intensity (bottom panel) and polarization (top panel) of MFB emission observed at Toolik Lake on October 19, 2017, 
showing that the component of MFB below 1.5 MHz is left-polarized, like the bulk of the MFB emission, and unlike the right-polarized whistler 
mode auroral hiss emission
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Fig. 3  Spectrograms of intensity (bottom panel) and polarization (top panel) of MFB emission observed at Toolik Lake on September 17, 2017, 
confirming the result of Fig. 2 concerning polarization of the component of MFB below 1.5 MHz

0754 0755 0756 0757 0758 200 400 600 800 1000 200 400 600 800 1000 
)mk(edutitlA)mk(edutitlA7102,91rebotcOno)TU(emiT

fuh

fce

fpe

fL
0.0

0.5

1.0

1.5

2.0

2.5

Fr
eq

ue
nc

y
(M

H
z)

Toolik Lake, Alaska

fL

fce

fpe

fpe (incl. impact ionization)

(a) (b) (c)
Fig. 4  a Spectrogram of intensity of MFB emissions observed at Toolik Lake on October 19, 2017; b altitude profiles of key frequencies ( fce , fpe , 
fuh , and fL ) above Toolik Lake for the date and time of the observations in a, based on IGRF and IRI model values of magnetic field and electron 
density; c altitude profiles of key frequencies calculated by scaling the IRI profile such that the maximum L-cutoff frequency lies below all observed 
left-polarized MFB, and plasma frequency profile (solid green trace) obtained by adding to the scaled-IRI model an enhancement approximating 
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signals observed at Toolik Lake to penetrate the iono-
sphere. In this case, the maximum plasma frequency is 
only 1.55  MHz, insufficient to explain the highest fre-
quency MFB which extends to about 2  MHz. However, 
the electron density beneath the auroral arc should be 
enhanced due to electron impact ionization caused by 
the auroral electrons, including the same ones causing 
the MFB, which are suspected to be low-energy Alfveni-
cally accelerated electrons. The solid green trace in 
Fig. 4c shows the plasma frequency profile assuming that 
the background low-density ionosphere (dashed green 
and blue profiles) is augmented by enhanced electron 
density peaked at 350 km and decreasing at higher alti-
tudes with a roughly Gaussian roll-off of width 500 km. 
This profile is meant to model the effects of electron 
impact ionization from low energy ( < 100 eV) electrons: 
as seen in Fig. 14 of Strickland et al. (1983), for Gaussian 
electron spectra typical of discrete aurora, the electron 
density enhancement peaks somewhat above the maxi-
mum in the production rate, which lies near 300 km for 
100 eV electrons as shown by Fig. 3b of Fang et al. (2008). 
The Strickland model does not necessarily apply to the 
topside, where the recombination times are long, and 
transport processes can be significant in determining the 
density structure as discussed, for example, in Chapter 21 
of Banks and Kockarts (1973). However, using the effect 
of impact ionization as a rough guideline, Fig. 4c shows 
an example profile with sufficient enhanced density to 
make the plasma frequency exceed the gyrofrequency 
up to about 1150 km. The F-peak is also enhanced in this 
profile, which allows Langmuir waves as high as 2.0 MHz, 
as well as those low as 1.0 MHz, to convert to LO-mode 
electromagnetic waves and reach the ground through the 
lower-density ionosphere poleward of the arc. Unusu-
ally, low electron density in the polar cap combined with 
enhanced density on the field line of the auroral arc can 
therefore account for the observations of left-polarized 
MFB spanning 1–2  MHz at Toolik Lake. The need for 
extraordinary low density may explain the rarity of these 
low-frequency MFB which have been observed approxi-
mately monthly in Fall 2017 with the high-resolution 
instrument at Toolik, and generally less frequently over 
the years with lower-resolution instruments at other 
sites.

Toolik Lake direction of arrival (DOA) measurements 
may lend some support to this interpretation. For the 
event on Oct. 19, 2017, these data show that the low-
frequency MFB components come from slightly higher 
elevation angles than the bulk of the > 1500  kHz MFB, 
suggesting that they may come from higher altitudes. 
DOA data from the Sep. 17, 2017, event show the low-
frequency and high-frequency MFB coming from 
approximately the same elevation angles, however. DOA 

at these frequencies is strongly affected by ionospheric 
refraction, so statistical analysis including ray-tracing 
consideration of many examples would be needed to 
confirm whether the < 1500 kHz MFB components con-
sistently come from higher altitudes than the normal 
> 1500 kHz MFB components, as suggested by the Oct. 
19, 2017, example.

This scenario leaves unexplained the narrow gap in the 
MFB just below 1.3–1.5  MHz depending on location. 
Electron density profiles measured with the Sondrestrom 
radar during MFB show the highest density in the 
E-region (e.g., Figs. 4c and 4d in Broughton et al. 2012) 
consistent with characteristics of other published elec-
tron density profiles associated with expanding substorm 
arcs (e.g., Fig.  1 of Oyama et  al. 2014). One idea is that 
such profiles could have an inflection point in the topside 
density profile, though the enhanced electron density 
profile in Fig. 4c does not show this effect. Such an inflec-
tion point in the electron density profile would occur at 
approximately the same altitude where the Langmuir fre-
quency would match the gap in the MFB emission. It is 
not clear how an inflection point would cause an inter-
ruption in MFB generation, however. Another possibil-
ity is that a trough in electron density above the density 
maximum could be deep enough to cause the plasma fre-
quency to lie below the gyrofrequency for a short span 
of altitudes. Neither the modeled density profile of Fig. 4c 
nor the measured profiles in Broughton et  al. (2012) or 
Oyama et  al. (2014) show this effect, but if it occurred, 
it would explain the gap in the MFB spectrum since LO-
mode emission would not occur from the range of alti-
tudes for which fce > fpe where Langmuir waves connect 
to the whistler mode as described above. In summary, 
there is no satisfactory explanation of the cutoff and gap 
in the MFB spectrum, but the new-found knowledge that 
the MFB below the gap, like that above it, is left-polarized 
places a significant constraint on whatever mechanism 
causes it.

The possible role of the electron gyrofrequency in 
explaining the frequency gap, and indeed the proxim-
ity of the MFB cutoff at 1300–1500 kHz to the electron 
gyrofrequency, inspire the question of how the cutoff 
frequency varies with magnetic field. Figure  5a shows 
the average cutoff frequency at each of five sites, deter-
mined from Fig.  1, as a function of the geomagnetic 
field strength at an altitude of 100 km at each site, deter-
mined from IGRF. Figure  5b shows the altitude range 
of the upper and lower boundaries of the gap in MFB 
below the cutoff frequency, assuming these match the 
electron gyrofrequency above the station, with the lat-
ter inferred from IGRF. Dashed lines in Fig.  5a indicate 
the gyrofrequency at altitudes of 100–400 km, as a func-
tion of the magnetic field at 100  km. The data points 
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suggest a possible relationship between the cutoff fre-
quency and the magnetic field, with larger magnetic field 
implying higher cutoff frequency. If associated with the 
gyrofrequency, the significant altitude range would be 
250–350 km, which would be near the F-peak. If the cut-
off corresponds to fL,max , then electron density as well as 
magnetic field would play a role in determining the data 
points in Fig. 5a.

In summary, the main result of this paper is the deter-
mination that occasional MFB observed below a 1300–
1500  kHz frequency cutoff is left-hand polarized. This 
observation puts an end to speculation that such com-
ponents, being below the ionospheric electron gyrof-
requency, might be whistler rather than LO-mode. The 
requirement that they are LO-mode puts restrictions 
on their source altitude, where the emission frequency 
must exceed the L-cutoff frequency. The low-frequency 
components probably come from high altitudes, 800–
1200 km, where it is possible for both the emission fre-
quency and the plasma frequency to exceed local fce and 
maximum fL . The MFB frequency gap below the 1300–
1500  kHz cutoff remains unexplained. The cutoff fre-
quency roughly scales with the magnetic field as expected 
if it is at least partially related to the gyrofrequency. 
The scenario described above to explain Toolik Lake 

observations could be further tested by statistical studies 
of direction of arrival measurements of MFB emissions 
exhibiting the cutoff, frequency gap, and low-frequency 
component.
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