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Abstract 

Paleomagnetic information reconstructed from archeological materials can be utilized to estimate the archeological 
age of excavated relics, in addition to revealing the geomagnetic secular variation and core dynamics. The direction 
and intensity of the Earth’s magnetic field (archeodirection and archeointensity) can be ascertained using different 
methods, many of which have been proposed over the past decade. Among the new experimental techniques for 
archeointensity estimates is the Tsunakawa–Shaw method. This study demonstrates the validity of the Tsunakawa–
Shaw method to reconstruct archeointensity from samples of baked clay from archeological relics. The validity of 
the approach was tested by comparison with the IZZI-Thellier method. The intensity values obtained coincided at 
the standard deviation (1σ) level. A total of 8 specimens for the Tsunakawa–Shaw method and 16 specimens for the 
IZZI-Thellier method, from 8 baked clay blocks, collected from the surface of the kiln were used in these experiments. 
Among them, 8 specimens (for the Tsunakawa–Shaw method) and 3 specimens (for the IZZI-Thellier method) passed 
a set of strict selection criteria used in the final evaluation of validity. Additionally, we performed rock magnetic experi-
ments, mineral analysis, and paleodirection measurement to evaluate the suitability of the baked clay samples for 
paleointensity experiments and hence confirmed that the sample properties were ideal for performing paleointensity 
experiments. It is notable that the newly estimated archaomagnetic intensity values are lower than those in previous 
studies that used other paleointensity methods for the tenth century in Japan. 
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Introduction
The Earth’s magnetic field (geomagnetic field) is known 
to vary significantly with time. Variations with a compar-
atively short period between several decades and several 
millennia are referred to as geomagnetic secular varia-
tions, and their identification is needed to understand the 
dynamic behavior in the core using the dynamo calcula-
tion and to estimate the archeological age of excavated 
relics. Age estimation is done by comparing the value of 

the geomagnetic field reconstructed from baked mate-
rials to the secular variation curve, and this process is 
called the archeomagnetic dating method (e.g., Nakajima 
and Natsuhara 1981; Lanos 2004; Jordanova et al. 2004).

Numerous archeomagnetic studies have been con-
ducted in Japan using oriented baked clay samples col-
lected from several types of burnt relics, such as kilns 
(e.g., Hirooka 1977). These studies used samples from 
excavations performed by local government archeo-
logical research organizations. The archeomagnetic data 
can be extracted from the GEOMAGIA 50 database 
(Korhonen et al. 2008; Brown et al. 2015), which holds a 
total of 245 Japanese datasets (paleodirection and pale-
ointensity), including 102 paleointensity datasets from 
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archeological material (Nagata et al. 1963; Sasajima 1965; 
Sasajima and Maenaka 1966; Kitazawa 1970; Domen 
1977; Sakai and Hirooka 1986).

All of the data collected before 1986 pertained to con-
ventional experimental techniques, including the original 
Thellier–Thellier method (Thellier and Thellier 1959), the 
Domen–Thellier method (1977), and the Sakai–Thellier 
method (Sakai and Hirooka 1986). Other modern tech-
niques have been proposed to improve reliability, such 
as the IZZI-Thellier method (Tauxe and Staudigel 2004) 
based on stepwise thermal demagnetization (ThD) and 
the Tsunakawa–Shaw method (Yamamoto et  al. 2003; 
Mochizuki et  al. 2004; Oishi et  al. 2005) based on step-
wise alternating field demagnetization (AFD). Studies 
have been conducted using the IZZI-Thellier method 
for both volcanic rocks (e.g., Cromwell et  al. 2015; Yu 
2012) and archeological material (e.g., Hong et al. 2013; 
Cai et  al. 2014, 2015, 2017). For the Tsunakawa–Shaw 
method, many studies have focused on volcanic rocks 
(e.g., Yamamoto and Tsunakawa 2005; Mochizuki et  al. 
2006; Yamamoto et al. 2010; Mochizuki et al. 2011, 2013; 
Yamazaki and Yamamoto 2014; Ahn et al. 2016), but only 
one has applied the method to samples taken from clay 
from the floor of a reconstructed kiln from the present 
age that was burnt in a known magnetic field, demon-
strating that such samples are suitable for archeointensity 
research (Yamamoto et al. 2015).

In this study, we applied the Tsunakawa–Shaw method 
to actual archeological remains for the first time. We also 
performed a variety of rock magnetic experiments, min-
eral analysis, and paleodirection measurements to evalu-
ate the suitability of baked clay samples for paleointensity 
experiments.

Samples
Sueki (Sue ware) is a type of earthenware that was widely 
used until the latter part of the Heian period to the early 
part of the Kamakura period (around the twelfth century) 
in Japan and that originated on the Korean peninsula and 
came to Japanese islands in the middle part of the Kofun 
period (the fifth century). The surface of Sueki exhibits a 
grayish blue and glassy luster because it was fired at tem-
peratures greater than 1000 °C in an Anagama-type kiln 
(e.g., Mizoguchi 2013).

Samples used in this study were collected from the 
remains of the Sayama Higashiyama-Oku kiln, which 
is located in the Sayama area of Bizen City, Okayama 
Prefecture, Japan (34°41′N, 134°11′E, Fig.  1a, b). It was 
excavated by the Okayama University of Science. The 
excavated artifacts of the kiln were mainly Sueki frag-
ments and kiln wall blocks. The types of Sueki fragments 
are Tsuki-type goblets, bowls, small plates, pots, Tsubo-
type jars, Kame-type jars, and Fuhji-ken-type inkstones. 

The Tsuki-type goblets and bowls consisted of 228 circu-
lar-foot-style fragments, 87 flat-foot-style fragments, and 
84 flat-base-style fragments. The mean diameters of the 
basilar parts of each style are as follows: 7.0–8.5 cm for 
the circular-foot-style, 7.0–7.4 cm for the flat-foot-style, 
and 7.0–7.4  cm for the flat-base-style fragments [see 
Kameda et  al. (2014) for further archeological informa-
tion]. Comparing this archeological information with 
that reported in previous studies (e.g., Nagayama 1936; 
Itoh 1987; Nishikawa 1966; Kameda 1996), it is estimated 
that the kiln was operated during around the first half of 
the Heian period (~ AD 900–1000). The geology of the 
area is characterized by rhyolite (National Institute of 
Advanced Industrial Science and Technology 2017).

Baked clay blocks (~ 10 cm square) were collected from 
the kiln floor of the central part of the burning chamber 
(Fig. 1c, d) in the following way:

1. Rectangular grooves were dug into the kiln floor 
using a tile hammer.

2. The surface of the blocks surrounded by the grooves 
was reinforced with plaster.

3. The orientations of the blocks were measured using a 
Brunton compass as a strike and a dip, and this direc-
tion information was marked on the upper surface of 
the blocks.

4. The blocks were peeled from the floor. They were 
named as BH 1 to BH 8 (see Fig. 1d for the placement 
of samples in the kiln).

To avoid the less-fired and/or unfired parts, we used 
only the surficial parts of the blocks (within 1.5 cm from 
the kiln floor) for experiments. For AFD measurements, 
each 1.5-cm cubic specimen was cut from the block 
samples and then placed into a 7-cm3 plastic case with 
paper clay. For measurements of archeointensity and 
ThD, a 1.5-cm3 specimen cut from the block samples 
was placed into a silica glass case with glass wool and 
high-temperature cement. For the magnetic and miner-
alogical experiments, crushed specimens were prepared 
from the block samples. In the archeodirection measure-
ments, the declination collection was set to be − 7.3°, 
based on the IGRF-12 model (International Associa-
tion of Geomagnetism and Aeronomy, Working Group 
V-MOD 2010).

Methods
Rock magnetic experiments
Measurements of hysteresis parameters (saturation 
magnetization, Ms; saturation remanent magnetization, 
Mrs; coercivity, Hc; coercivity of remanence, Hcr) and 
first-order reversal curves (FORCs) were taken using a 
vibrating sample magnetometer (VSM; MicroMag 3900, 
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Princeton Meas.) at the Kochi Core Center (KCC), Kochi, 
Japan. Hysteresis loops were measured in the coerciv-
ity range of − 1.4 to 1.4 T. FORC diagrams were gener-
ated using the UNIFORC code (Winklhofer and Zimanyi 
2006; Egli et  al. 2010). The thermomagnetic curve was 
measured in air using a magnetic balance (NMB-89, 
Natsuhara) of KCC. Crushed specimens were gradually 
heated from approximately 30 °C to 700 °C and then gen-
tly cooled to approximately 50 °C at a rate of 10 °C/min. 
Throughout the temperature cycle, a field of 300 mT was 
applied to the sample. Acquisition curves of isothermal 
remanent magnetization (IRM) were obtained using a 
magnetic property measurement system (XL5, Quan-
tum Design) at the Machine Center, Okayama University 
of Science, Japan. IRM was initially applied at 5 T in the 

reverse direction and subsequently applied in steps with 
1–5000 mT sections divided into 60 intervals at logarith-
mic intervals in the positive direction. The curves were 
analyzed to estimate coercivity components using the 
IRM unmix v2.2 program (Heslop et al. 2002).

Mineralogical experiments
X-ray diffraction (XRD) measurement was taken using 
a Rigaku X-ray Diffractometer RINT 2100  V at Kyushu 
University with Cu kα radiation monochromatized by a 
curved graphite crystal. Data analyses such as determina-
tion of XRD peak positions and identification of miner-
als were performed using Mac Diff 4.2.5 (Petschick 2000). 
The measurements were taken to estimate the firing tem-
perature in the kiln and the absence of specific mineral 
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assemblages, which determines the degree of thermal 
transformation that occurs in the samples during the 
firing procedure and, as a consequence, can provide an 
estimate of the firing temperature during the operation of 
the kiln (e.g., Schomburg 1991; Berna et al. 2007).

Archeodirection measurements
Archeodirection was measured in (1) stepwise ThD 
experiments and (2) stepwise AFD experiments.

In the ThD experiments, we used a thermal demag-
netizer (TDS-1, Natsuhara-Giken), an automated spin-
ner magnetometer with AF demagnetizer (DSPIN, 
Natsuhara-Giken) at the Information Processing Center, 
Okayama University of Science (IPC), and a thermal 
demagnetizer (TDS-1, Natsuhara-Giken) and spinner 
magnetometer (ASPIN, Natsuhara-Giken) at Kyushu Uni-
versity. The demagnetization was performed between 100 
and 700  °C, and the heating hold time was 15  min. The 
specimens were cooled in the thermal demagnetizer using 
a fan.

The stepwise AFD experiment was also conducted 
using an automated spinner magnetometer with an AF 
demagnetizer (DSPIN, Natsuhara-Giken) at the KCC, 
and the demagnetization was performed in the AF range 
between 2 and 180 mT.

The results were projected onto a Zijderveld diagram 
(As and Zijderveld 1958) and Schmidt net to determine 
the direction of the primary remanence by principal 
component analysis (Kirschvink 1980).

Archeointensity measurements
We used the Tsunakawa–Shaw and IZZI-Thellier meth-
ods in the archeointensity experiments.

We followed the procedures described in Yamamoto 
et  al. (2003), Mochizuki et  al. (2004), and Oishi et  al. 
(2005) for the Tsunakawa–Shaw method and used an 
automated spinner magnetometer with an AF demagnet-
izer (DSPIN, Natsuhara-Giken) to measure and demag-
netize remanence and to impart anhysteretic remanent 
magnetization (ARM). Laboratory TRM was imparted 
in a vacuum using a thermal demagnetizer (TDS-1, Nat-
suhara-Giken) with an applied field of 50  μT. We held 
the maximum temperature at 610 °C for 15 (30) min for 
the first (second) heating, and then, the specimens were 
cooled slowly to room temperature over 2–3 h. Low-tem-
perature demagnetization (e.g., Ozima et  al. 1964; Hei-
der et  al. 1992) was performed in a shielded case made 
of permalloy: a specimen was put in a dewar filled with 
liquid nitrogen for 10 min and subsequently pulled out to 
warm up to room temperature using a fan for 20 min.

Specimen-level experimental results were analyzed 
using criteria similar to those adopted in Yamamoto et al. 
(2003), which are summarized in the upper column of 

Table  1. They were further analyzed to determine site-
level results based on the criteria shown in the lower col-
umn of Table 1.

For application of the IZZI-Thellier method, tempera-
ture steps were set to be every 50 °C between room tem-
perature and 500  °C and every 35  °C between 500 and 
600  °C. The pTRM checks (Coe 1967) were performed 
at 300, 400, 500, and 565 °C. All of the heating was per-
formed in the air using a thermal demagnetizer (TDS-1, 
Natsuhara-Giken) at the KCC and IPC. For each heat-
ing run, the specimen was maintained at the destina-
tion temperature for 15  min and then cooled to room 
temperature using a fan. For the in-field step, laboratory 
TRM was applied by a DC field of 50 μT, and its direc-
tion was set to be orthogonal to the initial NRM direction 
of the specimen. The measurement of remanence was 
taken using a spinner magnetometer (ASPIN, Natsuhara-
Giken) and an automated spinner magnetometer with an 
AF demagnetizer (DSPIN, Natsuhara-Giken).

Specimen-level experimental results were analyzed 
on Arai plots (Arai 1963; Nagata et  al. 1963) using the 
Thellier GUI program included in the “PmagPy” soft-
ware package by Shaar and Tauxe (2013), based on cri-
teria summarized in the upper column of Table 2, which 
were similar to those adopted in Cromwell et al. (2015). 
Site-level results were determined based on the criteria 
shown in the lower column of Table 2, which are identical 
to those adopted in the Tsunakawa–Shaw experiment. 

Results
Rock magnetic experiments
Representative hysteresis loops are shown in Fig.  2a, 
b. A narrow, saturated loop is a characteristic typical to 
titanomagnetite, which mainly consists of pseudo-single-
domain (PSD) particles (e.g., Tauxe et al. 1996). The hys-
teresis parameters are distributed across the ranges of 
0.27 < Mr/Ms < 0.38, and 1.6 < Hcr/Hc < 1.9. These values 

Table 1 List of the selection criteria for the Tsunakawa–
Shaw method

fN, the fraction used for the best-fit line on the NRM-TRM1* plot of first heating; 
rN, the correlation coefficient for the best-fit line on the NRM-TRM1* plot of first 
heating; SlopeT, the slope of the TRM1–TRM2* plot of second heating; fT, the 
fraction used for the best-fit line on the TRM1–TRM2* plot of second heating; rT, 
the correlation coefficient for the best-fit line on the TRM1–TRM2* plot of second 
heating; n, the number of the selected samples; Hδ%, the value of the coefficient 
of variation

Specimen level

fN rN SlopeT fT rT

≥ 0.15 ≥ 0.995 0.95–1.05 ≥ 0.15 ≥ 0.995

Site level

n Hδ%

≥ 3 ≤ 20%
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are plotted in the area close to the PSD region in a day 
plot (Day et al. 1977) (Fig. 2c). It appeared that induced 
magnetizations almost reached saturations at ± 1.0  T. 
Therefore, we did not carry out the correction of the hys-
teresis parameters for unsaturated loops pointed out in 
Doubrovine and Tarduno (2006). For most of the speci-
mens, the FORC diagrams are characterized by a domi-
nance of single-domain (SD)-like components (Fig.  2d, 
e), while multidomain (MD)-like components with wider 
vertical spreads are superimposed in some specimens 
(Fig. 2e).

Thermomagnetic curves are classified roughly into 
three types (Fig.  2f–h). In the first type (Fig.  2f ), the 
curve is almost completely reversible without showing 
any thermal alteration. The second type (Fig. 2g) exhibits 
a heating curve that overwhelms the cooling curve. This 
indicates that some titanomagnetites might change into 
hematites upon heating. The third type (Fig.  2h) shows 
that the heating curve is always lower than the cool-
ing curve. This infers that some new magnetic mineral 
might be produced upon heating. Overall, alterations 
that occurred during heating–cooling cycles were neg-
ligible and/or small, suggesting that the present samples 
are resistant to thermal alteration during laboratory heat-
ing. Because the Curie temperatures of the samples are 
around 500–550 °C, the major magnetic carriers are con-
sidered to be Ti-poor titanomagnetites (Nagata and Aki-
moto 1961).

A typical result of the IRM acquisition curves is shown 
in Fig.  2i. By decomposing the curves, three compo-
nents with coercivities at (1) 20  mT, (2) 60  mT, and (3) 
130  mT were confirmed in all samples (Fig.  2j). They 

are interpreted to be Ti-poor titanomagnetites with 
three different grain sizes, considering the magnetic 
characteristics.

Mineralogical experiments
On the XRD patterns of the sample BH1, an XRD peak 
set (e.g., 5.39 Å for 110 peak, 2.89 Å for 001, 2.69 Å for 
220) corresponding to mullite and the strongest peak 
(4.04  Å for 101) of cristobalite was recognized. These 
XRD peak sets were also found on the XRD patterns of 
the samples BH7 and BH8, indicating the presence of 
mullite and cristobalite (Fig. 3).

Consequently, the mineralogical constituents of these 
samples affirm that the firing was at temperatures that 
were sufficient to result in full-TRM acquisitions of the 
samples. The firing temperature can be estimated to be 
higher than 1000 °C, which is higher than the Curie tem-
peratures of magnetite and hematite. Doi and Sakamoto 
(2002) and Shiraishi and Kyoguro (2002) reported that 
the presence of cristobalite and mullite suggests firing at 
temperatures higher than 1000 °C for the clay artifacts of 
Bizen City (these materials have a mineral composition 
similar to the baked clay samples used in this study).

Archeodirection measurements
1. The ThD experiment was performed for a total of 6 

cubic samples. All the detailed experimental results 
are shown in Table 3, and typical Zijderveld diagrams 
are shown in Fig. 4a–c. It is common to all samples 
that the remanence consists mostly of one stable 
characteristic, remanent magnetization and that the 
secondary magnetization is very small (the secondary 
magnetization is almost all demagnetized at 100 °C). 
The maximum blocking temperature of all specimens 
distributes around 550 °C. The equal area projection 
of the paleodirection, which was obtained after prin-
cipal component analysis (Kirschvink 1980) for these 
Zijderveld diagrams, is shown in Fig.  5a, and the 
mean paleodirection is shown in Table 5.

2. The AFD experiment was conducted for a total of 
33 cubic specimens. All the detailed experimen-
tal results are shown in Table  4, and typical Zijder-
veld diagrams are shown in Fig. 4e–g. Like the ThD 
experimental data, for all samples, the remanence 
consists primarily of one stable characteristic, rema-
nent magnetization, and the secondary magnetiza-
tion is very small (the secondary magnetization is 
almost all demagnetized at 8  mT). The maximum 
angular deviation (MAD; Kirschvink 1980) values 
are mostly less than 1°. The median destructive field 
(MDF) is higher than 30 mT, which indicates that the 
remanence is very stable and hard (there are speci-
mens with an MDF higher than 70 mT). Equal area 

Table 2 List of the selection criteria for the IZZI-Thellier 
method

SCAT, a parameter proposed by Shaar and Tauxe (2013) in an effort to reduce 
the number of parameters used to quantify a paleointensity estimate; GAP-MAX, 
the gap factor proposed by Shaar and Tauxe (2013), which is a measure of the 
average Arai plot point spacing and may not represent extremes of spacing; β, a 
measure of the relative data scatter around the best-fit line and the ratio of the 
standard error of the slope to the absolute value of the slope (Coe et al. 1978); 
the maximum angle of deviation (MAD), the scatter of NRM points about the 
best-fit line (Kirschvink 1980); the deviation angle (DANG), the angle between 
the free-floating best-fit direction and the direction between the data center 
of the mass and the origin of the vector component diagram (Tanaka and 
Kobayashi 2003; Tauxe and Staudigel 2004); FRAC, NRM fraction used for the 
best-fit line on an Arai diagram determined entirely by vector difference sum 
calculation (Shaar and Tauxe 2013); n, the number of the selected samples; Hδ%, 
the value of the coefficient of variation

Specimen level

SCAT GAP-MAX β MAD DANG FRAC

True ≤ 0.60 ≤ 0.10 ≤ 5.0° ≤ 10.0° ≥ 0.95

Site level

n Hδ%

≤ 3 ≤ 20%
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projection of the paleodirection is shown in Fig. 5b, 
and the mean paleodirection is shown in Table 5.

The mean directions in the AFD and ThD experiments 
coincide within the range of α95 (95% confidence limit). 
In Fig. 5c, we plot the mean direction of ThD and AFD 
experiments. In comparison with the reference curve 

by Hirooka (1977), the mean direction of the remains in 
this study is plotted close to the paths in (1) AD 500–550 
and (2) AD 900–950, within the range of α95. In particu-
lar, the mean value overlaps the path in (2) AD 900–950. 
This age coincides with the archeologically estimated age 
(AD 900–1000). Therefore, assuming that the reference 
curve by Hirooka (1977) is accurate, this suggests that the 

(See figure on previous page.) 
Fig. 2 a, b Typical hysteresis loops before (blue) and after (red) paramagnetic correction, respectively. c Day plot. d, e Typical FORC diagrams. f–h 
Typical thermomagnetic curves heated in air. Red line represents the heating procedure. Blue line represents the cooling procedure. i Typical IRM 
acquisition curve. j Result of IRM decomposition of (i). Black dots represent first-order differentiation of the originally measured IRM acquisition 
curve. Red solid lines represent the decomposed coercivity components. Green solid line represents an accumulation of all components indicated 
by red solid lines
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Fig. 3 X-ray powder diffraction patterns for samples BH1, BH7, and BH8

Table 3 Measurement results of the ThD experiment

Specimen NRM0 moment (A/m) MDF (°C) ChRM component (°C) Declination (°) Inclination (°) MAD (°)

BH1F 1.62 421 100–520 − 6.2 47.9 1.2

BH2F 1.93 436 100–520 − 12.6 48.8 0.8

BH3E 0.529 477 100–520 − 15.9 42.1 3.2

BH4G 0.927 459 100–520 − 7.8 45.1 1.2

BH5E 0.954 441 100–520 − 9.2 42.4 2.3

BH8I 1.88 451 100–520 − 17.6 49.4 1.6
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remanent magnetization was acquired at the time of the 
last burning in AD 900–950.

Archeointensity measurements
The Tsunakawa–Shaw experiment was performed on a 
total of 8 specimens. All of the specimens yielded results 
passing the selection criteria, which are listed in Table 6. 
Typical results are shown in Fig. 6. All the archeointensity 
values are determined from more than 75% of the total 
NRMs (fN ≥  0.75). The slopes of the  ARM0–ARM1 dia-
grams  (slopeA0) are almost in unity (0.989–1.07) except 
for the specimen BH8L, suggesting little influence of 
laboratory alterations and anisotropies of the remanent 
magnetizations. The site-mean archeointensity is calcu-
lated to be 48.1 μT with a coefficient of variation Hδ% of 
6.4% (Hpast = 48.1± 3.1µT) (Table 6).

The IZZI-Thellier experiments were conducted on a 
total of 18 specimens. Only the results from 3 specimens 
passed the selection criteria (success rate is 17%), which 
are listed in Table  7. The Arai plots of the successful 

results show excellent linearities (Fig. 7a–c). These results 
come from samples not showing noticeable dominance 
of the MD component in the FORC diagram (Fig.  2d). 
Conversely, the rejected 15 results show nonlinear trends 
in the Arai plots, such as concave-up curves (Fig.  7d), 
systematic failures of the pTRM checks with increasing 
temperatures (Fig. 7e), and zig-zagging behavior (Fig. 7f ). 
These results come from samples both showing and not 
showing noticeable dominance of the MD component in 
the FORC diagram (Fig. 2d, e). It is likely that these non-
linearities are due to the alteration of the specimens and/
or the effect of MD particles. The site-mean archeointen-
sity is calculated to be 45.3 μT with a coefficient of varia-
tion Hδ% of 9.7% (Hpast = 45.3± 4.4µT) (Table 7).

Discussion
In this study, we applied the two different mod-
ern paleointensity methods to the baked clay sam-
ples taken from the kiln floor of a Japanese Sueki old 
kiln. The site-mean archeointensity values resulted in 
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48.1± 3.1µT(n = 8) by the Tsunakawa–Shaw method 
and 45.3± 4.4 µT(n = 3) by the IZZI-Thellier method. 
The two means are indistinguishable at the 1σ level, with 
very small coefficients of variation (Fig. 8a), which indi-
cates that they are reliable archeointensity estimates. It 
is considered that the Tsunakawa–Shaw method can be 
employed to recover archeointensities with a high reli-
ability and high success rate from archeological relics.

The reliability of the archeointensity estimates is also 
ensured from the viewpoint of rock magnetism and min-
eralogy. The rock magnetic and mineralogical results 
indicate that the samples are suitable for paleointensity 
experiments: (1) PSD-like magnetic particle assemblage; 
(2) little magnetic interaction; (3) single ChRM compo-
nents; (4) NRMs of TRM origins; (5) continuous blocking 
temperature distribution; (6) little laboratory alteration; 
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(7) (titano-)magnetite as the main magnetic minerals; 
and (8) crystallization temperatures as high as 1000  °C 
for the constituting minerals. All these characters fulfill 
nearly, although not perfectly, the conditions of “the ideal 

behavior on the paleointensity experiments” first sug-
gested by Coe (1967) as (1) the additivity law of pTRM, 
(2) independence law of pTRM, and (3) proportion law 
of TRM.

To compare our data with previously published data, 
we extracted the site-mean archeointensity data from the 
GEOMAGIA 50 database (Korhonen et al. 2008; Brown 
et  al. 2015) by applying site-level selection criteria: a 
minimum of three successful results for a site (n ≥ 3) and 
successful results providing a site mean with a standard 
deviation less than 20% of the mean (coefficient of varia-
tion, Hδ% ≤ 20%). It is noted that our data obviously ful-
fill these criteria. In the GEOMAGIA 50 database, there 

Table 4 Measurement results of the AFD experiment

a The data already reported at Hatakeyama et al. (2014)

Specimen NRM0 moment (A/m) MDF (mT) ChRM component (mT) Declination (°) Inclination (°) MAD (°)

BH1Aa 2.35 30 2–100 − 11.0 48.7 0.5

BH1Ba 3.36 29 2–100 − 9.2 47.1 0.5

BH1Ca 1.85 31 2–100 − 7.1 46.9 0.6

BH1J 1.21 31 2–100 − 8.6 46.2 0.8

BH2Aa 0.773 35 4–100 − 12.2 47.6 1.1

BH2Ba 1.35 35 2–100 − 12.3 48.7 0.6

BH2Ca 1.43 33 2–100 − 13.4 48.5 0.7

BH2K 2.24 33 2–100 − 11.1 48.7 0.7

BH3Aa 1.40 34 2–100 − 16.5 43.9 0.4

BH3Ba 1.05 33 6–100 − 15.0 46.0 0.7

BH3Ca 1.12 36 2–100 − 14.3 45.8 0.5

BH4Aa 3.59 40 2–100 − 13.9 46.1 0.4

BH4Ba 1.90 34 6–100 − 13.2 43.0 0.7

BH4Ca 0.710 29 4–100 − 10.8 46.4 1.1

BH4N 0.542 28 6–90 − 13.8 44.2 1.1

BH5Aa 0.817 31 6–100 − 13.4 51.7 0.8

BH5Ba 1.12 35 4–100 − 16.3 49.1 0.7

BH5Ca 1.04 28 6–90 − 16.8 48.1 0.8

BH6Aa 1.87 36 2–100 − 15.2 46.4 0.9

BH6Ba 0.853 33 4–100 − 11.1 45.5 0.6

BH6Ca 0.161 30 × – – –

BH6D 1.21 32 6–100 − 11.0 49.1 0.7

BH6E 1.09 36 6–100 − 13.1 47.8 0.8

BH7Aa 2.35 70 2–100 − 17.3 43.2 0.7

BH7Ba 1.61 76 2–100 − 16.8 41.9 0.4

BH7Ca 1.76 71 2–100 − 17.7 43.9 0.4

BH7Fa 0.478 40 4–90 − 15.7 45.0 1.2

BH7K 1.55 37 4–100 − 12.3 48.3 0.5

BH8Aa 4.96 56 2–100 − 13.8 49.1 0.5

BH8Ba 3.93 53 2–100 − 14.6 47.3 0.5

BH8Ca 3.05 47 4–100 − 14.8 47.0 0.5

BH8L 3.54 45 6–100 − 13.0 47.2 0.5

BH8M 2.64 41 8–100 − 14.2 48.0 0.6

Table 5 Mean direction obtained by the ThD and the AFD 
experiment

Method N (specimen) Dm (°) Im (°) α95 (°) k

ThD 6 − 11.5 46.0 3.7 322.5

AFD 32 − 13.5 46.8 0.9 844.9

ThD + AFD 38 − 13.2 46.7 0.9 685.1
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are two archeointensity results from archeological arti-
facts in Japan for AD 900–1000: (1) 58.9± 5.9µT at site 
K-14 of Sasajima (1965) (baked earth, original Thellier 
method) and (2) 55.1± 3.7µT of Sakai and Hirooka 
(1986) (ceramic, Sakai–Thellier method). Regarding data 
(1), its age was registered as AD 1000± 20 (originally 
reported in Sasajima 1965) but was corrected to AD 
960± 20 in Sasajima and Maenaka (1966). We adopted 
the corrected age value for the data (1; Fig. 8b). Further-
more, the age as AD 1120± 20 of (3) 58.2± 1.2 µT at 

site O-53 (baked earth, original Thellier method) in Sasa-
jima (1965) was corrected to AD 1000± 20 in Sasajima 
and Maenaka (1966). Therefore, we also added the site-
mean intensity value in this article (Fig. 8b). All of them 
were significantly higher than the results obtained by this 
study at the 1σ level (Fig. 8b).

One of the possible causes is thought to be undetected 
laboratory alterations in the previous study data because 
they were yielded by Thellier-type methods without 
pTRM checks. Another possible cause is that the linear 

Table 7 Acceptable results of the IZZI-Thellier experiment

T1 − T2, the selected temperature range; Hpast, the estimated paleointensity

Specimen NRM0 (A/m) T1 − T2 (°C) FRAC SCAT GAP-MAX β MAD (°) DANG (°) Hpast (μT)

BH5G 0.968 200–565 0.98 Pass 0.18 0.039 2.9 1.8 43.3

BH5H 0.597 200–600 0.99 Pass 0.22 0.020 3.2 1.7 50.3

BH7L 1.49 200–600 0.99 Pass 0.23 0.022 2.5 1.6 42.3

Average (Hpast) = 45.3 ± 4.4
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segments in Arai plots might be selected in a biased way 
from low blocking temperature portions constituting a 
part of concave-up curves in previous studies. In recent 
studies, such Arai plots are interpreted to be affected by 
MD particles, and therefore, the intensity values calcu-
lated from such plots should be rejected because the reli-
ability is suspicious (Tauxe 2010; Paterson 2011; Tanaka 
and Yamamoto 2016). Among the three previous data, 
Arai plots from sites K-14 and O-53 are, respectively, 
presented in Sasajima (1965) and Sasajima and Mae-
naka (1966). The Arai plot of site K-14 shows a straight 
line between room temperature and 500  °C, but some 
portion of NRM remains for a temperature range higher 
than 500 °C and is not associated with the pTRM check: 
the plot might be potentially convex downward. The two 

Arai plots of site O-53 are linear throughout all tempera-
ture ranges, but they were not associated with the pTRM 
checks.

Published site-mean archeointensity results in Japan 
selected from the GEOMAGIA 50 database for the last 
2  kyr (Nagata et  al. 1963; Sasajima 1965; Sasajima and 
Maenaka 1966; Sakai and Hirooka 1986) are all higher 
than the archeointensities obtained by the present study 
(Fig. 8b). They are mostly from Sakai and Hirooka (1986), 
and some of the Arai plots presented in their paper 
appear to be convex downward. It is speculated that they 
might systematically overestimate the past variation of 
the geomagnetic field intensity around Japan at the time.

Conclusion
In this study, we tested the suitability of the Tsunakawa–
Shaw paleointensity method for analyzing baked clay 
samples collected from the floor of the Sayama Higashi-
yama-Oku kiln by comparing the results with those col-
lated using the IZZI-Thellier method.

The intensity from the Tsunakawa–Shaw method was 
48.1 ± 3.1  μT (N = 8) and that from the IZZI-Thellier 
method was 45.3 ± 4.4  μT (N = 3). The results from 
both methods coincide within the range of their stand-
ard deviations (1σ). Therefore, these experimental results 
suggest that the Tsunakawa–Shaw method is suitable for 
reconstructing paleointensity values from real archeolog-
ical materials with high reliability.

From rock magnetic experiments, mineral analysis, 
and paleodirection measurements, it was revealed that 
the main magnetic mineral in the samples is titanomag-
netite, the alteration during heating is very small, and 
the recorded NRM is the only single component of TRM 
acquired in the operating time at temperatures greater 
than 1000 °C. Thus, we confirmed that the samples used 
in this study are suitable for paleointensity experiments.

The two intensity values from the modern experimen-
tal methods are lower than those from previous studies 
in Japan.
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Fig. 8 a Comparison of the paleointensity value between the dif-
ferent experimental methods (on the specimen level). Red circles 
are the values by the IZZI-Thellier method, and the red dashed line is 
their mean intensity. Green circles are the values by the Tsunakawa–
Shaw method, and the green dashed line is their mean intensity. b 
Paleointensity values (site mean) of this study and previous studies. 
Green circle is the mean intensity by the Tsunakawa–Shaw method. 
Red circle is the mean intensity by the IZZI-Thellier method. Gray 
circles are the mean value reported by the previous studies in Japan 
extracted from the GROMAGIA 50 database. The errors are standard 
deviations (1σ)
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