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Abstract 

Belonging to the Cameroon Volcanic Line (CVL), the western part of Cameroon is an active volcanic zone with 
volcanic eruptions and deadly gas emissions. The volcanic flows generally cover areas and bury structural features 
like faults. Terrestrial gravity surveys can hardly cover entirely this mountainous area due to difficult accessibility. The 
present work aims to evaluate gravity data derived from the geopotential field model, EGM2008 to investigate the 
subsurface of the CVL. The methodology involves upward continuation, horizontal gradient, maxima of horizontal gra‑
dient–upward continuation combination and Euler deconvolution techniques. The lineaments map inferred from this 
geopotential field model confirms several known lineaments and reveals new ones covered by lava flows. The known 
lineaments are interpreted as faults or geological contacts such as the Foumban fault and the Pan‑African Belt–Congo 
craton contact. The lineaments highlighted coupled with the numerous maar lakes identified in this volcanic sector 
attest of the vulnerability of the CVL where special attention should be given for geohazard prevention.
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Introduction
The Cameroon Volcanic Line (CVL), also called the Cam-
eroon Line (Ngako et  al. 1991) or Cameroon Hot Line 
(Nkono et al. 2014), is made up of an alignment of moun-
tains trending N30° and is divided into two parts: an oce-
anic part with volcanic islands of Gulf of Guinea and a 
continental part characterized by volcanic eruptions of 
Mount Cameroon and deadly gas emissions from lakes 
Monoun in 1984 and Nyos in 1986, respectively (Fig. 1). 
The volcanic activities observed in this continental part 
(lava flows, pyroclastic rocks and plugs) dates back to 
about 30 Ma (Dunlop and Fitton 1979). Several geological 
and geophysical studies have been carried out along the 
CVL to understand its structure, origin and evolution. 

The main gravity surveys in Central Africa especially 
were carried out by Collignon (1968), Poudjom-Djomani 
(1993), Poudjom-Djomani et al. (1996) and Nnange et al. 
(2000). Poudjom-Djomani (1993) and Marcel et al. (2010) 
have used these terrestrial gravity data to investigate the 
internal structure of the CVL and suggested a general 
asthenospheric uplift. Marcel et  al. (2016) used grav-
ity data derived from EGM2008 to investigate the depth 
of Moho discontinuity under the CVL and found values 
ranging from 19 to 34 km. From seismic data, Koch et al. 
(2012) interpreted lattice-preferred orientation frozen 
into the Congo Craton and subcontinental lithosphere 
related to relict plate motion and deformation. Moreau 
et al. (1987) and Nkono et al. (2014) used remote sensing 
and deduced the general trend of the CVL.

Volcanic flows generally cover areas where eruptions 
occur, which bury structural features like faults making 
it difficult for geological surveys to be carried out. How-
ever, geophysical studies enable to highlight structural 
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features and understand the subsurface structure in such 
areas. For example, Noutchogwe (2010) presented a close 
correlation between the lineaments inferred from mag-
netic anomalies, the sites of thermo-mineral springs and 
the hydrographical network in Adamawa Cameroon. 
Using gravity data, Jaffal et  al. (2010), Fan et  al. (2014) 
and Abate Essi et  al. (2017) showed the importance of 
geophysical lineaments in studying ore bodies and min-
eralized areas. Therefore, geophysical investigation is 
helpful to delineate outcropped or buried faults. The aim 
of this paper is to use gravity data derived from the Earth 
Gravitational Model EGM2008 to investigate the subsur-
face of the CVL with an emphasis on structural features.

Geological and structural setting
The study area comprises the main domain of the conti-
nental part of the Cameroon Volcanic Line (CVL). This 
volcanic line, which crosscuts the Pan-African Fold Belt, 
is also surrounded at its southern-eastern edge by the 
Congo craton (Fig. 1). The CVL is a 1600-km-long align-
ment of Cenozoic to recent volcanic massifs and plutons 
striking N30°E (Le Maréchal 1976; Déruelle et  al. 1991, 
2007). The oceanic section of the CVL lies within the Gulf 
of Guinea consisting of the islands of Pagalu, São Tomé, 
Principe, and Bioko, while the continental part is made of 
two main plateaus (Biu and Ngaoundéré) and several vol-
canic mountains. Main mountains are mount (Mt) Cam-
eroon (4095 m) which is the highest and the most active 
volcanoes of the CVL, mainly formed by alkaline basalts 
(Hedberg 1968; Déruelle et  al. 2007); Mt Manengouba 
(2420 m) characterized by basaltic, trachytic and rhyolitic 
formations; Mt Bambouto (2679 m) with alkaline basalts 
and trachytes, and Mt Oku (3011 m) consisting of transi-
tional basalt, quartz trachyte and rhyolite flows (Tchoua 
1974; Fitton and Dunlop 1985).

The continental structure of the CVL is marked by an 
alternation of horsts and grabens (Nkouathio et al. 2008). 
The horsts are made of large polygenetic volcanoes or 
volcanic plateaus, characterized by complete magmas 
series, whereas the grabens are monogenetic volcanic 
fields displaying basic magmas suites (basanites, basalts, 
and accessory hawaiites) (Tamen et al. 2007). Van Houten 
(1983) and Ngounouno et al. (2000) interpreted the CVL 
as a volcanic and subvolcanic alignment resulting from 
hotspot activity. Fitton (1980, 1983) presented it as an 
active rift system produced by a thermal anomaly in the 
asthenosphere. Some authors like Déruelle et al. (1991), 
Moreau et al. (1987) and Nkono et al. (2014) described it 
as the consequence of the rejuvenation of a Pan-African 
N70°E fracture zone which took place at the opening of 
the Atlantic Ocean.

The Pan-African Fold Belt of the study area (Fig.  2) 
includes pre, syn to late tectonic granitoids mainly 

calk-alkaline composition aged between 660 and 580 Ma 
(Toteu et al. 1987, 2004) and Neoproterozoic medium- to 
high-grade schists and gneisses (Koch 1953; Champetier 
de Ribes and Aubague 1956; Weecksteen 1957; Cham-
petier de Ribes and Reyre 1959; Dumort 1968; Peronne 
1969; Ngako 1986; Toteu et al. 2001). These Precambrian 
Pan-African metamorphic and plutonic formations are 
overlaid by a younger sedimentary cover especially at 
the coastal area and around Mamfe locality (cross river) 
which belong to the southern part of Benue Trough. The 
sedimentary formations are dated Cretaceous to actual 
(Champetier de Ribes and Reyre 1959; Popoff 1987). Pan-
African Fold Belt overthrusts the northern boundary of 
the Congo craton composed of greenstone belt, TTG 
(tonalite–trondhjemite–granodiorite) aged Archean to 
Paleoproterozoic (Maurizot et  al. 1986; Pouclet et  al. 
2007; Van Schmus et al. 2008; Tchameni et al. 2010).

The principal structure of the study area is the Cam-
eroon Volcanic Line characterized by the main direction 
N30°. Moreau et  al. (1987) represented the CVL with a 
set of transverse parallel fractures which are buried under 
volcanic lavas trending N20° to N40°. Volcanic forma-
tions are lined up toward NE–SW to NNE–SSW direc-
tion (Fig. 3). Moreover, at the Adamawa plateau (Fig. 1), 
volcanic line deviates to N70°. Browne and Fairhead 
(1983), Koch (1953) and Njonfang et al. (2008) called this 
brittle tectonic Central African (CASZ), or Adamawa 
(ASZ), or Foumban shear zone (FSZ). This major shear 
zone is part of the Central Cameroon shear zone (CCSZ) 
which extends from the Sudan region to the NE Brazil 
(Browne and Fairhead 1983; Van Schmus et  al. 2008). 
Nkono et al. (2014) used Shuttle Radar Topography Mis-
sion (SRTM), Landsat satellite images and Digital Eleva-
tion Models (DEMs) to study the geodynamic setting of 
the CVL. They inferred two major geodynamic models: 
a sinistral trans-tensional strain regime on the N70° fault 
and a sinistral trans-tensional stress field on the N130° 
fault.

Another major shear zone is identified near Ngambe 
and Edea localities called the Rocher du Loup shear zone 
(RLSZ) by Ngako et  al. (2008) or SW Cameroon Shear 
zone (SWCSZ) by Nsifa et al. (2013). It is described as a 
sinistral transcurrent deformation along the western bor-
der of the Congo craton.

Data and methodology
Data
In this work, we used gravity data from the geopoten-
tial field model EGM2008 released by National Geospa-
tial Intelligence Agency (NGA), which is an improved 
version of the Earth Gravitational Model EGM96. 
EGM2008 combines marine, airborne, satellite-altime-
try-derived and terrestrial gravity data (Collignon 1968; 
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Fig. 1 Location of the Cameroon Volcanic Line. C.A.R. Central African Republic, Eq. Equatorial, CCSZ Central Cameroon shear zone, 1 fault, 2 Cam‑
eroon Volcanic Line, 3 Pan‑African fold belt, 4 Congo craton (modified from Lee et al. 1994; Ballentine et al. 1997; Ngako et al. 2006; Nkouathio et al. 
2008)
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Poudjom-Djomani 1993; Poudjom-Djomani et  al. 1996) 
to model the global gravity field with a spatial resolution 
of 5 by 5 arc minutes. It is complete to spherical har-
monic degree and order 2159 and contains additional 
coefficients extending to degree 2190 and order 2159 
(Pavlis et  al. 2012). The spherical harmonic coefficients 
of the EGM2008 are used to derive a geoid referenced 
to WGS 1984 and to calculate free air anomalies (Eyike 
et  al. 2010). Assuming a density of 2.67  g  cm−3 for 
Bouguer slab, we applied topographic correction to free 

air anomalies using the digital elevation model Etopo 1 
(Amante and Eakins 2008) to obtain Bouguer anomalies.

This high spatial resolution model provides a wide-
spread information and covers areas previously lack-
ing terrestrial data (Fig.  4). Significant similarities are 
found by Eyike et al. (2010) and Abate Essi et al. (2017) 
after comparing terrestrial gravity and EGM2008 data 
for Cameroon. Likewise, Marcel et  al. (2016) investi-
gated the Moho discontinuity depth along the CVL 
with EGM2008 data and found results in conformity 

Fig. 2 Geological sketch map of the study area. FSZ Foumban shear Zone, SWCSZ South‑Western Cameroon Shear zone, NP Neoproterozoic, 
Ar Archean, PP Paleoproterozoic, 1 fault, 2 thrust, 3 Sinistral trike slip, 4 Paleo‑Neogene sand, 5 cenozoic sandstone and conglomerate, 6 upper 
cretaceous sandstone, 7 lower cretaceous sandstone, 8 cenozoic to actual volcanism, 9 garnetiferous gneiss, 10 lower gneiss, 11 schist from Yaounde 
Group, 12 gneiss and micaschist from Yaounde Group, 13 Quartzite, 14 Syn to late tectonic granitoid, 15 Pre to syn tectonic granitoid, 16 greenstone 
belt. Granitoid Complex of Nyong Group (modified from Koch 1953; Champetier de Ribes and Aubague 1956; Weecksteen 1957; Champetier de 
Ribes and Reyre 1959; Dumort 1968; Peronne 1969; Nsifa et al. 2013). The deadly maar lakes are highlighted in blue and Mount Cameroon in red
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with previous studies which used terrestrial gravity and 
seismic data. These authors suggested that gravity data 
derived from EGM2008 can efficiently be used to over-
come the absence and the sparseness of terrestrial grav-
ity data. EGM2008 gravity data are therefore suitable for 
mountainous and volcanic areas where terrestrial grav-
ity surveys cannot easily be covered such as the present 
study area.

Bouguer anomalies
The EGM2008 Bouguer anomaly map of the study area 
is presented in Fig. 4. The gridding method used to real-
ize the Bouguer anomaly map is minimum curvature 
with a grid size of 0.01° (about 1.1 km). Ngatchou et al. 
(2014) have successfully experimented this grid size while 
studying the structure of crust beneath Cameroon from 
EGM2008. Gridding method generates interpolated 

Fig. 3 Synthetic map of the main structural features obtained by previous studies in the study area (adapted from Le Maréchal 1976; Ngako et al. 
2008; Van Schmus et al. 2008; Nsifa et al. 2013). The deadly maar lakes are highlighted in blue and Mount Cameroon in red
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surface analogous to a thin, linearly elastic plate passing 
through each of the data values with a minimum amount 
of bending.

Bouguer anomaly values range from − 255 to 
198 mGal. From Manyemen to Hossere Mandam locali-
ties, negative anomalies (− 255 to − 80  mGal) appear 
along a corridor particularly trending NE–SW. The cor-
ridor of negative values coincides with the Cameroon 
Volcanic Line and a part of the sedimentary basin of 
Mamfe (which belongs to the southern part of Benue 
Trough). This corridor crosscuts an area marked by a 
relatively high Bouguer anomaly representing the gran-
ite–gneiss basement of Pan-African Fold Belt. The con-
tact zone between Congo craton and Pan-African Fold 

Belt in Ngambe area is underlined by a positive anomaly 
with high amplitude (more than 100  mGal). The high-
est positive anomaly (greater than 150  mGal) is located 
in the Atlantic Ocean including Limbe and Mount Cam-
eroon areas. From the analysis, it is possible to perform a 
correlation between the geological (Fig. 2) and Bouguer 
anomaly maps (Fig. 4).

Residual anomalies
Bouguer anomalies involve gravity signature due to the 
influence of both shallow and deep structures in the ter-
restrial subsurface. Therefore, in order to study the sub-
surface features, residual anomalies will be described 
since they provide the heterogeneity of geological 

Fig. 4 Bouguer anomaly map derived from EGM2008 of the study area (modified from Marcel et al. 2016)
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formations, characterized by density variations inside 
the terrestrial crust (Abate Essi et al. 2017). The residual 
anomaly map (Fig. 5) presents values ranging from − 157 
to 186 mGal mainly grouped in positive (P) and negative 
(N) anomalies summarized in Table 1.

Negative anomalies are nominally distinguished as N1, 
N2, N3 and N4. These zones referred as sedimentary 
basins (Fig.  5) or swamp zones, suggesting low-density 
materials. N1 anomaly brings out Douala sedimentary 
basin described as a Lower Cretaceous basin (Regnoult 
1986; Nguene et al. 1992). Along Eseka and Bafia locali-
ties, negative anomalies named N2 expose low-density 
geological formations. This specific zone is intensely 
drained by Sanaga River and its tributaries, indicating 

that it is made of alluvias; thus, less geological outcrops 
are found. Both anomalies N3 and N4 represent the 
southern part of Benue Trough filled by cretaceous sedi-
mentary deposits (Benkhelil 1986) of low density.

EGM2008 residual anomaly map reveals a positive 
anomaly (P5) with values higher than 100 mGal. In this 
area, the geological map (Fig.  2) exposes some grani-
toid intrusions. Mount Cameroon is located on a posi-
tive anomaly (P1). Similarly, successive located positive 
anomalies (P4) are appreciable in this volcanic area with 
the same orientation NE–SW of the CVL. Ngambe zone 
presents a circular positive anomaly around the contact 
between Congo craton and Pan-African Fold Belt cor-
responding to a particular garnet gneiss in the previous 

Fig. 5 Residual anomaly map of the study area. (modified from Marcel et al. 2016)
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geological map. Positive anomaly (P3) may display iron 
mineralization described by Ngoumou et  al. (2014) 
around the locality of Eseka at the northern edge of 
Congo craton.

Methodology
Bouguer anomaly map obtained from the geopotential 
field data is filtered. The methodology used in this work 
involves a combination of techniques comprising upward 
continuation, horizontal gradient, maxima of horizontal 
gradient coupled to upward continuation technique and 
Euler deconvolution. This combination of techniques has 
the particularity in studying gravity signatures of subsur-
face geological features. The grid size of Bouguer anom-
aly map (0.01°) is maintained during the filtering.

Upward continuation
The Bouguer anomaly map is smoothed with upward 
continuation technique. This operation consists of the 
application of a low passed filter that attenuates short 
wavelengths while amplifying long wavelengths (Jacobsen 
1987). The Jacobsen’s theory suggests that the field result-
ing from upward continuation to a level of Z focuses on 
sources situated at a minimum depth of Z0 = 1/2Z. Thus, 
this method is suitable to study deeper and major crustal 
structure of the regions of interest.

Horizontal gradient
Horizontal gradient is an efficient technique to delineate 
subsurface geological features. It highlights lineaments 
like fractures, faults and geological contacts character-
ized by local maxima of gravity field (Grauch and Cordell 
1987; Philips 1998). The advantage of horizontal gradient 
method is its stability in the presence of noise in potential 
field data (Phillips 1998). Considering a gravity field G (x, 
y), the horizontal gradient magnitude HG is given by the 
following expression (Philips 1998):

Maxima of horizontal gradient coupled to upward 
continuation method
This method combines the two techniques mentioned 
above. This combination is used not only to bring out lin-
eaments but also to evaluate different dips (vertical and 
oblique). It entails applying the upward continuation fil-
ter to the Bouguer anomalies at progressive heights and 
to determine the horizontal gradient of each upward con-
tinued distance (Blakely and Simpson 1986; Everaerts and 
Mansy 2001; Jaffal et al. 2010; Hadhemi et al. 2016). For 
each upward continued map, we represent essentially the 
maxima of the horizontal gradient in the map (Blakely 
and Simpson 1986). A displacement of maxima will cor-
respond to the dip orientation. Thus, a vertical dip will 
display superimposed maxima of different altitudes.

Euler deconvolution
Euler deconvolution is a semi-automatic method to esti-
mate the position and the depth of a causative source 
of magnetic or gravity field (Thompson 1982; Reid et al. 
1990). This method relates the gravity field and its gra-
dient components to the location of the source of an 
anomaly, with the degree of homogeneity expressed as 
a “structural index.” Thompson (1982) proposed the fol-
lowing homogeneity Eq. (2):

where (x0, y0, z0) are the coordinates of the source whose 
gravity field (g) is detected at (x, y, z), N is the struc-
tural index interpreted as the measure of the fall-off 
rate of the gravity field with distance from the source. 
This last parameter (N) determines the dimension of 

(1)HG =

√
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)2

+
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+
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)∂g

∂y
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Table 1 Main gravity anomalies of residual map

Anomaly Direction/shape Location Significance

N1 NW–SE Douala Douala Sedimentary basin

N2 N–S Eseka‑Bafia Swamp and sedimentary alluvia (Sanaga River)

N3 NE–SW Manyamen‑Fontem Mamfe basin (southern part of Benue Trough)

N4 Circular North of Takamenda (Nigeria) Benue Trough

P1 Circular Mt Cameroon Volcanic mountain of the CVL

P2 Circular Ngambe Granitoid intrusion

P3 NE–SW East of Makak locality Iron mineralization located at the northern edge of Congo craton

P4 Successive circular trending NE–SW Kumba–Mt Oku Volcanic mountains of the CVL

P5 E–W Takamanda Granitoid intrusion
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a given source to bring out a specific study. For grav-
ity data, structural index ranges from 0 to 2. However, 
N = 0 implies that the gravity field is constant regard-
less of distance from the source model. These solutions 
are physically impossible for real data (Thompson 1982). 
Deconvolution of Euler is an adequate technique to delin-
eate geological contact or fault with a structural index 
ranging between 0 and 1, but mostly near the value 0.

Results
Upward continuation for regional structure
Bouguer anomalies are submitted to upward continua-
tion filtering at 5, 10, 20 and 40 km. This operation accen-
tuates the effect of deep gravity sources and attenuates 
or even removes the influence of the superficial ones 
(Jacobsen 1987; Marcel et al. 2016; Abate Essi et al. 2017). 
Hence, this low passed filter transforms and smooths 
gradually the initial uneven Bouguer anomalies (Fig.  4) 
into smoothed anomalies highlighting regional crustal 
features. In Fig.  6, anomaly values range from − 241 to 
180  mGal (Fig.  6a) at 5  km upward continued distance, 
afterward − 135 to 80 mGal at 10 km upward continued 
distance (Fig. 6b), then vary between − 104 and 61 mGal 
at 20 km upward continued distance (Fig. 6c) and finally 
extend from − 105 to 46 mGal (Fig. 6d). Superficial and 
individual anomalies are unified proportionately with 
the upward continuation distance. Regional structure of 
the study area is very well exposed on negative anoma-
lies around Manyemen till Hossere Mandam localities 
(Fig.  6c, d). This regional structure trends approxima-
tively NNE–SSW direction corresponding to the CVL 
orientation. In a similar manner, the oceanic part of the 
CVL, carrying Mount Cameroon, in the upward continu-
ation maps presents a protuberance at Ngambe locality 
running parallel to the major orientation.

Horizontal gradient
Horizontal gradient is performed in Fig. 7. It is assumed 
that the maxima of magnitude (Blakely and Simpson 
1986) is located where steep density contrasts. Horizon-
tal gradient peaks are therefore interpreted as geologi-
cal structures such as geological contacts or faults (Jaffal 
et al. 2010; Hadhemi et al. 2016). The geometry of hori-
zontal gradient peaks is very characteristic of the high-
lighted element. Furthermore, an elongated and more or 
less rectilinear peak can easily tally with a fault, whereas 
a curved or circular peak contour will refer to geological 
contact of an igneous intrusion, dome or diapir.

Figure  7 presents the horizontal gradient of the study 
area obtained from the Bouguer anomalies of the study 
area (Fig.  4). Mount Cameroon and Ngambe localities 
expose heavy-density materials. Referring to geologi-
cal map (Fig. 3), Mount Cameroon is made of extrusive 

volcanic deposits, while Ngambe area carries garnetifer-
ous metamorphic formations. The eastern part of Sanaga 
River presents water flow related to a NE–SW fault.

Several horizontal gradient maxima (some are curvi-
linear and others are linear) are located along the Cam-
eroon Volcanic Line. This result demonstrates that the 
CVL is a fractured zone and consists of mountains rep-
resented by circular signature. Moreover, Benue Trough 
coming from Nigeria is evidently revealed around Mamfe 
and Takamanda zones. Boundary of Manyemen gneiss is 
revealed in Fig. 2 although partially covered at the surface 
by volcanic flows of the CVL. Along the western part of 
Douala and Edea localities, we identify the limits of the 
Douala sedimentary basin.

Maxima of horizontal gradient coupled with upward 
continuation
Figure 8 shows the results of the combination of upward 
continuation and horizontal gradient technique. In this 
map, a progressive and regular distance of upward con-
tinuation is defined at every 1  km and the maximum 
upward height is 10 km. Maxima of horizontal gradient 
for each prolonged distance have a unique color.

A general overview of this map helps to assert that the 
littoral zone of the study area (SW of Edea, SW of Douala, 
SW of Mount Cameroon) shows lineaments dipping W to 
SW. The sedimentary areas highlight very few lineaments 
especially in Douala basin and Benue Trough (North of 
Efolofo and Mamfe areas). Concerning the CVL area, we 
note abundant fractures with both inclined and vertical 
dips. Deadly lakes (Nyos and Monoun) are located on this 
fractured area. The zone carrying Lake Nyos is character-
ized by the deepest maxima down to 10 km.

Euler deconvolution
The Euler deconvolution based on homogeneity equation 
(Thompson 1982; Keating 1998) is another tool used to 
delineate structures. This technique gives the geographic 
positions and the depth of gravity sources. We performed 
a window cell of 15 × 15  km to solve the equation with 
a structural index of 0.1. This structural index is chosen 
near zero because it helps to highlight subsurface con-
tacts or faults. Figure  9 illustrates the results of Euler’s 
solutions of the study area. The depth ranges between 
1 km to 10 km, with a mean value of 4227 m and stand-
ard deviation of 2288 m. Sources of gravity field are not 
equally distributed in the map although some interesting 
lineaments can be observed. Littoral zone (the western 
part of Douala and Edea localities) presents a deep line-
ament trending NW–SE corresponding to the limit of the 
Douala sedimentary basin. Likewise, Sanaga River flows 
on fractured zones, deeper in the delta than in the inner 
continent. Fractures of the CVL distinguish themselves 
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Fig. 6 Upward continued map at 5 (a), 10 (b), 20 (c) and 40 km (d)
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in Limbe, Mount Cameroon, Fontem and Mount Bam-
boutos localities. On the western side of the CVL, deed 
fractures trending N–S and covered by Benue Trough 
sediments are highlighted.

Discussion
Validation of results
This work was carried out in an area where volcanic 
activities are still active (materialized by gas emissions in 
lakes Nyos and Monoun, and eruptions in Mount Cam-
eroon). Based on the identification of known geological 
features, the main findings demonstrate the reliability 
of the gravity data derived from the Earth Gravitational 
Model EGM2008. Ground gravity data are usual tools to 

study the subsurface of terrestrial crust (Poudjom-Djom-
ani 1993; Marcel et  al. 2010; Jaffal et  al. 2010; Hadhemi 
et al. 2016). The study area comprises volcanic mountains 
which are hardly surveyed by ground gravity campaigns. 
It presents therefore an actual challenge for a continu-
ous spatial investigation. The Earth gravitational Model 
EGM2008 which integrates terrestrial and satellite grav-
ity data enables to overcome the sparseness in gravity 
maps due to lack of data.

Upward continued maps highlighted a NE–SW trend-
ing regional structure which corresponds to the CVL 
direction (Le Maréchal 1976). Besides, subsurface for-
mations of previous geological studies are well expressed 
through residual anomaly map. Gravity data derived from 

Fig. 7 Horizontal gradient map of the study area
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Fig. 8 Map of horizontal gradient maxima derived from upward continuation at different heights
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EGM2008 expose efficiently the geophysical response of 
the geology in the area of study. Located dense materi-
als of volcanic formations like basalts (Telford et al. 1990) 
are aligned in the same direction with the CVL (N30°). 

This residual anomaly map presents obviously sedimen-
tary basin characterized by low amplitude anomaly such 
as Douala basin filled by cretaceous deposits (Regnoult 
1986; Nguene et  al. 1992) and the cretaceous Benue 

Fig. 9 Deconvolution Euler map with a structural index of 0.1
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Trough. Positive residual anomaly of Ngambe exposes the 
garnetiferous gneiss. Abate Essi (2010) studied the den-
sity of diverse geological formations of Pan-African Fold 
Belt and showed that garnetiferous gneiss of Yaoundé 
Group and especially where there is intense accumula-
tion of garnet called garnetite or garnet rock has high 
density above 3 g/cm3. EGM2008 is therefore useful for 
geological investigation based on rock density variation. 
Furthermore, horizontal gradient maxima derived from 
upward continuation at different heights and deconvo-
lution of Euler enable to characterize some structural 
linear features. These two last techniques present approx-
imately similar limit depth of features at 10 km. The line-
aments highlighted in this work are discussed in the next 
section.

Structural contribution
Previous works on the CVL put in evidence lineaments 
(Fig. 2) like faults using geological surveys (Ngako et al. 
2006; Nkouathio et al. 2008; Nsifa et al. 2013) and remote 
sensing interpretation (Moreau et al. 1986; Nkono et al. 
2014). The CVL is made of Cenozoic to recent volcanic 
lavas that assuredly buried fractures. Geopotential field 
data especially gravity data derived from EGM2008 (Pav-
lis et al. 2012) in our case enable to delineate some shal-
low structures based on density variations of geological 
bodies within the crust. Figure  10 presents lineaments 
deduced from the combination of different techniques 
used in this work (horizontal gradient, horizontal gradi-
ent maxima coupled with the upward continuation, Euler 
deconvolution). This map brings out well-known linea-
ments and reveals new ones. The confirmation of known 
lineaments demonstrates the efficiency of the geo-
potential model EGM2008 to highlight subsurface lin-
ear features interpreted as faults or geological contacts. 
Consequently, regional structural analysis in mountain-
ous zones can be performed with the help of gravity data 
derived from EGM2008. Hence, a synoptic table (Table 2) 
summarizes interesting lineaments in accordance with 
previous works. 

Lineaments L2 and L3 follow an ENE–WSW and 
NE–SW directions, respectively. They tally the Foum-
ban shear zone representing the ending of Central 
Africa shear zone CASZ (Ngako et  al. 1991, Njonfang 
et  al. 2008). Sanaga River is delineated by lineaments 
L11- and L16-oriented NE–SW. Lineament L18 trend-
ing N–S superimposes the South-Western Cameroon 
shear zone (SWCSZ) and corresponds to a deep fault 
(Euler deconvolution displayed approximatively 8 km of 
depth). Besides, another deep fracture trending NW–SE 
is detected at the contact ocean-continent (lineament 
L20); therein, the maxima of horizontal gradient coupled 
with upward continuation method reveal its westward 

dip. At the east side of L20, the contact between sedi-
mentary basin of Douala and Pan-African Fold Belt is put 
in evidence under L24. L22 is oriented NE–SW and rep-
resents a lineament crossing the Bioko volcanic island. 
The northern edge of Congo craton in contact with Pan-
African Fold Belt describes a thrust front (Ngako et  al. 
2008; Toteu et al. 2001) whither L15, L17, L19 are high-
lighted with a NE–SW orientation. In the Pan-African 
Fold Belt around Hosere Mandam, the geological contact 
between granite and high-grade gneiss, put in evidence 
by Koch (1953), is confirmed in this study with lineament 
L1 trending NE–SW. In addition, NE–SW Benekuma 
fault, N–S Mundemba anticlinal, Bikoki anticlinal as well 
as anticlinal in Takamanda granite are identified in this 
work by L39, L34, L33 and L37, respectively. Sedimen-
tary basin of Mamfe, the southern part of Benue Trough, 
underlines lineament L40.

The statistical analysis is performed in the rose diagram 
(Fig. 11). This diagram includes confirmed and revealed 
lineaments. It translates widely the CVL direction as the 
major tectonic feature of the study area trending NE–SW.

The new lineaments revealed in this study added to 
the previous ones show that the study area is very frac-
tured. The findings of this study provide an opportunity 
for more research on the CVL. Some of the previous line-
aments (Fig.  3) have not been highlighted in this study. 
This may be due to the resolution of EGM2008 (5 arc-
minutes) which may not be suitable to locate and detect 
more detailed information of the subsurface. Other tech-
niques such as seismic, aeromagnetic investigations, sat-
ellite imagery, ground geological verification, etc. can be 
integrated for more efficient results. However, this statis-
tical result of lineaments (Fig. 11) confirms the reliability 
of EGM2008.

Geohazard and land‑use: development planning 
implications
Numerous lineaments are highlighted in this continen-
tal part of the CVL. Many of them confirm earlier stud-
ies while other ones are revealed. They generally refer to 
faults or geological contacts as described above. These 
lineaments express locally weakness zones of the subsur-
face in the terrestrial crust. Tamen et  al. (2007) suggest 
that lineaments in the basement rocks work as pathways 
for magma ascent. In the study area, two different types 
of volcanic activities still occur: volcanic eruptions in 
Mount Cameroon (latest eruptions in 2000, 1999, 1982) 
and the famous deadly gas emissions from maar lakes of 
Monoun (in 1984) and Nyos (in 1986). It is also impor-
tant to point here that several other maars are numbered 
in this volcanic sector. Maar defines shallow volcanic cra-
ters with steep sides. Some of the CVL maars have been 
studied: Nyos (Lockwood and Rubin 1989), Barombi 
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Fig. 10 Lineaments extracted from gravity data derived from EGM2008. Maars of study area (A Nyos maars, B Monoun, C Mbulom, D Wum maar, E 
Mbellifang maar, F Benakuma, G Oku maar, H Sabga maar, I Bambili maar, J Baleng, K Beme, L Manengouba maar, M Bikoki maar, N Barombi maar, O 
Barombi Koto maar, P Debunscha) The deadly maar lakes and Mount Cameroon are highlighted in red
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Koto (Tamen et al. 2007), Debunschar (Ngwa et al. 2017). 
The multitude of lineaments puts in evidence in this 
work attest of the vulnerability of this sector. Thus, spe-
cial attention should be paid on this zone for geohazard 
prevention.

Conclusion
The filtering of gravity data derived from EGM2008 is 
efficient to explore the Cameroon Volcanic Line. Its NE–
SW direction is the main structural feature revealed as 
confirmed by the rose diagram. In addition, important 
faults like Foumban (Central Africa) and SW Cameroon 
shear zones or the contact between Pan-African Fold Belt 
and Congo craton provide the reliability of this methodo-
logical approach. A correspondence is found between 
gravity anomalies and geological formations. This work 
corroborates once more the vulnerability of the CVL 
zone. The distribution of faults and maar lakes shows that 
special attention should be paid in this sector to prevent 

Table 2 Summary of main lineaments identified in the 
study area

Lineaments Trend Significance

L20 NW–SE Boundary fault continent—ocean

L24 N–S Limit Douala sedimentary basin—Pan‑
African belt

L15, L17, L19 NE–SW Contact Pan‑African Belt—Congo craton

L11, L16 NE–SW Sanaga River fault

L18 N–S SW Cameroon SZ

L22 NE–SW Lineament of Bioko island

L34 N–S Mundemba synclinal

L33 N–S Bikoki Anticlinal

L40 E–W Mamfé lineament

L37 N–S Granit anticlinal of SE Takamanda

L39 NE–SW Benekuma fault

L1 NE–SW Geological contact granite—high‑grade 
gneiss

L2, L3 ENE–WSW to 
NE–SW

Foumban SZ (CASZ)

Fig. 11 Rose diagram of lineaments revealed by this work
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natural disasters such as gas emissions of “asleep” maars. 
The earth gravity model EGM2008 resulting of the com-
bination of terrestrial and altimetry-derived gravity data 
is therefore advantageous for subsurface investigations in 
volcanic mountainous areas as the CVL where terrestrial 
gravity surveys cannot easily reach.
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