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Abstract 

This paper reviews seismic activity in and around the Kumamoto region before and after the April 16, 2016, Kuma-
moto earthquake of M7.3 using statistical models such as stationary, two-stage, and non-stationary epidemic-type 
aftershock sequence (ETAS) models to examine seismicity anomalies. Our findings are summarized as follows. First, 
most of the earthquake clusters before April 2016 are explained by the stationary ETAS model, except for a few clus-
ters of swarm activity, one of which was remotely induced by the 2011 Tohoku-Oki earthquake (M9). The non-station-
ary ETAS model describes changes in the rate of background seismicity of swarm activity. Second, we revealed seismic 
quiescence relative to the stationary ETAS model in the foreshock sequence from the M6.5 earthquake on April 14, 
2016, and further in the aftershock activity of the 2000 M5.0 earthquake that occurred in the shallower extension of 
the M6.5 foreshock zone. Thirdly, the main-fault and two off-fault aftershock clusters of the M7.3 mainshock show dif-
ferent features, caused by static triggering effects of the mainshock and/or effects induced by fault weakening. Finally, 
the b-value increased stepwise over time during the entire period of foreshocks and aftershocks, the reason of which 
is explained.
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Background
The 2016 Kumamoto earthquakes, including the main-
shock (M7.3), were a series of shallow, strong earth-
quakes that occurred at and around 01:25 JST on April 
16, 2016 (16:25 UTC on April 15), near Kumamoto City 
in Kyushu, Japan; the first foreshock (M6.5) occurred at 
21:26 JST (12:26 UTC) on April 14, 2016.

Several major earthquakes occurred inland in Kyushu 
at shallow depths (≤  30  km) within a 100–200-km 
radius preceding the 2016 Kumamoto mainshock. In 
January and April 1975, two events of M6.5 and M6.3 
(the Northwest Kagoshima-ken earthquakes) occurred 
successively at distances of 40 and 65 km, respectively, 
south of the 2016 Kumamoto mainshock. A shal-
low M7.0 earthquake occurred in March 2005 (the 

Fukuoka-ken Seiho-oki earthquake) off the northern 
coast of Kyushu and 110  km north of the Kumamoto 
event. More recently, in November 2015, a shallow M7.0 
earthquake (the Satsuma-hanto Seiho-oki earthquake) 
occurred off the west coast of Kagoshima Prefecture, 
Kyushu, approximately 200  km southwest of the Kum-
amoto M7.3 earthquake. The aftershock activities of 
the former and latter M7.0 earthquakes were followed 
by clear quiescence in the sense that until the 2016 
Kumamoto earthquakes, no event of scale M4 or larger 
occurred for more than 10 years and 3 months, respec-
tively. In addition, the March 11, 2011, M9.0 Tohoku-
Oki mega-earthquake occurred approximately 1200 km 
northeast of the Kumamoto event.

Preceding the Kumamoto earthquakes, shallow back-
ground seismicity in and around Kumamoto Prefecture 
had long been present inland in the Japanese Archipelago 
(Ogata 2017c). Kumamoto Prefecture lies at the west-
ern extension of the Japan Median Tectonic Line, where 
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a system of active faults forks in two directions at the 
Beppu–Haneyama Fault Zone. Specifically, in April 2016, 
a series of earthquakes ruptured segments of the Hinagu 
Fault and the Futagawa Fault to its north; these earth-
quakes occurred along the southern boundary of the 
Beppu–Shimabara graben, with epicenters moving from 
west to east over time.

Therefore, this area is known for its high seismic, vol-
canic, and geothermal activity and the seismic activ-
ity in this region exhibits extremely diverse patterns. 
To quantitatively illustrate this variety in seismicity, we 
analyzed microseismicity in the Kumamoto region since 
2010, before the occurrence of the first M6.5 foreshock. 
We then analyzed the foreshock sequence of the M6.5 
event until the time of the M7.3 Kumamoto mainshock. 
We further examined how aftershock activity in the 
main- and off-fault zones differed regionally. Finally, we 
evaluated temporal and spatial changes in b-values in the 
sequence throughout the M6.5 foreshock sequence and 
the M7.3 aftershocks over a 2-week period.

For these analyses, we use the epidemic-type after-
shock sequence (ETAS; Ogata 1985, 1988) model and 
its extended versions (Kumazawa and Ogata 2013; 
Kumazawa et al. 2016a, b) for a variety of seismicity pat-
terns in addition to a model for the magnitude frequency 
changes (Ogata 1989; Ogata et  al. 1991). For each data-
set, we compare the goodness-of-fit of the models for the 
best fit, as given in the following section.

Models and methods
The ETAS model and its extensions
The dataset {(ti,Mi); S < ti < T } comprises the occur-
rence times of the completely detected earthquakes in a 
target interval [S, T] associated with their magnitudes. 
Therefore, the stationary ETAS model (Ogata 1985, 1988, 
1989, 1992, 2006a, b; Utsu et al. 1995),

is used as the baseline model, where the five constants 
μ, K0, α, c, and p are estimated from each dataset. The 
parameter μ denotes the background seismicity rate, and 
the other four parameters control the portion of the seis-
micity rate triggered by the preceding earthquakes. The 
uppercase character S is the starting time of the target 
analysis period to which the model is to be applied, and 
ti represents the occurrence time of the ith earthquake 
associated with a magnitude of Mi that is greater than 
the cutoff magnitude Mc. The history Ht indicates that 
both coordinates of such earthquakes occurred before 
time t. Note that when large earthquakes precede the 
time S, the history Ht should include the occurrence time 
and the magnitude records of those large earthquakes. 

(1)
�θ (t|Ht) = µ+

∑

{ i: S<ti<t}
K0e

α(Mi−Mz)
/

(t − ti + c)p,

For example, such a history includes the mainshock and 
aftershocks before time S even if these are incompletely 
detected.

The simplest alternative model for the case where the 
stationary ETAS is misfit to a dataset is a two-stage ETAS 
model that uses different parameter values before and 
after the change-point time. If we hypothesize a fixed 
change-point time, this model is compared to the single 
baseline ETAS model using the Akaike information cri-
terion (AIC; Akaike 1973, 1992). However, if the change-
point time is estimated, the goodness-of-fit relative to 
the baseline ETAS model is compared using a modified 
version of the AIC (Ogata 1992; Kumazawa et  al. 2010) 
because the maximum likelihood estimate (MLE) of the 
change-point does not satisfy ordinary large-sample the-
ory (Ogata 1978).

Using X-window-based interactive graphical software 
for data selection (TSEIS; Tsuruoka 1996) and for the 
mounted ETAS analyses (XETAS; Tsuruoka and Ogata 
2015a, b; Ogata and Tsuruoka 2016), the seismicity in 
several focal regions was preliminarily explored to 
determine the fit or misfit of the ETAS model. For the 
detailed manual and related software source, see Ogata 
(2006a).

If the extended cumulative curve of the first ETAS 
model for the earlier period overpredicts the empirical 
cumulative curve in the second period, we may suspect 
quiescence relative to the first period (relative quies-
cence). One of the possible physical reasons for relative 
quiescence is that the seismogenic source is covered by 
the stress shadow (Ogata 2006b, 2007, 2011a).

In contrast, relative activation can often be triggered 
by a major external earthquake occurring outside the 
focal region at time τ, and the seismicity rate can then be 
expressed by

where the last term represents the triggered rate change 
caused by the external earthquake occurring at time τ. In 
the present case, the M7.3 Kumamoto earthquake has a 
potentially static or dynamic triggering effect (cf., Hill and 
Prejean 2015) to off-fault activities in the Aso and Oita 
regions. Furthermore, the 2011 M9 Tohoku-Oki earth-
quake may have triggered microseismicity in the central 
Kyushu region prior to the Kumamoto earthquakes.

The non-stationary ETAS model (Kumazawa and Ogata 
2013, 2014) extends the ETAS model (Ogata 1985, 1988) 
to fit transient swarms, including induced seismicity, as 
discussed by Hainzl and Ogata (2005). The parameters 
for the background rate μ and the aftershock productivity 

(2)

�θ (t|Ht) = µ+
∑

{ i: S<ti<t}
K0e

α(Mi−Mz)
/

(t − ti + c)p

+ Kτ

/

(t − τ + cτ )
pτ ,
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K0 of ETAS model (model (1)) are set to be time-depend-
ent in the non-stationary ETAS model:

where μ(t) and K0(t) are technically characterized by 
piecewise-linear segments connected at the occurrence 
times of the earthquakes. For the estimation, occur-
rence data are inverted into the optimal solutions of μ(t) 
and K0(t) under proper smoothness constraints with the 
assumption that the aseismic stress and changes in the 
triggering parameter are both stably estimated using an 
empirical Bayesian method. Kumazawa and Ogata (2013) 
justified this estimation procedure using simulated data-
sets. Furthermore, Kumazawa et  al. (2016a, b) derived 
consistent μ(t) results for a number of volcanic swarms 
with another independent approach that employs hourly 
sampled volumetric stress changes as external records.

The goodness-of-fits of the above extended models are 
compared based on the increments ΔAIC = AIC − AIC0 
or ΔABIC =  ABIC −  AIC0, where  AIC0 represents the 
AIC value of the baseline single ETAS model. Note that 
the baseline ETAS model is the same as that in the case of 
the reference ETAS model of the non-stationary model. 
Specifically, when the weights of the constraints are very 
large, μ(t) and K0(t) become the same as the constant 
values μ and K0 in model (1), respectively, as the corre-
sponding reference parameter.

The datasets used throughout the present paper are 
part of the Hypocenter Catalog compiled by the Japan 
Meteorological Agency (JMA 2017), and the legitimacy 
for the results of our analyses performed on those data-
sets is given in Discussion section.

Magnitude frequency distributions
Changes in b‑values in space and time
Consider the Gutenberg–Richter formula (Gutenberg 
and Richter 1944):

with the constants a, b, and β = b ln 10. Restricting the 
range of earthquake sizes such that M  ≥  Mc, we can 
derive the probability density distribution f(M|β) = λ(M )/ 
Λ(Mc)  =  βe−β(M−Mc), where �(Mc) =

∫∞
Mc

�(M)dM is 
the expected total number of earthquakes with M ≥ Mc. 
The β value in Eq.  (4) can depend on location or time 
such that β(z) is a function of location z = (x, y) or time 
z = t. As the maximum likelihood estimate of the b-value 
is given by the reciprocal of the magnitude average, 
local changes in the b-values have conventionally been 
obtained via various kernel methods or moving weighted 

(3)

�θ (t|Ht) = µ(t)+
∑

{ i: S<ti<t}
K0(ti)e

α(Mi−Mz)
/

(t − ti + c)p,

(4)
�(M) = P(M < Magnitude ≤ M + dM)

= 10a−bM = Ae−βM ,

averages (Smith 1986; Wiemer and Wyss 1997; Wyss 
et al. 1997; Nanjo et al. 2016).

Here, we consider β in Eq.  (4) to be represented by a 
flexible function of time and/or location using cubic 
B-spline expansions (Ogata and Katsura 1993; Ogata 
et  al. 1991). Alternatively, for a two-dimensional spatial 
region, we use a piecewise-linear function defined on the 
Delaunay tessellated region. The vertices of each Delau-
nay triangle comprise the epicenter coordinates of the 
three nearest earthquakes (Delaunay 1934); in particu-
lar, in the case of a one-dimensional space or time axis, 
a continuous piecewise-linear function, or broken line, 
of occurrence times is included. The coefficients of these 
functions are given at space or time vertex locations 
and additional points in the time interval or rectangular 
region (Ogata 2011b; Ogata et  al. 2003). Therefore, the 
function is uniquely defined based on linear interpolation 
of the coefficient values, and the characterization of such 
flexible functions for β requires a set of high-dimensional 
coefficients θ. In such a case, a penalized log-likelihood 
(Good and Gaskins 1971),

describes the trade-off between maximizing the likeli-
hood function 

∏

i βθ (zi)e
−βθ (zi) of θ for the goodness-

of-fit to the data and minimizing a penalty function that 
penalizes fluctuations (roughness) in the piecewise-linear 
β function. Here, the penalty function is described by an 
integral of the sum of the squares of the first and second 
partial derivative functions with a constraining weight 
vector w that is called the hyperparameter in a Bayesian 
framework (Akaike 1980; Parzen et al. 1998; Ogata 2017a, 
b, c). Then, we objectively implement the best selection 
among the distinct parameterizations for the penalty 
and tuning of the hyperparameter values. Therefore, the 
crucial point is the optimal determination of the suitable 
w for a given dataset. Then, we can obtain the inversion 
solution βθ(.) by maximizing Q(θ |w).

Earthquake detection rates in time
To investigate b-value changes over time, we take 
account of the low detection rate of the small aftershocks 
for time spans immediately after the mainshock as well 
as immediately after major foreshocks and major after-
shocks. However, the traditional method, which restricts 
earthquakes above a certain completely detected magni-
tude, loses a large amount of data. Accordingly, we want 
to model the b-value time variation simultaneously with 
the variations in the detection rates of the earthquakes. 
Consider a detection-rate function q(M) of earthquakes 
of magnitude M such that 0 ≤ q(M) ≤ 1. An example of 
the detection-rate function is the cumulative function of 
the normal distribution,

(5)Q(θ |w) = ln (likelihood)− penalty (θ |w),
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suggested by Ringdal (1975). Here, the parameter m rep-
resents the magnitude value at which 50% of earthquakes 
are detected, and σ relates to the range of magnitudes in 
which earthquakes are partially observed. For the time 
series of magnitudes of all detected earthquakes, Ogata 
and Katsura (1993, 2006) propose that the time-depend-
ent magnitude frequencies of all detected earthquakes 
can be characterized by an intensity function

To characterize the non-stationarity of the frequency 
distributions, we assume that the parameters ln β(t), ln 
m(t), and ln σ(t) are expressed by flexible functions of 
time t using the piecewise-linear function (Kumazawa 
and Ogata 2013, 2014; Kumazawa et  al. 2016a). Then, 
given a dataset of earthquake occurrence times associ-
ated with magnitudes (ti, Mi), we consider the penalized 
log-likelihood in Eq.  (5), where the log-likelihood func-
tion is given by

(see Ogata and Katsura 1993), with penalties against the 
roughness of ln β(t), ln m(t), and ln σ(t). Therefore, the 
optimal determination of the hyperparameters for the 
respective penalties of ln β(t), ln m(t), and ln σ(t) is cru-
cial to the method. Here, the penalties to the sum of the 
square differences of ln βi = ln β(ti), ln mi = ln m(ti), and 
ln σi =  ln σ(ti) may work better than the penalty to the 
integrated square differentials of ln β(t), ln m(t), and ln 
σ(t) in cases where the occurrence times {ti} are highly 
clustered (Ogata 1989). These results can be compared 
using the Akaike Bayesian information criterion (ABIC; 
Akaike 1980).

Results
Prior to the Kumamoto earthquakes
We first analyzed the seismicity around the Kumamoto 
region (Fig.  1a) from 2010 until the 2016 Kumamoto 
earthquake, where the data of earthquakes of M1.0 and 
larger were completely detected in the Hypocenter Cat-
alog of the Japan Meteorological Agency (JMA). First, 
we applied the single ETAS model and the two-stage 
ETAS model to search for a change-point in the entire 
period using the XETAS program. The results are listed 

(6)

q(M|m, σ) = 1

/

(
√
2πσ)

∫ M

−∞
exp

{

(x −m)2
/

2σ 2
}

dx,

(7)
�(M|β(t),m(t), σ(t)) = f (M|β(t)) · q(M|m(t), σ(t)).

(8)

ln L =
∑

i

{

ln β(ti)− β(ti)Mi + ln q(Mi|m(ti), σ(ti))

+ β(ti)m(ti)−
1

2
β(ti)

2m(ti)
2

}

in Table 1; specifically, the most likely change-point (the 
MLE) was reached at 1300  days elapsed (around Sep-
tember 2013 with a significantly better fit than the single 
ETAS model, with the difference ΔAIC given in Table 1; 
see the black dashed vertical line in Fig. 1).  

Furthermore, we examined whether a triggering effect 
from the 2011 M9.0 Tohoku-Oki earthquake existed in 
this area. We compared the AIC values between models 
(1) and (2) for this examination. Even though the trigger-
ing effect appears to be small (the red cumulative curve) 
in Fig. 1, the fitting of model (2) is significantly better (see 
the AIC values for cutoff magnitudes Mc = 1.0 and 1.5 in 
Table 1) than single ETAS model (1) represented by the 
green cumulative curve. The red vertical line indicates 
the occurrence of the 2011 M9.0 Tohoku earthquake, 
which was more than 1000 km away, at which time seis-
micity shows slight activation, and single ETAS model (1) 
accordingly shows a misfit.

Quiescence can still be significant even with higher 
threshold magnitudes (Fig.  1b–d) at the same change-
point at 1300 days elapsed (Table 1).

We then fit the ETAS model to earthquakes of M ≥ 1.0 
in each subregion R1–R8 (Fig. 2a) selected from the total 
region shown in Fig. 1a. Significant misfits were detected 
in the R3, R4, R5, and R8 subregions (see Fig.  3); how-
ever, no significant anomalies were found elsewhere. The 
panels in Fig. 2b show that the ETAS model fits well for 
the R1, R2, R6, and R7 subregions without any indication 
of relative quiescence. Conversely, the R3–R5 subregions 
in the Beppu–Shimabara graben, on the northern side of 
the fault segments that caused the M6.5 and M7.3 rup-
tures, showed significant misfits (Fig.  3, left panels, and 
Table 2). The seismic activity in the R8 subregion had lit-
tle triggering effect from the 2011 M9.0 earthquake and 
is normally predicted in the ongoing period; however, 
another type of misfit was shown during the period a few 
years earlier (see the bottom panels in Fig. 3).

Non-stationary ETAS model (3) was applied to these 
subregions to examine the characteristics of the param-
eter changes (Fig.  3, right panels). Here, the parameter 
μ(t) suggests possible changes in the seismic incidence 
rate caused by either static stress changes or fault weak-
ening of the earthquake occurrence field. The param-
eter K0(ti) shows the size of the aftershock productivity 
of each earthquake and is systematically dependent on 
the epicenter position of earthquake i occurring at time 
ti (Kumazawa and Ogata 2013, 2014; Kumazawa et  al. 
2016a, b). In particular, in the R3 subregion, an earth-
quake swarm occurred in March 2011 (right after the 
2011 Tohoku-Oki earthquake) and then subsided in 
April 2012 (at around t = 800 days). The parameter μ(t) 
changes according to this observation, reflecting the 
fact that the swarm activity was remotely triggered by 
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the Tohoku-Oki earthquake, which occurred more than 
1000 km to the northeast.

In the R4 subregion, several swarms occurred through-
out the target period, with the last major one occurring 

around November 2015 (at around t =  2200  days). The 
R4 and R5 subregions were activated close to when 
the swarm activity in the R3 subregion subsided; then, 
these activations ceased in August 2013 (at around 
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Fig. 1 ETAS model and its extended model estimates. Models (1) and (2) are fit to the seismicity in and around the aftershock region prior to the 
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t = 1300 days). Another swarm event in the R5 subregion 
then followed at around t =  1700  days. The changes in 
μ(t) in these subregions capture these swarm events well, 
which suggests that the seismicity in these subregions 
was likely affected by external forcing, that is, static stress 
changes and/or fault weakening.

We then analyzed the longer-term seismicity from 
1990 until the M6.5 Kumamoto earthquake in Region 
A (see Fig.  4), including the aftershock sequences in 
Region B of a strong M5.0 earthquake on June 8, 2000, 
in the shallower extension of the M6.5 Kumamoto earth-
quake source (Figs. 4, 6a). Note that the M5.0 earthquake 
occurred in part of the same fault segment as the M6.5 
foreshock on the Hinagu Fault. The mapped faults in the 
region are generally trend in the east–west or northeast–
southwest directions, in agreement with the right-lateral 
plane of the preliminary focal mechanism and the align-
ment trends of the early aftershocks. Tables 3 and 4 list 
the fault parameters and the hypocenter coordinates of 
the primary focal earthquakes in the Kumamoto region, 
respectively. Table 5 summarizes the results of the two-
stage ETAS model compared with the ordinary ETAS 
model. The MLEs of the change-points are significant, 
and the seismicity in Region A and aftershock activ-
ity in Region B decreased more than predicted by the 
corresponding first-stage ETAS models approximately 

4  months after the occurrence of the M5.0 mainshock 
(Fig. 4).

The aftershock activity of the M6.5 Kumamoto earthquake
We next analyzed the aftershock sequence started by 
the M6.5 earthquake that occurred at 21:26 on April 
14, 2014, including the largest aftershock of M6.4 that 
occurred at 00:03 on April 15, prior to the M7.3 earth-
quake that occurred at 01:25 on April 16. The total time 
span was approximately 28 h after the M6.5 earthquake 
(Tables  3, 4). Ogata (2017a, b) assessed the probability 
that this sequence would be foreshocks of a mainshock 
with M ≥ 7.0 as ~ 5% per month.

By applying the ETAS model to this sequence, we found 
relative quiescence starting soon after the second largest 
foreshock of M6.4, with AIC differences ΔAIC = − 7.04 
for the data with Mc =  1.5 and ΔAIC = −  7.94 for the 
data with Mc = 2.0 (see Table 6). However, in the case of 
the Mc = 2.5 dataset, the change-point becomes less sig-
nificant even though relative quiescence is clearly observ-
able in Fig. 5. This result may be attributed to the reduced 
number of the earthquakes in the dataset.

The aftershocks of the Kumamoto earthquake
We then analyzed the aftershock sequence in the 2-week 
period after the M7.3 mainshock occurrence. Because of 

Table 1 Estimated parameters of models (1) and (2) and their respective AIC values

ΔAIC indicates differences from the AIC of baseline model (1) for the entire period. The smallest ΔAIC value for each dataset is indicated in italics. With each 
threshold magnitude Mc, the first row (indicated “Total” in third column) shows the MLE of the parameters for the entire period (S = 0.01, Tend = 2294.52) until the 
M6.5 event with AIC = AIC0. The second row (indicated “P1” in third column) represents the period prior to the change-point (S = 0.01, Tc = 1300) with AIC = AIC1. 
The third row (indicated “P2” in third column) represents the period after the change-point (Tc = 1300, Tend = 2294.52) with AIC = AIC2. The last column shows 
ΔAIC = AIC1 + AIC2 − AIC0. The decay rate parameter pτ for model (2) is fixed to 1.0 in all cases, after Dieterich (1994)

The asterisk symbols indicate that the values are fixed

Mc Model Period µ K0
(

× 10
−2

)

c
(

× 10
−3

)

α p Kτ
(

× 10
+1

)

cτ
(

× 10
+1

)

pτ ΔAIC

1.0 (1) Total 0.895 2.951 1.226 0.872 1.005 – – – 0

P1 1.063 2.821 1.662 1.005 1.001 – – – − 90.38

P2 0.552 3.320 0.504 0.625 0.971 – – –

(2) Total 0.969 2.620 1.312 0.863 1.033 7.703 5.001 1.0* − 18.26

P1 1.095 2.738 1.663 1.001 1.006 0.410 0.0168 1.0* − 92.87

P2 0.552 3.320 0.504 0.625 0.971 0.000 0.0211 1.0*

1.5 (1) Total 0.432 2.541 1.103 0.813 1.008 – – – 0

P1 0.457 2.600 0.106 0.922 0.963 – – – − 29.54

P2 0.429 2.134 1.068 0.640 1.087 – – –

(2) Total 0.450 2.166 1.308 0.772 1.055 4.079 5.302 1.0* − 12.24

P1 0.469 2.508 1.063 0.910 0.969 0.168 0.0230 1.0* − 31.15

P2 0.428 2.134 1.068 0.640 1.087 0.000 0.0223 1.0*

2.0 (1) Total 0.183 1.685 0.941 1.099 0.966 – – – 0

P1 0.182 1.641 0.823 1.308 0.883 – – – − 19.21

P2 0.204 0.696 2.209 0.742 1.322 – – –

(2) Total 0.185 1.617 0.984 1.094 0.973 0.0782 0.00118 1.0* − 5.02

P1 0.184 1.553 0.879 1.326 0.885 0.0623 0.00082 1.0* − 17.32

P2 2.039 0.696 2.209 0.742 1.322 0.0000 0.0275 1.0*



Page 7 of 22Kumazawa et al. Earth, Planets and Space  (2017) 69:169 

 130.5  131.0  131.5 

32.5 

33.0 

33.5 
Magnitude

3.0
4.0
5.0
6.0
7.0
8.0

Depth (km)
  0.0
 30.0
 80.0
150.0
300.0
700.0

ETAS Fit and Prediction
ETAS Residual

Transformed Time

ETAS Residual ETAS Residual
0.010.1110100 1000

ETAS Fit and Prediction
ETAS Residual

ETAS Fit and Prediction
ETAS Residual

ETAS Fit and PredictionETAS Fit and Prediction

C
um

ul
at

iv
e 

N
um

be
r 

of
 E

ve
nt

s
C

um
ul

at
iv

e 
N

um
be

r 
of

 E
ve

nt
s

M
ag

ni
tu

de
C

um
ul

at
iv

e 
N

um
be

r 
of

 E
ve

nt
s

C
um

ul
at

iv
e 

N
um

be
r 

of
 E

ve
nt

s

C
um

ul
at

iv
e 

N
um

be
r 

of
 E

ve
nt

s
Ordinary Time (Days)

Transformed TimeOrdinary Time (Days)

Transformed TimeOrdinary Time (Days)Transformed TimeOrdinary Time (Days)

Transformed TimeOrdinary Time (Days)

 Depth: − 5.0 – 30.0 km,  Magnitude:1.0 – 9.9
 Period: 2010/01/01 00:00 – 2016/04/13 24:00   N=  5,858 

M
ag

ni
tu

de

M
ag

ni
tu

de
M

ag
ni

tu
de

M
ag

ni
tu

de

μ = 0.522661 
K0 =    0.32 
c =   0.00057 
α =  1.1753 
p = 0.90632 

aic/2 =  1.6394E+03
0

 500

1,000

1.0
1.5
2.0
2.5
3.0
 3.5
 4.0

0  500 1,000 1,500 2,000

M ≥ 1.0 S =      500.000000
T =     2294.52
Tend =     2294.52

 -500

0

 500

1,000

1,500
0.010.1110100 1,000

1.0
1.5
2.0
2.5
3.0

 3.5
 4.0

 -500 0  500 1,000

μ = 0.150237 

K0 =    0.27 
c =   0.00031 
α =  0.9761 
p = 0.90547 

aic/2=  976.57

-200

-100

0

100

200

300

 400

 500

1.0
1.5
2.0
2.5
3.0
 3.5
 4.0

0  500 1,000 1,500 2,000

S =      500.000000

-200

-100

0

100

200

300

 400

 500
0.010.1110100 1000

1.0
1.5
2.0
2.5
3.0

 3.5
 4.0

-200 -100 0 100 200 300  400

T =     2294.52
Tend =     2294.52

M ≥ 1.0

μ = 0.071464 
K0 =    0.06 
c =   0.00169 
α =  0.6555 
p = 1.46563 
aic/2 = -670.38

-100

0

100

200

300

 400

 500

 600

1.0
1.5
2.0
2.5
3.0
 3.5

0  500 1,000 1,500 2,000

S =        0.010000

-100

0

100

200

300

 400

 500

 600
0.010.1110100 1000

1.0
1.5
2.0
2.5
3.0

 3.5

-100 0 100 200 300  400  500

T =     2294.52
Tend =     2294.52

M ≥ 1.0

μ = 0.053735 
K0 =    0.11 
c =   0.00185 
α =  0.8217 
p = 1.32460 
aic/2 =  216.78

-150

-100

 -50

0

 50

100

150

200

250

1.0
1.5
2.0
2.5
3.0
 3.5

0  500 1,000 1,500 2,000

S =      500.000000

-150

-100

 -50

0

 50

100

150

200

250
0.010.1110 100 1000

1.0
1.5
2.0
2.5
3.0

 3.5

-150 -100  -50 0  50 100 150 200

T =     2294.52
Tend =     2294.52

M ≥ 1.0

μ = 0.000000 
K0 =    0.21 
c =   0.00026 
α =  0.8500 
p = 0.81903 
aic/2 =  446.52

-150

-100

 -50

0

 50

100

150

1.0
1.5
2.0
2.5
3.0
 3.5

0  500 1,000 1,500 2,000

S =      500.000000

-100

 -50

0

 50

100

150
0.010.1110100 1000

1.0
1.5
2.0
2.5
3.0

 3.5

-100  -50 0  50 100

T =     2294.52
Tend =     2294.52

M ≥ 1.0

a b

Fig. 2 The ETAS model fitted to the seismicity in the subregions prior to the Kumamoto earthquakes. a The total area of Fig. 1a is divided into sub-
regions R1–R8. The thin rectangles indicate the fault models (Geospatial Information Authority of Japan 2016). b The ETAS estimate of the cumula-
tive curve (red curve) is superimposed on the observed cumulative curve (black curve) in ordinary time (the left side of each pair) and transformed 
time (the right side of each pair). The corresponding M–T plots are attached at the bottom of each panel
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the rapid occurrences of large events of M6.5, M6.4, and 
M7.3 within a short period of time (Table  4), the miss-
ing rate of small earthquakes is not negligible soon after 
these occurrences. Before the ETAS model and the non-
stationary ETAS model were applied to the dataset, we 
chose a magnitude threshold above which we could safely 
expect that the data were collected with sufficient com-
pleteness over nearly the entire period.

Therefore, for this sequence, the threshold magnitude 
 Mc can be safely chosen at M3.0 taking into account the 
level of m(t) + 3σ(t) according to estimated model (8) in 
Fig. 10. The b-value changes stepwise, jumping at the sec-
ond largest foreshock of M6.4 and at the M7.3 mainshock 
(see Fig. 10, top panel). These characteristic changes are 
examined in the next section.

As shown in Fig.  6, the aftershocks are clustered in 
three distinct regions. Hereafter, we analyze these clus-
ters separately using ETAS model (1) and non-stationary 
ETAS model (3), in addition to model (2) with the remote 
triggering effect of the M7.3 mainshock on the off-fault 
subregions.

The Kumamoto subregion (S1 in Fig. 6a) covers a major 
part of the foreshock activity since the M6.5 earthquake 
on April 14 and the majority of the aftershocks of the 
M7.3 mainshock. The plot of depth versus elapsed trans-
formed time (Fig. 6c) shows that the foreshocks migrated 
deeper and approached the M7.3 hypocenter. The Aso 
subregion (S2 in Fig. 6a) was initiated by the M3.9 earth-
quake at 01:32 on April 16 (0.00484 days after the M7.3 
event or 1.17048  days after the M6.5 event). The Oita 
subregion (S3 in Fig.  6a) was initiated by a M5.7 earth-
quake at 01:25 on April 16 (0.00038 days after the M7.3 
mainshock or 1.16601 days after the first foreshock of the 
M6.5 event).

For the Kumamoto subregion (S1 in Fig. 6a), the non-
stationary ETAS model was applied to the seismicity star-
ing from the M6.5 earthquake, with a discontinuity at the 
natural change-point at the occurrence time of the M7.3 
mainshock (Fig. 7). During the period of foreshock activ-
ity, the background seismicity rate μ(t) and the aftershock 
productivity K0(t) both decreased until the M7.3 main-
shock. This finding is consistent with relative quiescence 

Table 2 ETAS model parameters estimated for the subregions

For the R3–R5 subregions, the first row shows the MLE estimates of the parameters for the entire period between S = 0.01 days and Tend = 2294.52 days with 
AIC = AIC0, the second row shows those for the pre-change-point period (S, Tc) with AIC = AIC1, and the third row shows those for the post-change-point period (Tc, 
Tend) with AIC = AIC2. The last column shows ΔAIC = AIC1 + AIC2 − AIC0, accompanied in parentheses by the ΔABIC of model (3) from the  AIC0

Subregion Target period µ
(

× 10
−1

)

K0
(

× 10
−1

)

c
(

× 10
−3

)

α
(

× 10
−1

)

p ΔAIC
(ΔABIC)

R1 S = 500, Tend = 2294.52 5.227 3.239 0.5716 11.753 0.9063 NA

R2 S = 500, Tend = 2294.52 1.502 2.680 0.3063 9.761 0.9055 NA

R3 S = 0.01, Tend = 2294.52 0.1161 2.904 0.349 5.796 0.912 − 43.62
(− 70.28)S = 0.01, Tc = 850 0.4098 17.67 2.1622 11.29 0.8946

Tc = 850, Tend = 2294.52 0.0000 18.49 1.864 13.25 0.9184

R4 S = 0.01, Tend = 2294.52 0.3081 3.405 0.7071 9.113 0.9329 − 13.35
(− 35.91)S = 0.01, Tc = 1500 0.2601 4.469 0.4727 10.23 0.8725

Tc = 1500, Tend = 2294.52 0.1784 2.777 0.7732 8.086 0.9737

R5 S = 0.01, Tend = 2294.52 0. 1064 4.430 64.40 6.069 1.210 − 28.78
(− 55.33)S = 0.01, Tc = 1320 0.1219 3.547 3.120 6.486 0.8858

Tc = 1320, Tend = 2294.52 0.09756 4.667 90.74 6.683 1.294

R6 S = 0.01, Tend = 2294.52 0.7146 0.5595 1.694 6.555 1.466 NA

R7 S = 500, Tend = 2294.52 0.5373 1.127 1.845 8.217 1.325 NA

R8 S = 500, Tend = 2294.52 0.000 2.121 0.258 8.500 0.8190 (− 49.67)

(See figure on previous page.) 
Fig. 3 Estimates of ETAS model (1) and non-stationary ETAS model (3). The models are fitted to a seismicity of M ≥ 1.0 in the R3, R4, R5, and R8 
subregions, given from the top to bottom row. The first and second columns show the empirical (black) and theoretical (red) cumulative curves of 
the ETAS fitted to the data against the ordinary and transformed times of the ETAS model in the target period prior to the most significant change-
point of the two-stage ETAS model. Beneath the empirical cumulative curves, the thick dashed light blue curves indicate the theoretical cumulative 
curves of the non-stationary ETAS model. The third column shows μ(t) in red and K0(t) in blue with twofold errors estimated using non-stationary 
ETAS model (3). The rightmost panels show the spatial distribution of K0(t) versus the locations of the earthquakes
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Fig. 4 ETAS model fittings to the restricted regions. ETAS model (1) is fitted to the seismicity in Region A, including the narrow aftershock Region B 
of the 2000 M5.0 earthquake, beneath which the aftershocks of the 2016 M6.5 and M7.3 Kumamoto earthquakes are plotted as gray circles. The red 
circles indicate earthquakes from January 1, 1990, until the M6.5 Kumamoto earthquake on April 14, 2016 (blue disk), and its aftershocks prior to the 
M7.3 mainshock, with a threshold magnitude of Mc = 2.0, are plotted as gray circles. The dashed rectangles indicate the fault models of the 2016 
Kumamoto earthquakes listed in Table 3. The seismicity in Region B is from 09:32, June 8, 2000, when the mainshock of M5.0 (marked by a thick 
circle) occurred, and consists only of its aftershocks. The right panels show the ETAS model fitted before the change-point MLE (dashed vertical line) 
for Region A (top panels) and for the narrower Region B (bottom panels). The estimated cumulative curves are superimposed (red curves) on the 
observed values (black curves) versus the ordinary time (the left side of each pair) and the transformed time (the right side of each pair). The cor-
responding M–T plots are attached under the corresponding panels

Table 3 Fault models of the Kumamoto earthquakes (Geospatial Information Authority of Japan 2016)

Fault (Fig. 7) Lon. (°) Lat. (°) Depth (km) Length (km) Width (km) Strike (°) Dip (°) Rake (°) Slip (m)

Left 130.807 32.770 0.8 10.2 13.0 205 72 176 2.7

Middle 130.996 32.878 0.6 20.0 12.5 235 60 209 4.1

Right 130.975 32.883 0.2 5.1 6.6 56 62 178 3.8
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in the foreshock series, as discussed in the previous sec-
tion. In addition, after the M7.3 mainshock, both the 
background seismicity μ(t) and the aftershock productiv-
ity K0(t), which had increased, decreased after a few days.

In the Aso subregion (S2 in Fig.  6a), the change-point 
becomes significant approximately half a day after the M7.3 
mainshock (t = 0.5 days). The two-stage ETAS model sug-
gests quiescence of the aftershock activity relative to the first 
period of the induced activity. However, the non-stationary 
ETAS model fits the dataset better than the two-stage ETAS 
model (Table 7), showing a moderate decrease in the back-
ground seismicity μ(t) and aftershock productivity K0(t) (see 
Fig. 8). The triggering effect due to the static stress changes 
of the M7.3 mainshock is significant (Table 8), which effect 

appears closely comparable with  the changes in the back-
ground seismicity in the non-stationary ETAS model 
as shown by the green and red curves in Fig. 8. However, the 
background seismicity decayed faster. It is expected that the 
causes of the inducement involve fault weakening, not just 
triggering by the static stress change. 

In the Oita subregion (S3 in Fig.  6a), an M5.7 earth-
quake appears to be induced 32  s after the M7.3 main-
shock, which ruptured at a distance of approximately 
100  km; then, its aftershocks continued. However, the 
direct triggering influence from the mainshock on this 
aftershock activity was weak (Table  8). Quiescence was 
significant (Table  7) because no earthquakes of M3 or 
larger occurred for nearly 1  year from approximately 

Table 4 The occurrence times and epicenter coordinates of the focal earthquakes

Earthquake Occurrence time Longitude Latitude Depth (km)

M5.0 09:32, June 8, 2000 130.7620° 32.6923° 10.31

M6.5 21:26, April 14, 2016 130.8087° 32.7417° 11.39

M6.4 00:03, April 15, 2016 130.7777° 32.7007° 6.71

M7.3 01:25, April 16, 2016 130.7630° 32.7545° 12.45

Table 5 The MLEs of the single and two-stage ETAS models estimated for Regions A and B in Fig. 4

The datasets start at 00:00 on January 1, 1990, and at 10:53 on June 8, 2000 (the occurrence time of a M5.0 event), for Regions A and B, respectively. For each region, 
the first row shows the MLE estimates of the parameters for the entire period (S, Tend) with the associated baseline AIC = AIC0. The second row for the target period 
until the change-point (S, Tc) is associated with AIC = AIC1, and the third row for the target period after the change-point (Tc, Tend) is associated with AIC = AIC2. The 
last column shows ΔAIC = AIC1 + AIC2 − AIC0

Target period µ
(

× 10
−3

)

K0 c
(

× 10
−3

)

α p ΔAIC

Kumamoto Region A
Mc = 2.0

S = 0.01, Tend = 9527.00 7.351 5.640 3.280 2.632 1.051 − 3.688

S = 0.01, Tc = 5161.43 9.261 6.219 3.507 2.746 1.032

Tc = 5161.43, Tend = 9105 8.016 0.050 3.732 2.077 2.059

Kumamoto Region B
Mc = 2.0

S = 0.01, Tend = 4891.52 0.4950 5.281 2.233 2.738 1.081 − 3.551

S = 0.01, Tc = 119.32 1.279 3.920 3.822 2.564 1.185

Tc = 119.32, Tend = 4891.52 0.6071 2.935 1.311 29.20 0.951

Table 6 MLEs of the single and two-stage ETAS models for the foreshock sequence

Single ETAS model (1) is fitted to the M6.5 aftershock sequence prior to the M7.3 mainshock. For each threshold magnitude, the first row shows the MLEs for the entire 
period (S = 0.01 days, Tend = 1.166 days) with AIC = AIC0, the second row shows those for the pre-change-point period (S = 0.01 days, Tc = 0.16 day) with AIC = AIC1, 
and the third row shows those for the post-change-point period (Tc = 0.16 days, Tend = 1.166 days) with AIC = AIC2. The last column shows ΔAIC = AIC1 + AIC2 − AIC0

Target period µ K0
(

× 10
2
)

c
(

× 10
−2

)

α
(

× 10
−1

)

p dAIC

Mc = 1.5 S = 0.01, Tend = 1.166 0.000 2.377 3.166 1.478 1.000 − 7.04

S = 0.01, Tc = 0.16 0.000 4.353 9.055 1.516 1.000

Tc = 0.16, Tend = 1.166 0.000 1.483 4.492 3.608 1.000

Mc = 2.0 S = 0.01, Tend = 1.166 0.000 1.278 1.878 1.153 1.000 − 7.94

S = 0.01, Tc = 0.16 0.000 2.406 6.630 0.9659 1.000

Tc = 0.16, Tend = 1.166 0.000 1.273 0.001 1.683 1.000

Mc = 2.5 S = 0.01, Tend = 1.166 0. 000 0.560 0.906 1.119 1.000 − 1.61

S = 0.01, Tc = 0.16 0. 000 0.865 0.290 0.913 1.000

Tc = 0.16, Tend = 1.166 0. 000 0.291 0.073 0.286 1.000
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2  weeks after the mainshock (t  =  15  days). When the 
non-stationary ETAS model is applied, the background 
seismicity and aftershock productivity both show 
decreasing trends, as shown in Fig. 9. There is little differ-
ence between the ETAS model with a change-point and 
the non-stationary ETAS model. Therefore, future long-
term monitoring is necessary. Note that it is not very 
unusual in this subregion for no events of M3 or larger to 
be observed for more than 1 year, as shown in the catalog 
for the past few decades, regardless of the high activity.

Variation in the magnitude frequencies of the foreshocks 
and aftershocks
The time-dependent model for detection-rate changes 
combined with b-value changes defined in Model and 
Methods section was applied to all of the compiled 
events with magnitudes given in the Hypocenter Catalog 
of the JMA for the 5-day period after the M6.5 event. The 
50% detection rates are nearly identical between M2 and 
M3, but only within a very short period after the M7.3 
mainshock (see Fig. 10).
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Fig. 5 ETAS model fitted to the foreshock sequence. ETAS model (1) is applied to the aftershock sequence of the M6.5 earthquake prior to the 
occurrence of the M7.3 mainshock, plotted against the ordinary and transformed times via the theoretical cumulative curve of the ETAS model. The 
red theoretical cumulative curves are superimposed on the black empirical cumulative curves of the aftershocks of M ≥ 1.5, M ≥ 2.0, and M ≥ 2.5 
together with the corresponding M–T diagrams
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models of the M6.5 and M7.3 ruptures (see Table 3). b The results of the ETAS model fitted to the above threshold (Mc = 3) dataset of the entire 
region (red dots in a)), where data in the target interval are after the M7.3 mainshock. c The depth distribution of earthquakes in region S1 versus 
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6.4, and 7.3 from left to right
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Fig. 7 Non-stationary ETAS model applied to the Kumamoto region (S1 in Fig. 6a). a The red cumulative curve indicates the ETAS model fitted for 
the entire period. The thick dotted light blue curve indicates the estimated non-stationary ETAS model. b The estimated time-dependent param-
eters of the non-stationary ETAS model, where the reference parameters are the MLE of the ETAS model. The MLEs are printed in (a). The time axes 
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mainshock. In the M–T plots, the M6.4 and M7.3 events are marked by circles. c The estimates of the K0 parameters versus the corresponding loca-
tions of the aftershocks, where the color table shows the expected number of triggering offspring events of M ≥ 3.0 per square degree per day
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Table 7 Model comparisons between the two-stage ETAS model and the non-stationary ETAS model

The differences in the AIC value of the two-stage ETAS model and ABIC value of the non-stationary ETAS model from the AIC of the reference ETAS model are listed. 
The AIC of the baseline ETAS model is the same as the ABIC of the reference ETAS model. These values are estimated for the entire period for the target region; Tc 
corresponds to the natural change-point at the occurrence time of the M7.3 mainshock, and days are counted from the occurrence time of the M6.5 foreshock event

ΔAIC or ΔABIC S1 S2 S3

Change-point Tc (ΔAIC) − 6.99
(Tc = 1.1656)

− 9.04
(Tc = 21)

− 6.26
(Tc = 14.9)

Non-stationary ETAS (ΔABIC) − 17.58 − 15.11 − 7.03
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Fig. 8 Non-stationary ETAS model and model (2) applied to the Aso subregion (S2 in Fig. 6a). The marks, line types, and colors are the same as 
indicated in Fig. 7, except that the thick green curve represents the triggering effect of the M7.3 mainshock indicated by the third term in model (2)
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The b-values throughout the foreshock–aftershock 
sequence of the Kumamoto earthquakes showed step-like 
changes with a jump at each large event (i.e., the M6.4 
and M7.3 events). To explain these changes, we examined 
the spatial distribution of b-values (Fig.  11) estimated 
from the entire sequence of foreshocks and aftershocks 
with a cutoff magnitude of Mc  =  2.95. The foreshocks 
(white and red dots in Fig. 11) were concentrated in areas 
where the b-value was estimated to be low, whereas the 
aftershocks (black dots in Fig. 11) were widely dispersed 
in the high b-value area. This migrating epicenter dis-
tribution resulted in the second stepwise change of the 
b-value, which jumps at the occurrence of the M7.3 
event in Fig.  10. Note here that smoothing constraints 
were imposed not to the integration of square differen-
tials of the values in time but to the sums of the square 
differences of the sequential values of consecutive earth-
quakes. The foreshocks prior to (white dots in Fig.  11) 
and after the M6.4 event (red dots in Fig. 11) are spread 
almost equally in the NE–SW direction (distributed 
around the X–Y line in Fig. 11); however, the former fore-
shocks are systematically distributed deeper (blue crosses 
in Fig. 12b) than the latter (red crosses in Fig. 12b), even 
with estimation errors taken into account. Because the 
high b-value area is located in a deeper zone in the plane 
along the X–Y line, the latter foreshocks have relatively 
high b-values on average. This finding explains the first 
stepwise change in the b-value in Fig. 10, a jump at the 
occurrence time of the M6.4 event.  

Discussion
Compared with the single ETAS model (Figs.  1, 2), the 
extended ETAS models illustrate anomalous seismicity in 

the central Kyushu region, including the triggering effect 
of the 2011 M9 Tohoku earthquake, notably in the nar-
row R3 region in Fig. 2. Then, earthquake activity appears 
to subside in the anomalous regions. It is well known 
that in geothermal regions, crustal materials are more 
sensitive to dynamic stress perturbations and earth-
quakes are more easily affected by these perturbations 
(e.g., Kumazawa and Ogata 2014; Hill and Prejean 2015; 
Kumazawa et al. 2016a, b).

Miyazawa (2016) and Uchida et al. (2016) reported that 
the mainshock remotely triggered earthquakes in the 
Yufuin–Beppu area (subregion S3 in Fig.  6a). Dynamic 
triggering is often observed in such geothermal and vol-
canic areas. In this respect, we have quantitatively ana-
lyzed this type of off-fault activity. There are various 
physical mechanisms that operate to trigger earthquakes 
(Hill and Prejean 2015) either via increased static shear 
stress or fault weakening by dynamic stresses where crus-
tal fluids are active agents (e.g., Terakawa 2014; Aiken 
and Peng 2014). In this respect, we have quantitatively 
estimated how the background rate of the non-stationary 
ETAS model fluctuated on the northern side of the focal 
fault segments of the Kumamoto earthquakes, as shown 
in Fig. 3.

By applying the two-stage ETAS model to the series of 
foreshocks led by the M6.5 event, we predicted relative 
quiescence soon after the M6.4 earthquake until the M7.3 
mainshock. Therefore, we expect that the intermediate-
term probability gains of predicting large earthquakes of 
similar size or larger will increase in the vicinity of a large 
earthquake (Ogata 2001, 2005, 2017a, b).

With the dataset for the first 2  weeks after the M7.3 
Kumamoto earthquake, we demonstrated that the 

Table 8 Model comparisons between the ETAS model with and without the triggering effect

The MLEs of the reference ETAS model and the ETAS model with triggering effect (Eq. (2)) are listed with the AIC differences between the two models

μ K0 C Α P KM7.3 cM7.3 PM7.3 ΔAIC

S2
ETAS

0.0231 1.440 0.00301 1.353 1.222 – – – − 5.23

S2 
Equation 2

0.0170 2.494 0.0196 1.586 1.301 0.130 0.153 1.391

S3
ETAS

0.00561 5.381 0.0257 4.187 1.573 – – – + 2.51

S3 
Equation 2

0.00531 5.072 0.0251 3.031 1.244 1.04 × 10−4 0.380 1.520
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µ = 0.024481 
K0 =   5.56 
c =  0.00280 

 =  1.5152 
p = 1.26171 
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Fig. 9 Non-stationary ETAS model and model (2) applied to the Oita subregion (S3 in Fig. 6a). The marks, line types, and colors are the same as 
indicated in Fig. 7, except that the thick green curve represents the triggering effect of the M7.3 mainshock indicated by the third term in model (2)

background seismicity rates and the aftershock pro-
ductivity rates were both decreasing in all subclusters 
of the aftershock region. For the Aso subregion (S2 in 

Fig. 6a) and the Oita subregion (S3 in Fig. 6a), the rates 
of decrease were higher than those of the off-fault static 
triggering effect expected based on the Omori–Utsu law 
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in model (2). This finding may be attributed to an end 
of the fault weakening caused by underground water 
intrusion resulting from disturbances associated with a 
sequence of earlier large earthquakes. In particular, for 
the Oita subregion (S3 in Fig.  6a), the M3.0 and larger 
events ceased 2  weeks after the mainshock and have 
been absent for more than a year. However, we cannot 
yet exclude the possibility of relative quiescence due to 
the static stress shadow caused by a potential neigh-
boring slow slip event and, therefore, we must continu-
ally observe the transitions of the aftershocks. Further 
continual observation will allow us to identify whether 

quiescence in this region is a significant anomaly com-
pared with the pattern of earthquake occurrences during 
a longer time span.

The results presented in Figs. 6c and 12 require homog-
enous quality of the hypocenter locations, including their 
depths. The locations and corresponding error estimates 
for the shallow inland regions in the JMA Hypocenter 
Catalog (JMA 2017) were determined using the records 
of the nearest 7–20 stations (typically 20). The hypo-
center determination of the JMA catalog was improved 
significantly in inland regions after October 1997. The 
JMA now uses a modified shallow one-dimensional 
velocity model called the JMA2001 travel-time table (see 
Ueno et al. 2002). Hypocenters are determined by aver-
aging travel-time data adjusted based on several explo-
sion seismic experiments conducted in various inland 
regions and an improved weighting function continuous 
on the distance to the hypocenter, and are appropriate 
for the dense joint seismic networks of the JMA, the Hi-
net system of National Research Institute for Earthquake 
Science and Disaster Resilience, and universities. See 
Funasaki and Earthquake Prediction Information Divi-
sion (2004) for the revised JMA magnitudes of smaller 
earthquakes less than about M5, which are dominant in 
estimating the current b-value.

Conclusions
The increase in the probability gain of a future large 
earthquake in the vicinity of an aftershock region may be 
elevated based on the presence of relative quiescence in 
the aftershock sequence (Ogata 2017a, b). Therefore, it is 
important to monitor and evaluate the existence of rela-
tive quiescence in a focal region.

Ordinary ETAS model (1) fits the microseismicity well 
in many subregions in the Kumamoto district for data 
from 2010 until the 2016 Kumamoto earthquake occur-
rences. The exceptions are swarm-like activities that are 
quantitatively characterized by the time-dependent back-
ground rates of ETAS model (3). Another slight change 
in seismicity rate includes the induced effect of the 2011 
M9.0 Tohoku-Oki mega-earthquake.
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Fig. 10 Earthquake detection-rate parameters and b-value estimates. 
The panels show, from top to bottom, the b-value time change and 
the detection-rate parameters with double error (95%) envelopes 
versus time on a logarithmic scale. The vertical dashed lines show 
the occurrence times of the M6.4 and M7.3 earthquakes, which are 
marked by large circles
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Fig. 11 The horizontal changes in b-value. The white and red dots represent the epicenters of the foreshocks before and after the M6.4 event, 
respectively, and the black dots represent the epicenters of the aftershocks. The red triangles indicate the epicenters of the M6.4, M6.5, and M7.3 
earthquakes from south to north. The red segments indicate simplified traces of the Hinagu Fault and the Futagawa Fault from south to north (see 
Table 3 for the fault parameters). The inset panel shows only the b-value image

We applied two-stage ETAS models to seismic activ-
ity data for the subregions where the stationary ETAS 
model showed significant misfits. In particular, rela-
tive quiescence was detected in the sequences led by the 
M6.5 event and another precursory sequence led by the 
2000 M5.0 event in the shallower proximate zone of the 
M6.5 event. In addition, the foreshocks led by the M6.5 
event migrated deeper to approach the M7.3 hypocenter 
(Fig. 6c).

We further applied ordinary ETAS model (1), non-sta-
tionary ETAS model (3), and the model of b-value change 
estimate (model (8)) to the sequence throughout the 

M6.5 foreshocks and the aftershocks of the M7.3 event 
for the first 2-week period.

We closely examined the aftershock activity that fol-
lowed the M7.3 event in the main Kumamoto subre-
gion and regionally separated two off-fault zones. In all 
regions evaluated, the background seismicity rate μ(t) 
and the aftershock productivity K0(t) both gradually 
decreased and decreased faster than the rates assumed 
based on the static triggering effect from the M7.3 main-
shock. Therefore, we expect that fluid intrusion and dif-
fusion, in addition to the static triggering effect, were 
involved in triggering aftershocks in the early period.
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The b-value increased stepwise over time, with jumps 
at the major M6.5, M6.4, and M7.3 events. In this case, 
these seemingly time-dependent b-value changes can 
be explained by the regional b-value difference and the 
migration of seismic activity.
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