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EXPRESS LETTER

San-in shear zone in southwest Japan, 
revealed by GNSS observations
Takuya Nishimura1*  and Youichiro Takada2

Abstract 

A right-lateral shear zone in the San-in region, southwest Japan, has been proposed by previous geological and 
seismological studies. It locates 350 km north of the Nankai Trough, that is, the main plate boundary between the 
subducting Philippine Sea and overriding Amurian plates and presumably accommodates a part of the relative plate 
motion. We present a geodetic evidence of the proposed shear zone using GNSS velocity data. Distinct shear defor-
mation is identified only between ~132.5°E and ~135°E along a coastline which is a part of the proposed shear zone, 
and we propose to call the geodetically identified shear zone as the San-in shear zone (SSZ). The SSZ is a concen-
trated deformation zone with a width of ~50 km and can be modeled by a deep creep on a vertical strike slip fault 
with a creep rate of ~5 mm/year. There are some active faults parallel and oblique to the overall trend of the SSZ, but 
no single active fault coincides with the SSZ. Lineaments of microseismicity and source faults of large earthquakes are 
almost oriented in NNW–SSE in the SSZ and oblique to the overall trend of the SSZ. They are interpreted as conjugate 
Riedel shears. Based on these geodetic, seismological, and geomorphological observations, we suggest that the SSZ 
is a developing and young shear zone in a geological time scale.
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Introduction
Southwest Japan is situated in the subduction zone 
where the Philippine Sea plate subducts from the Nan-
kai Trough. Previous studies proposed that some tec-
tonic structures in the southeastern margin of the 
overriding Amurian plate (i.e., southwest Japan) devel-
oped as a result of strain partitioning in response to 
the oblique subduction of the Philippine Sea plate (e.g., 
Tsukuda 1992; Gutscher and Lallemand 1999; Itoh et al. 
2002) (Fig.  1). One of the most important structures is 
the Median Tectonic Line, 200  km north of the Nankai 
Trough. The other is the Northern Chugoku shear zone 
(NCSZ) (Gutscher and Lallemand 1999) or the Southern 
Japan Sea Strike Slip Fault Zone (SJSFZ) (Itoh et al. 2002), 
350 km north of the Nankai Trough. They are presumably 
right-lateral strike slip fault zones in the San-in region 

which is the northern part of westernmost Honshu facing 
the Japan Sea.

Although shallow historical large earthquakes and 
microseismicity show a clear lineaments along the coast-
line (Gutscher 2001; Kawanishi et  al. 2009), no major 
active faults have been identified in the San-in region 
(HERP 2017). A detailed geomorphological study sug-
gests that ENE–WSW trending dextral active faults and 
NNW–SSE trending sinistral ones are distributed in the 
San-in region, but that they are young developing faults 
with cumulative offsets of less than a few hundreds of 
meters (Okada 2002).

Owing to a nationwide GNSS network installed in mid 
1990s, contemporary deformation of the Japanese Islands 
is monitored in detail. Sagiya et  al. (2000) analyzed the 
GNSS data and found a concentrated region of strain 
rates far from major plate boundaries including the Nan-
kai Trough and Japan Trench in central Japan. However, 
they did not identify concentration of strain rates in the 
San-in region. Loveless and Meade (2010) studied the 
GEONET data to clarify velocity profile across the NCSZ 
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and construct the block model of the Japan region. They 
showed ≤3 mm/year of right-lateral slip rates along the 
NCSZ in the block model but no significant relative 
motion in the velocity profile across the NCSZ. They, 
therefore, concluded that the NCSZ does not play an 
important role in the larger-scale tectonics of Western 
Honshu. No other geodetic studies have pointed out 
right-lateral movements in the San-in region.

Several large earthquakes including the 2000 MJMA 
(magnitude determined by the Japan Meteorological 
Agency) 7.3 western Tottori earthquake and the 2016 
MJMA6.6 central Tottori earthquake occurred in the San-
in region, which means that the region is seismotec-
tonically active. However, GNSS data in the region have 
not been fully examined although the number of GNSS 
stations has been increased by ~50% in the twenty-first 
century. In this paper, we examine a dense GNSS data 
to clarify whether significant movements are ongoing in 
the San-in regions and model the movements with a sim-
ple dislocation model. We also discuss a distribution of 
microseismicity in a shear zone.

GNSS velocity data
We use data of continuous GNSS stations of the GNSS 
Earth Observation Network System (GEONET) (cf. 
Sagiya et al. 2000). We estimate secular GNSS velocities 
in a period from April 2005 to December 2009. There 
were no earthquakes and slow slip events causing sig-
nificant crustal deformation in southwest Japan during 
this period. The velocities are estimated by fitting linear, 
annual, and semiannual terms to daily coordinates of the 
GEONET F3 solution (Nakagawa et al. 2009). Uncertain-
ties of the horizontal velocities assuming a white noise 
model are 0.02–0.05 mm/year. Although these values can 
be underestimated by an order because the noise char-
acteristics of GNSS time series are time-correlated (e.g., 
Mao et al. 1999), velocity errors are so small that we can 
ignore the data errors in the following analysis. Figure 1 
shows horizontal velocities with respect to the 950344 
station. We remove several vectors at anomalous stations 
which are inconsistent with velocities at surrounding 
stations. We found monuments of the anomalous sta-
tions are mostly inclined by visual inspection. Although 
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the most distinctive feature of Fig. 1 is velocities toward 
WNW along the Pacific coast, which is caused by inter-
plate coupling between the subducting Philippine Sea 
and the overriding Amurian plates (e.g., Yoshioka and 
Matsuoka 2013), eastward velocities along the coast-
line of the Japan Sea between ~132.5°E and ~135°E are 
recognized with respect to the reference station. These 
eastward velocities are small in the southern side of the 
NCSZ corresponding to a zone of active shallow micro-
seismicity. Deformation rates across the NCSZ are clari-
fied by projections of velocity profiles. Figure 2a–c shows 
velocity profiles along sections A–A′, B–B′, and C–C′ 
across the NCSZ shown in Fig.  1, respectively. Veloc-
ity components shown in Fig.  2a–c are N80°E, N65°E, 
and N45°E components perpendicular to the sections, 
respectively. Along section A–A′ (Fig.  2a), distinctive 
velocity gradient in a distance of ≤−100  km is mainly 

attributed to elastic deformation due to interplate cou-
pling along the Nankai Trough. Velocities between −100 
and −30  km are almost constant, which means lower 
deformation rates between the Seto Inland Sea and Chu-
goku Mountains. We identify steep velocity gradient 
around a distance of 0 km. The velocities there shift from 
~1 to ~4 mm/year with a transition width of ~50 km. No 
significant difference of velocities between the coastline 
of Japan Sea (distance ~30 km) and Oki Island (distance 
~90 km). On the other hand, no significant gradients in 
velocities are recognized in a distance between −100 and 
100 km along section C–C′. Along section B–B′, gradient 
is recognized around a distance of 0 km and gentler than 
that along A–A′. Because there are no clear gradients of 
velocity components parallel to the sections around a 
distance of 0 km either, the contemporary deformation is 
concentrated only in an eastern part of the NCSZ. The 
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analysis of strain rates (Nishimura et al., submitted man-
uscript) also suggests that high strain rates are concen-
trated along the NCSZ between 132.7°E and 135.2°E. We 
propose to call this concentrated deformation zone as the 
San-in shear zone (SSZ).

Deformation modeling and discussion
High velocity gradients can be explained by a simple elas-
tic dislocation model. We assume a two-dimensional ver-
tical fault with right-lateral strike slip. The fault is locked 
from surface to a locking depth and creeps below the 
locking depth to infinity. The surface velocity parallel to 
the fault with an elastic half-space is a symmetric pattern 
of arctangent with respect to the fault (Savage and Bur-
ford 1973). The calculated velocities are shown by red and 
blue curves with a creeping rate of 4 and 6 mm/year and a 
locking depth of 16 km (Fig. 2a). The calculated velocities 
roughly reproduce the observed ones around a distance 
of 0  km. Least square fitting for the data at a distance 
between −100 and 100 km suggests 6.4 ±  1.0 mm/year 
and 28 ± 10 km for a creeping rate and a locking depth, 
respectively, but the estimated creeping rate may be an 
upper bound due to ignoring other deformation sources 
including interplate coupling along the Nankai Trough. 
The estimated locking depth is significantly deeper than 
a cutoff depth of crustal seismicity (~10 km) (Omuralieva 
et al. 2012), but it must be affected by ignoring variations 
of the locking depth and fault geometry along the SSZ. 
Although it is difficult to resolve these problems from 
the limited sparse GNSS data, a comparison between the 
observed and calculated velocities suggests the right-lat-
eral strike movements beneath a locking depth at a rate 
of ~5 mm/year along the SSZ.

Another possibility to cause strain rate concentration 
in the SSZ is postseismic deformation of recent large 
earthquakes including the 1927 MJMA7.3 Tango, the 1943 
MJMA7.2 Tottori, and the 2000 MJMA7.3 western Tottori 
earthquake. Viscoelastic relaxation of a large earthquake 
generally continues for more than several decades. We 
use a layered viscoelastic half-space model (Wang et  al. 
2006) to calculate postseismic deformation due to vis-
coelastic relaxation with varying Maxwell viscosities 
of upper mantle and lower crust. If viscosities of upper 
mantle and lower crust are, respectively, assumed to be 
5 ×  1018 and 5 ×  1019  Pa  s which are estimated from 
postseismic deformation of the 1927 Tango earthquake 
(Tabei 1989), surface velocity in 2005 is less than 1.3 mm/
year. If we assume viscoelastic lower crust is an order 
of  1019  Pa  s, the strain rate concentration near the SSZ 
can be reproduced qualitatively. However, the viscoelas-
tic model cannot reproduce observed eastward velocity 
in an area a 1000  km north of the SSZ because a scale 
of deformation due to calculated viscoelastic relaxation 

is less than a few 100  km. The observed velocity in the 
remote area including Korean Peninsula and the China 
continent is eastward and similar to that on Oki Island 
(Nishimura et  al. submitted manuscript), which can be 
regarded as a rigid block motion north of the SSA. We, 
therefore, conclude that postseismic deformation is not a 
main cause of ongoing deformation in the SSZ.

The apparent concentration of strain rates along the 
SSZ makes us to question why previous GNSS studies did 
not notice the SSZ. Loveless and Meade (2010) examined 
velocities around the NCSZ and found no significant 
deformation. We suggest two possibilities for apparent 
difference. First, concentration of strain rates is observed 
only in the SSZ, not all over the NCSZ. Second, distribu-
tion of GNSS stations before 2002 is not enough to detect 
concentration of strain rates in the SSZ. We plot veloc-
ity profiles along sections A–A′, B–B′, and C–C′ during 
July 1997–June 2000 (Fig. 2b, d, f ). A velocity gradient is 
unclear at a distance of 0 km along sections A–A′ because 
few stations locate north of the SSZ (Fig. 2b). After 2002, 
several new stations have been installed and some sta-
tions showing local deformation have been replaced 
around the SSZ. Therefore, it is clear in the velocity pro-
file after 2005 (Fig.  2a). Because of no velocity change 
on Oki Island (around a distance of 90 km in Fig. 2a, b), 
the apparent temporal change of the velocity profile is 
probably caused by artificial redistribution of the GNSS 
network.

The SSZ is generally oriented in an azimuth of N70–
80°E along the coastline, and the observed velocities are 
well explained by right-lateral strike slip movements of 
the SSZ as explained in the previous section. However, 
each cluster of microseismicity within the SSZ is oriented 
in NNW–SSE (Fig.  3) and finite fault models for recent 
large earthquakes (cf. Nishida 1990; Sagiya et  al. 2002) 
also suggest left-lateral strike slip on faults whose strike is 
NNW–SSE, except for the 1943 Tottori earthquake (Kan-
amori 1972) whose strike is N80°E with right-lateral strike 
slip. We propose that the NNW–SSE faulting is con-
jugate Riedel shears in a shear zone (Fig.  3). Numerous 
cracks and structures in addition to principal displace-
ment shears develop in a shear zone with a scale from a 
shear experiment in laboratory to surface rupture in field 
(cf. Tchalenko 1970). The formation of Riedel shears and 
conjugate Riedel shears is explained by fracture planes 
under maximum compressional stress in the shear zone 
with the Mohr–Coulomb failure criterion. The maximum 
compressional stress estimated from focal mechanisms 
of earthquakes in the San-in shear zone (Kawanishi et al. 
2009) lies with an angle of ~45° with respect to the ori-
entation of the shear zone (Fig.  3). Conjugate Riedel 
shears develop at an early stage of the shear zone forma-
tion according to the laboratory experiments (Tchalenko 
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1970). There are no single active faults regarded as a prin-
cipal displacement shear but young active faults with a 
strike of ENE–WSW or NNW–SSE in the SSZ (Okada 
2002). These manifest that the SSZ is a young and devel-
oping shear zone in a geological time scale.

The SSZ locates along a volcanic front of the subduct-
ing Philippine Sea plate. Low velocity of seismic waves 
in upper mantle beneath the SSZ and a high 3He/4He 
ratio suggest upwelling fluid from the mantle in the SSZ 
(Nakajima and Hasegawa, 2007; Sano and Nakajima 
2008). These observations suggest that the fluid weaken 
the lower crust (i.e., Iio et  al. 2002). High temperature 
induced from high heat flow (Tanaka et  al. 2004) and 
the shallow cutoff depth of seismicity (Omuralieva et al. 
2012) also contribute to weaken the lower crust in the 
SSZ. Oblique subduction of the Philippine Sea can drive 
the aseismic faulting or ductile flow in the weakened 
lower crust examined by Kawanishi et al. (2009) and this 
study. We propose that the SSZ is a shear zone for strain 
partitioning within the continental plate and accom-
modates a part of relative motion between the subduct-
ing Philippine Sea and the overriding continental plates, 
as suggested by previous studies (Tsukuda 1992; Guts-
cher and Lallemand 1999; Gutscher 2001). Although the 
concentration zone of strain rates observed by GNSS 
is limited between 132.7°E and 135.2°E, similar move-
ments probably extend to east and west. Because we do 
not identify the concentrated deformation in eastern 
and western extensions on land, we speculate that right-
lateral strike slip movements are more diffusive in the 
extensions and are accommodated mainly in an offshore 
region.

We constructed 13 continuous GNSS stations across 
the SSZ to clarify a detailed deformation in and around 
the SSZ in 2014 as denoted by blue circles in Fig. 3. These 
stations observed near field co- and postseismic displace-
ment of the MJMA 6.6 central Tottori earthquake occurred 
in October 21, 2016. A further analysis including these 
data on the SSZ will be presented in near future.

Conclusions
We analyzed GNSS data in southwest Japan and found a 
concentrated deformation zone along the coastline of the 
Japan Sea between 132.5°E and 135°E. This zone is a part 
of the Northern Chugoku Shear Zone based on a seis-
mological and geological study (Gutscher and Lallemand 
1999). This study has first identified the concentrated 
shear zone in the San-in area geodetically, and we propose 
to call the concentrated deformation zone the San-in shear 
zone (SSZ), which accommodates a right-lateral strike slip 
movement with a width of ~50 km. A simple dislocation 
model of vertical dextral fault with a shallow locking and 
a deep creeping of ~5 mm/year reproduces the observed 
velocity pattern across the SSZ. Although the SSZ is char-
acterized by active shallow microseismicity, each clus-
ter of microseismicity and faults ruptured by recent large 
earthquakes are almost oriented in NNW–SSE which is 
oblique to the overall trend of the SSZ. We propose the 
oblique seismicity is attributed to conjugate Riedel shears 
in a young developing shear zone. From the view point of 
regional tectonics, it is proposed that the SSZ is a shear 
zone for strain partitioning within the southern margin of 
the continental Amurian plate and accommodates a part 
of relative motion of the subducting Philippine Sea plate.
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