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An investigation into the remote 
triggering of the Oita earthquake by the 2016 
Mw 7.0 Kumamoto earthquake using full 
wavefield simulation
Masatoshi Miyazawa* 

Abstract 

High-amplitude seismic waves from the Mw 7.0 Kumamoto earthquake of April 16, 2016, triggered another large 
earthquake 80 km to the NE roughly 30 s later. The source was located at shallow depths beneath the Yufuin geother-
mal field, Oita Prefecture, Japan, and the event magnitude was approximately 5.9. To date, this is one of the clearest 
known examples of a remotely triggered large earthquake. The triggered Oita event was followed by significant 
seismicity, which was distinct from the aftershocks of the Kumamoto earthquake. The Coulomb failure stress change 
around the hypocenter, calculated for the passing waves of the Kumamoto earthquake by full wavefield simulation, 
was about 0.7 MPa when the Oita earthquake was triggered, with the static stress change being an order of mag-
nitude smaller. The dynamic stress changes likely played an important role in triggering. A return to low seismicity 
levels 1 month after the triggered earthquake may have important implications for seismic hazard due to dynamic 
triggering.
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Background
Recent seismic observations have revealed that a single 
earthquake sometimes comprises slip on multiple faults. 
The 2009 Mw 8.1 Samoa–Tonga earthquake consisted of 
multiple large events in the outer rise region and on the 
megathrust (Beavan et al. 2010; Lay et al. 2010). The 2011 
Mw 7.1 Araucania earthquake consisted of two events: a 
Mw 6.8 thrust event followed 12 s later by a Mw 6.7 event 
with a normal faulting mechanism and 30 km shallower 
(Hicks and Rietbrock 2015). The 2011 Mw 6.6 Fukushima 
earthquake occurred on two subparallel normal faults, 
where the rupture propagated from one fault to the other 
(Tanaka et  al. 2014). The 2012 M8.6 East Indian Ocean 
earthquake occurred on multiple planes in an orthogo-
nal conjugate fault system (e.g., Yue et al. 2012). The 2012 
Mw 7.3 Sanriku-Oki earthquake occurred in the outer 

rise region, where a shallower Mw 7.2 normal faulting 
event was preceded by an Mw 7.1 reverse faulting earth-
quake about 22  s beforehand (Harada et  al. 2013). The 
slip on the secondary fault in each case seems to result 
from either static triggering processes driven by perma-
nent fault displacements near the source region (Harada 
et  al. 2013), dynamic triggering processes by transient 
stress perturbations due to the passage of large seismic 
waves (Hicks and Rietbrock 2015), or a combination of 
the two processes (Tanaka et  al. 2014). In general, both 
static and dynamic stress transfers play important roles 
in triggering slip on the secondary fault plane when the 
plane is located within one rupture length of the initially 
ruptured fault.

The Mw 7.0 Kumamoto earthquake of April 16, 
2016, was accompanied ~30  s later by an M ~6 earth-
quake in central Oita prefecture, 80  km northeast of 
the hypocenter of the Kumamoto earthquake. Hereaf-
ter, this triggered earthquake is referred to as the “Oita 
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earthquake.” It is well known that in geothermal regions, 
crustal materials are more sensitive to stress perturba-
tions, and earthquakes are more easily triggered (e.g., 
Hill and Prejean 2015). In the case of the 2011 Mw 
9.0 Tohoku-Oki earthquake, a few small earthquakes 
were remotely triggered in this area by passing surface 
waves (Miyazawa 2011; Fukui et  al. 2012). Because the 
Kumamoto and Oita earthquakes were monitored by 
a dense seismic network, they were able to be distin-
guished. A triggered earthquake can be identified from 
observed waveforms near its epicenter (Fig.  1), peak 
ground motion (PGA) distributions (Fig.  2), and seis-
micity (Fig. 3). Figure 1 shows that the onset of the Oita 
earthquake occurred about 34 s after the origin time of 
the Kumamoto earthquake. Figure 2 shows the distribu-
tion of raw three-component PGA values recorded by 

the K-NET and KiK-net strong-motion networks and 
thought to be from the Kumamoto earthquake. The 
PGA values are the maximum amplitudes of the vec-
tor acceleration from the three components for a 100-s 
time window from the origin of the Kumamoto earth-
quake. The map was generated by smoothing these PGA 
values. There are two areas of peak PGA values (Fig. 2a), 
one of which (central Oita prefecture) disappears if the 
PGA values are calculated for the period prior to the 
arrival of waves from the Oita earthquake (Fig.  2b); 
thus, the secondary peak is mainly from the triggered 
earthquake. The magnitude of the Oita earthquake was 
tentatively estimated at 5.7 by the Japan Meteorological 
Agency (JMA), but this value was not well constrained 
because of overlapping waves from the Kumamoto 
earthquake. Earthquakes local to central Oita prefec-
ture following the triggered earthquake are described 
as its aftershocks. Figure 3 shows seismicity for 15 days 
before and 2  months after the Kumamoto and Oita 
earthquakes. The seismicity rate in Oita decreased 
markedly within 1 month, despite the local aftershocks. 
No M ≥ 2.5 earthquakes were observed during the next 
month.  

The correlation between the triggering Kumamoto 
earthquake and the triggered Oita earthquake can 
be demonstrated by an integrated seismicity model 
(Miyazawa 2015), which statistically evaluates the time 
intervals between consecutive earthquakes. We modeled 
the seismicity using 30 shallow (depth ≤  30  km) earth-
quakes with M ≥  5.0 since 1923 in the area of Fig.  3a 
and using the integrated seismicity model (more specifi-
cally, a stationary Poisson model) under the null hypoth-
esis of no seismicity interaction between the Kumamoto 
and Oita earthquakes. The estimated probability that at 
least one earthquake of M ≥ 5.0 occurs prior to the Oita 
earthquake and following the Kumamoto earthquake 
is only 3.3 × 10−5%. This small value can reject the null 
hypothesis and statistically indicates that there may exist 
a causal relationship between the two consecutive events. 
Then, we need to investigate the physical process for this 
remote triggering.

It is noted that this two-earthquake sequence is the 
clearest known example of the remote triggering of a 
large (M > ~6) earthquake during the passage of seismic 
waves, whereas there were other examples reported pre-
viously (e.g., Lin 2012; Miyazawa 2015). The magnitudes 
of earthquakes triggered remotely by the passage of seis-
mic waves are generally small (M < ~4) (e.g., Miyazawa 
et  al. 2005; Miyazawa 2011; Peng et  al. 2010; Yukutake 
et  al. 2013). Thus, studying the Oita earthquake could 
advance our fundamental understanding of the triggering 
processes of large earthquakes.
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Fig. 1  Acceleration waveforms for the Mw 7.0 Kumamoto earth-
quake of April 16, 2016, recorded at K-NET station OIT009 (Yufuin). a 
Raw waveforms. b Waveforms band-pass-filtered between 0.01 and 
0.25 Hz by use of a one-pass operation. NS north–south motion, EW 
east–west motion, and UD vertical motion (up–down). The arrivals 
of P waves from the Kumamoto and triggered earthquakes are indi-
cated by black arrows. The station location is shown in Figs. 2a and 3a
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Location of the triggered Oita earthquake 
and estimation of its mechanism
Because the first arrivals of the Oita earthquake were 
masked by high-amplitude seismic waves, its hypocenter 
has not yet been precisely estimated. Therefore, we begin 
by determining the location and magnitude of the Oita 
earthquake. A hypocenter is obtained using the program 
hypomh (Hirata and Matsu’ura 1987), using seismograms 
from permanent K-NET and KiK-net stations (Fig.  3a) 
and the JMA2001 velocity model (Ueno et  al. 2002). To 
calculate a local magnitude, we use the largest amplitude 
of the envelope of the vertical velocity waveform, exclud-
ing the amplitude immediately before the P arrival to 
avoid overestimation.

The hypocenter of the Oita earthquake was located at 
a depth of 8.5  km beneath the Yufuin geothermal field, 
almost under station OIT009 (Fig. 3; Table 1). The origin 
time of the Oita earthquake was 32.5  s after that of the 
triggering Kumamoto earthquake, and its local magni-
tude was estimated at 5.9. Because the high-amplitude 
waves from the Kumamoto mainshock hinder the accu-
rate picking of P and S arrivals, the location includes 
greater implicit errors than those listed in Table  1. The 
magnitude is obtained using amplitude data from only 
two stations near the hypocenter and therefore also has 
a high uncertainty. The hypocenter and magnitude are 
consistent with those obtained by other studies (e.g., 
Nakamura and Aoi 2016; Uchide et  al. 2016; Yoshida 

2016), where the hypocenters are located within an error 
range of ~1 km using different velocity models, and the 
moment magnitude or local magnitude ranges from 5.6 
to 6.5.

A source model for the Oita earthquake is required to 
resolve temporal stress changes on the fault plane. How-
ever, such a source model is not available because of 
the overlapping waves from the Kumamoto earthquake. 
Even with the recorded displacements and waveforms at 
Yufuin, on the basis of a crude rupture size estimate from 
the magnitude, it is difficult to determine the mechanism 
and magnitude more precisely because the stations that 
clearly recorded the Oita earthquake were located very 
close to the rupture. Therefore, we can neither assume a 
double-couple source nor constrain the free parameters 
of the source fault.

The source mechanism of the largest aftershock of the 
Oita earthquake (M5.4/Mw 5.1, Fig. 3) and the displace-
ments recorded at a global navigation satellite system 
(GNSS) site on the date of the Oita earthquake are help-
ful for this purpose. The centroid moment tensor (CMT) 
solution determined by JMA for the Mw 5.1 aftershock 
has strike, dip, and rake angles of N243°E, 68°, and −148°, 
respectively. We assume that the fault of the Oita earth-
quake strikes WSW–ENE, based on seismicity distribu-
tions and mapped fault segments in central Oita (National 
Institute of Advanced Industrial Science and Technology 
2016). The horizontal and vertical displacements at the 
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Fig. 2  Three-component PGA for the 2016 Kumamoto earthquake. a PGA map for the Kumamoto earthquake and the triggered Oita earthquake. 
b PGA map for the Kumamoto earthquake, excluding the triggered earthquake. PGA values were observed at K-net and KiK-net stations (circles), 
and the map was generated by smoothing these values. White stars represent the epicenters of the Kumamoto earthquake and (in 2a only) the 
triggered earthquake
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Fig. 3  Locations of M ≥ 2.0 earthquakes at depths from 0 to 30 km for 15 days before and 2 months after the April 16, 2016, Mw 7.0 Kumamoto 
earthquake. a Left window shows the JMA CMT for the Kumamoto earthquake, other earthquakes (including foreshocks and aftershocks) from the 
JMA catalog (solid circles), and K-NET and KiK-net stations (diamonds) used to locate the Oita earthquake. The rectangular fault plane model of the 
Kumamoto earthquake by Asano and Iwata (2016) is shown in red. Active volcanoes are shown by blue triangles. The region of Oita prefecture out-
lined by the black square is magnified in the inset. The color scale is shown in (b). b Projections of hypocenters onto two orthogonal vertical planes 
in the right window of a. c Magnitude–time diagram of seismicity. The cumulative earthquake number is shown by a solid line
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GNSS site, which is located 0.5 km from OIT009, show 
4.2 cm easting, 2.5 cm northing, and 5.5 cm subsidence 
on April 16 (UTC+9) (Geospatial Information Author-
ity of Japan 2016). The observed subsidence is mainly due 
to the Oita earthquake. The horizontal displacements are 
also probably due to this earthquake, but might be partly 
due to the Kumamoto earthquake. Taking these observa-
tions into account, we assume that the Oita earthquake 
has strike N240°E, dip 70°, and rake −140°.

Triggering stress changes from the 2016 
Kumamoto earthquake
We estimate the stress change in the Oita earthquake’s 
source region due to the Kumamoto earthquake. Previ-
ous studies of remote triggering have approached this 
problem either by forward techniques with simple lay-
ered models (e.g., Rubinstein et al. 2007; Hill 2012) or by 
inverse approaches using observed waveforms via trans-
port kernels (e.g., Miyazawa and Brodsky 2008; Miyazawa 
2015). However, both of those approaches model sur-
face waves. In the present case, such approaches might 
be inapplicable because it is not clear whether body or 
surface wave phases triggered the Oita earthquake. To 
reproduce the observed waveforms and estimate the 
stress changes at depth, we use SEISM numerical mod-
eling software for elastic wave simulation (e.g., Maeda 
and Furumura 2013; Maeda et  al. 2013), with the Japan 
Integrated Velocity Structure Model (Koketsu et al. 2012) 
for the three-dimensional structure. This approach solves 
the equations of motion in three-dimensional Cartesian 
coordinates with viscoelastic constitutive equations, 
using a finite difference method to fourth order in space 
and second order in time. The spatial grid size is 0.5 km 
in the horizontal and vertical directions, and the time 
step is 0.025  s. For the source model of the Kumamoto 
earthquake, we use the JMA CMT solution (Fig. 3). The 
advantages of the numerical method include (1) time-
dependent changes associated with the far-field and 
near-field terms are simultaneously considered, and (2) 
changes in the stress tensor at depth are directly availa-
ble, even in a heterogeneous three-dimensional structure.

Figure 4 shows recorded and simulated velocity wave-
forms at station OIT009 from the 2016 Kumamoto earth-
quake by using the SEISM program. Note that the times 
of the simulated waves were delayed by 3.0 s to maximize 

the correlation between observed and synthetic data 
before the Oita earthquake. This delay was necessary 
because we assumed a point source for the Kumamoto 
earthquake, whereas the CMT solution was obtained 
from waveforms at periods of 45–200  s, and slip distri-
bution on the fault plane was not taken into considera-
tion. A similar time delay needed to be imposed at other 
nearby stations too. Simulated waveforms are gener-
ally consistent with recorded data for the low-frequency 
components in Fig. 4, though the filtered waveforms are 
strongly influenced by overlapping waves from the Oita 
earthquake, and a point-source approximation is rea-
sonable in the present study. Small higher-frequency 
components cannot be meaningfully simulated, because 
the fine-scale structures and high-frequency source-
time function are not modeled here. The low-amplitude 
vertical component first arrivals seem to show an anti-
phase relationship between observations and simula-
tions, although this is because the station is located at the 
extension of a nodal plane of the Kumamoto earthquake 
(Fig. 3), and the vertical component is considerably sen-
sitive to the strike direction, making it difficult to match 
the sense of the first motion without introducing ad hoc 
constraints to the waveform modeling process.

We then resolve temporal stress changes on the fault 
plane of the Oita earthquake. The source mechanism of 
the Oita earthquake is roughly estimated in the previ-
ous section, but estimates of those fault parameters must 
consider uncertainties, so we calculate the stress changes 
by varying the fault strike from N220°E to N260°E, the 
dip from 60° to 80°, and the rake from −160° to −120°. 
Finally, we estimate the change in the Coulomb failure 
stress at the hypocenter, as given by

where the effective friction  coefficient μ′ is assumed to 
be 0.4 and Δτ and Δσn are the shear stress change in the 
slip direction and the normal stress change on the fault 
plane (negative for compression), respectively. The Lamé 
parameters, λ and μ, are each set to 30 GPa.

The changes in Coulomb failure stress at the hypo-
center of the Oita earthquake, using the assumed mecha-
nism referred to above and the simulated waveform data, 
are shown in Fig.  5a. Changing the hypocenter loca-
tion does not result in significant differences relative to 

(1)�CFF = �τ + µ′�σn,

Table 1  Parameters of the large, triggered Oita earthquake

Values in brackets show location error estimates in km

Origin time Longitude (error) Latitude (error) Depth (error) Magnitude

April 16, 2016 01:25:38.0 (UTC+9) 131.341°E (0.26) 33.2653°N (0.28) 8.47 km (0.42) 5.9
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mechanism errors. The triggering ΔCFF at the origin 
time is about 650 kPa near the waveform peak and var-
ies from 80 to 780 kPa when accounting for uncertainty 
in the mechanism. A source model with a higher value 
of 780 kPa has a steeper dip and a lower rake compared 
with the reference model (i.e., close to a right-lateral 
strike-slip fault), whereas a model with a lower value has 
a mechanism close to normal faulting. The static stress 
change, the ΔCFF value 1000  s after the origin time of 
the Kumamoto earthquake, is 21  kPa and varies from 5 
to 25 kPa when uncertainties in the mechanism are taken 
into account. All of these values are positive to promote 
slip on the fault plane, and all are larger than the expected 
tidal stress change of about 10  kPa. The values of the 
dynamic stress changes are about one order of magnitude 
greater than the corresponding static stress change val-
ues, suggesting that dynamic stress changes likely play an 
important role in triggering.

Figure  5b shows the volumetric strain changes at the 
hypocenter, the values of which are independent of the 
uncertainties in the triggered source mechanism. The 
triggering strain change varies about from 4 ×  10−7 to 
7 ×  10−7, and the corresponding static strain change is 
about 1  ×  10−7. Because the Oita earthquake was not 
triggered by the preceding peak strains, which exceeded 
the strain at the origin time, it is inferred that the volu-
metric strain change was not the only important param-
eter in the triggering process.

Discussion
Assuming that the source of the Oita earthquake is simi-
lar to that in the reference model and that the stress 
changes caused by the Mw 7.0 Kumamoto earthquake 
contributed to the occurrence of the Oita earthquake, 
the following scenario may describe the physical pro-
cess of triggering. Frictional stress transiently increased 
by about 0.7 MPa because of the Kumamoto earthquake, 
about one order of magnitude less than the stress drop of 
a typical earthquake, but enough to exceed the frictional 
strength required to trigger an earthquake on the gener-
ating fault. The large transient stress change required for 
triggering may suggest that the background stress differ-
ence was relatively low. On the other hand, this fault was 
closer to failure than other faults in this region, because 
there were no triggered earthquakes on the other faults. 
Although the relationship between triggering stress and 
triggered event magnitude has been thoroughly investi-
gated only for tectonic tremors (e.g., Miyazawa and Mori 
2006; Miyazawa and Brodsky 2008), there have been 
case studies that suggest earthquakes of M  >  4 can be 
triggered by large transient stress changes. For example, 
the 2011 Mw 9.0 Tohoku-Oki earthquake remotely and 
dynamically triggered M ~4 earthquakes at Hakone vol-
cano, Japan, with triggering stresses of ~100 kPa, a loca-
tion where no earthquake of M > 4.0 had been recorded 
since 1995 (Yukutake et  al. 2011, 2013). In the present 
case, too, large stress changes on the fault are thought to 
have directly triggered the large earthquake. Parsons et al. 
(2012) used simulated wavefields to show that dynamic 
stress changes from surface waves rarely trigger M  >  5 
earthquakes and concluded that there is an inconsist-
ency between target fault rake and imposed stress change 
direction and that the window in which the dynamic 
stress field change favors triggering is temporally short 
and spatially small. In the present case, because the rake 
of the imposed slip matched the rake of the triggered 
fault, and because the resolved triggering stress was suf-
ficiently large, it might have been easy for a rupture to 
propagate in the favorable direction. Stress transfer from 
the Oita earthquake then triggered aftershocks to an 
extent, but seismicity abruptly returned to background 
levels within a month. Since aftershocks are in general 
triggered by stress changes caused by the mainshock, 
this may indicate that the static stress changes caused by 
the Oita earthquake could not have remarkably exceeded 
the triggering threshold with a low background stress 
difference. These observations suggest the following: (1) 
The fault of the Oita earthquake was not originally close 
to failure at the time of the Kumamoto earthquake, but 
the large transient stress changes from the Kumamoto 
earthquake triggered the Oita earthquake and/or (2) the 
apparent quiescence of aftershocks following the Oita 
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Fig. 4  Recorded and simulated waveforms at OIT009. NS north–
south, EW east–west, UD up–down components, respectively. 
Recorded waveforms are in black, simulated waveforms are in red, 
unfiltered data are shown with solid lines, and filtered data (0.05–
0.20 Hz) are shown with broken lines. The time window of the Oita 
earthquake is shaded
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earthquake is temporary, and eventually there will be sig-
nificant seismicity.

Conclusions
This study used a full wavefield simulation to inves-
tigate the triggering process of the M5.9 Oita earth-
quake, which was remotely triggered by passing seismic 
waves from the Mw 7.0 Kumamoto earthquake of April 

16, 2016. At the hypocenter of the Oita earthquake, the 
change in Coulomb failure stress increased by as much as 
0.7 MPa at the origin time and likely played an important 
role in triggering. Taking the scarcity of the aftershocks 
of the Oita earthquake into consideration, the generat-
ing fault might not have been close to failure before the 
Kumamoto earthquake; alternatively, there may eventu-
ally be significant seismicity.
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