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LETTER

The 2016 Kumamoto–Oita earthquake 
sequence: aftershock seismicity gap 
and dynamic triggering in volcanic areas
Takahiko Uchide1*  , Haruo Horikawa1, Misato Nakai1, Reiken Matsushita1, Norio Shigematsu1, Ryosuke Ando2 
and Kazutoshi Imanishi1

Abstract 

The 2016 Kumamoto–Oita earthquake sequence involving three large events (Mw ≥ 6) in the central Kyushu Island, 
southwest Japan, activated seismicities in two volcanic areas with unusual and puzzling spatial gaps after the largest 
earthquake (Mw 7.0) of April 16, 2016. We attempt to reveal the seismic process during the sequence by following seis-
mological data analyses. Our hypocenter relocation result implies that the large events ruptured different faults of a 
complex fault system. A slip inversion analysis of the largest event indicates a large slip in the seismicity gap (Aso gap) 
in the caldera of Mt. Aso, which probably released accumulated stress and resulted in little aftershock production. We 
identified that the largest event dynamically triggered a mid-M6 event at Yufuin (80 km northeast of the epicenter), 
which is consistent with existence of the 20-km long zone where seismicity was activated and surface offset was 
observed. These findings will help us study the contribution of the identified complexity in fault geometries and the 
geotherm in the volcanic areas to the revealed seismic process and consequently improve our understanding of the 
seismo-volcano tectonics.

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Introduction
Tectonic faults often lie near volcanoes (Azzaro 1999; 
Nishigami 1997), and therefore, large inland earthquakes 
sometimes strike volcanic regions (Ando and Okuyama 
2010; Moran et al. 2002). The elucidation of the influence 
of volcanic areas, in addition to the fault geometries and 
other properties, on earthquake generation is essential 
for better understanding of the seismo-volcano tecton-
ics as well as for improvement in the accuracy of natural 
hazard evaluation.

Recently, the 2016 Kumamoto–Oita, southwest Japan, 
earthquake sequence occurred through volcanic areas 
in the central Kyushu Island, across which the Beppu–
Shimabara graben lies oriented from the northeast to 
the southwest (Matsumoto 1979). Along the graben 
large fault systems are present under the north–south 

extensional stress regime, which produces both strike-
slip and normal faulting earthquakes (Matsumoto et  al. 
2015). The fault systems are the Beppu–Haneyama fault 
system in the northeast, the Futagawa fault system in 
the center, and the Hinagu fault system in the southwest 
(Fig.  1). The latter two fault systems are largely north-
westward-dipping dextral strike-slip faults (The Head-
quarters for Earthquake Research Promotion 2002, 2013). 
Additionally, several volcanoes, including Mt. Aso, and 
geothermal areas lie along the Beppu–Shimabara graben.

This earthquake sequence broke out in the Kumamoto 
Prefecture at 21:26 on April 14, 2016 [hereafter all times 
are written using the Japan Standard Time (UTC + 9)] by 
an Mw 6.2 event (hereafter “event α”), which gave rise to 
devastating ground motion, followed by an Mw 6.0 event 
(“event β”) at 0:03 on April 15, 2016, located at a distance 
of only 10  km south from the event α (Fig.  1). An even 
larger and, so far, the largest event (Mw 7.0; “event γ”) 
struck at 1:25 on the 16th near the event α and caused 
further damage through the strong ground-shaking in 
the surrounding area. The hypocenters of all three events 
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were located along the Futagawa and Hinagu fault sys-
tems. Following the event γ, the seismicities in two vol-
canic areas, the northern Aso and Yufuin–Beppu areas, 
became active. In addition, seismicity gaps are also 
observed between the Futagawa fault system and the 
northern Aso area (we refer to this gap as the Aso gap), 
and between the northern Aso and the Yufuin–Beppu 
areas.

This earthquake sequence raises several questions: 
Why were these faults ruptured not by a single large 
earthquake but by three successive ones? What caused 
the seismic gaps? Toward addressing these questions, 
phenomenological understanding of this earthquake 
sequence is essential. This paper presents following seis-
mological observations: the underground fault geometry 
of the Hinagu and Futagawa fault systems inferred from 
distribution of aftershocks refined by an earthquake relo-
cation analysis; the relationship between the Aso gap and 
the rupture process of the largest shock, event γ, inferred 
from a finite fault slip inversion using strong-motion 
data; and a detection and quantification of a dynamic 
triggering event in the Yufuin–Beppu area, Oita prefec-
ture. Based on these observations, we will show a per-
spective to solve the abovementioned questions.

Seismic velocity structure used in seismological 
analyses
At the first step of the following seismological analyses, 
we constructed a one-dimensional underground struc-
ture of seismic velocity and quality factor (Fig. 2; Table 1), 
following the three-dimensional tomography of entire 
Japan (Matsubara et al. 2008) for the seismic velocity at 
depths >5  km and the subsurface structure provided in 
J-SHIS of the National Research Institute for Earth Sci-
ence and Disaster Resilience (NIED) (Fujiwara et al. 2009, 
2012) for seismic velocity at depths <5 km and the quality 
factor. The seismic velocities as a function of depth in the 
tomography of Matsubara et al. (2008) do not vary very 
much in the Kyushu region (Fig. 2); therefore, we expect 
that the one-dimensional model will work well.

Geometries of underground faults in Futagawa 
and Hinagu fault systems
We investigated the geometries of faults over which 
the three large events occurred, based on relocated 
hypocenters in the entire region shown in Fig.  1. The 
relocation was conducted with the hypoDD program 
(Waldhauser and Ellsworth 2000), using 282,999 and 
253,335 arrival time differences for the P- and S-waves, 
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Fig. 1  Spatiotemporal distribution of earthquakes in the 2016 Kumamoto–Oita sequence. a Map showing the hypocenter distributions relocated 
in this study. Circles show the hypocenters of earthquakes between 14 and 21 of April 2016 (local time), colored by event depth. Filled stars denote 
the three major events in this sequence. Gray and black beach balls for these three events show the results obtained using first-motion focal mecha-
nism and the CMT solution by the Global CMT project (Dziewonski et al. 1981, Ekström et al. 2012), respectively. Brown lines denote surface traces of 
active faults (Nakata and Imaizumi 2002). FFS and HFS mark the Futagawa and Hinagu fault systems, respectively. b Time history of the earthquake 
sequence. Red crosses denote earthquakes of magnitude larger than 5 on the Japan Meteorological Agency (JMA) scale. Gray circles indicate other 
smaller earthquakes
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respectively. These arrival times are picked for 2770 
events that occurred between 14 and 21 of April 2016, 
and listed on the Japan Meteorological Agency (JMA) 
Unified Earthquake Catalog.

For calculating double-difference of arrival times, we 
allow that each event have up to 15 neighbors within 
10 km according to the JMA catalog. Each pair must have 
8 or more of travel time difference data from either P- or 
S-arrivals from stations within 100 km from event loca-
tions. We gave half of weights for S-arrival times than 

P-arrival times. Finally, we successfully relocated the 
2370 events, reducing the weighted root-mean-square 
of the residual times from 0.1436 to 0.0510 s (Additional 
file 1: Figure S1).

Figure 3 shows the distribution of the relocated hypo-
centers, suggesting the geometries of the ruptured faults 
with significantly high clarity. The relocated hypocenters 
indicate northwest-dipping faults and two nearly verti-
cal faults in the Futagawa and Hinagu fault systems. To 
clearly show the three-dimensional distribution of the 
hypocenters, this fault configuration is highlighted in 
Additional file 2: Movie S1. The dipping faults correspond 
well to the centroid moment tensor (CMT) solutions of 
the three large events by the Global CMT Project (Dzie-
wonski et al. 1981; Ekström et al. 2012) (Fig. 1a), and the 
Futagawa (A–A′ to C–C′ cross sections in Fig.  3b) and 
Hinagu faults (G–G′ to I–I′ cross sections), although the 
correspondence is not clear in the middle part (D–D′ to 
F–F′).

The result implies that the three major events ruptured 
the fault planes of different geometries. The spatial distri-
butions of small earthquakes before and after the event γ 
are clearly different. The event α was initiated on the ver-
tical fault (E–E′ cross section in Fig. 3b), as also implied 
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Fig. 2  Velocity structure constructed and used in this study. a Structure at shallow depths down to 5 km. Red solid lines and blue dashed lines 
indicate the P- and S-wave velocities, respectively. Pink and light blue dots denote the median of P- and S-wave velocities, respectively, in the Kyushu 
region from the subsurface structure provided in J-SHIS of NIED (Fujiwara et al. 2009, 2012). b Structure at depth down to 90 km. Here, pink and light 
blue dots indicate P- and S-wave velocities, respectively, in the Kyushu region from the three-dimensional tomography of entire Japan (Matsubara 
et al. 2008)

Table 1  One-dimensional seismic velocity and attenuation 
structure

Vp and Vs denote velocities of P- and S-waves, respectively. Qp and Qs are quality 
factors for P- and S-waves, respectively

Depth (km) Vp (km/s) Vs (km/s) Qp Qs

0–1 3.80 2.00 200 200

1–5 5.70 3.20 300 300

5–10 5.85 3.45 300 300

10–20 6.20 3.65 300 300

20–30 6.60 3.80 300 300

30–40 7.20 4.10 400 400

40– 7.80 4.55 500 500
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by the first-motion focal mechanism (Fig.  1a) estimated 
from seismograms of KiK-net (Okada et  al. 2004), the 
HASH code (Hardebeck and Shearer 2002), and the 
velocity structure (Fig. 2; Table 1). The event β was initi-
ated on the steeply dipping fault rather than vertical one, 
and the nucleation of the event γ occurred on another 
vertical fault. Several earthquakes preceded the event γ 
around its hypocenter (E–E′ cross section in Fig. 3b). This 
activity started right after the occurrence of the event α. 

We do not see increase in seismicity rate of this activ-
ity. On the basis of a catalog constructed with a matched 
filter technique, Kato et al. (2016) showed migrations of 
seismicity following the event α, which also propagated 
to the nucleation point of the events β and γ.

Slip distribution of the largest event and Aso Gap
In order to evaluate the influence of the event γ on the 
Aso gap, we performed a slip inversion analysis with the 
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Fig. 3  Relocated seismicity in the Futagawa and Hinagu fault systems and around Mt. Aso. a Map view. Color image indicates the fault slip distribu-
tion of the event γ (Mw 7.0). Circles denote event locations, colored by event depth. The inset shows the fault slip model with its epicenter, indicated 
by the star. The blue line indicates the rim of the caldera of Mt. Aso based on the peak of the topography. b Cross sections of the relocated earth-
quakes at locations (A–A′ to I–I′) indicated in (a). Blue and red circles are for earthquakes before and after, respectively, the event γ at 1:25 on April 16, 
2016 (local time). Gray lines indicate the fault model for the slip inversion analysis. The brown line on the top of each panel corresponds to the surface 
trace of active faults (Nakata and Imaizumi 2002). c Cross section of earthquakes from June 2002 to March 2016 along the X–X′ line with a width 
indicated by an arrow in (a) (data from the JMA earthquake catalog). Black lines are 5th and 95th percentiles of event depths, calculated every 1 km 
of horizontal distance for events in a 2-km wide area. Color indicates event depth
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multi-time window (Hartzell and Heaton 1983) using the 
seismograms from 17 KiK-net borehole stations (Fig. 4a) 
and a previously developed computer code (Uchide and 
Ide 2007). Note that we did not use seismic stations in 
Oita prefecture to avoid possible contamination by a 
dynamically triggered event discussed in “Dynamic trig-
gering in Yufuin–Beppu area” section.

We defined a fault model composed of two planes 
(Fig. 4a; Table 2) corresponding to the Hinagu and Futa-
gawa faults, to fit the relocated hypocentral distribution 
(Fig.  3b). The separation of the two planes in a deeper 
part comes from the limitation of the approximation with 
planes. We determined the fault length based on the dis-
continuities of fringes in the In-SAR image (Geospatial 
Information Authority of Japan 2016). As a whole, the 
fault is 65 km long and 25 km wide.

We express the slip direction between those corre-
sponding to the pure normal faulting and the pure right-
lateral strike-slip faulting by their summation. On the fault 
planes, we placed one-dimensional spline functions (“tri-
angular functions”) every 2.5 km in space and every 2 s in 
time to represent the spatiotemporal distribution of the 
fault slip velocity. The time windows on the faults are open 
for 12 s from the time when a hypothetical rupture front 
with the velocity of 3.0 km/s arrives from the hypocenter.

We inverted the displacement waveforms obtained by 
integrating the original acceleration data twice after the 
removal of the offset and bandpass-filtering between 
0.025 and 0.25  Hz. Moreover, we resampled the data 
every 0.4 s.

We calculated the Green’s functions using the one-
dimensional seismic velocity model (Fig.  2; Table  1) by 
the reflection-transmission matrix method (Kennett and 
Kerry 1979) and wavenumber integral method (Bouchon 
1981) while accounting for anelastic attenuation (Takeo 
1985).

We aligned the data and the Green’s functions by 
S-arrivals to suppress bias of unmodeled lateral variation 
of velocity structure. Actually, we performed the align-
ment from P-arrival of the event γ, and S-P time of a col-
located event (Mj 4.3) that occurred at 4:51 on April 16, 
2016, was measured using Hi-net or KiK-net data at the 
same boreholes. This is because we found it difficult to 
pick the S-arrivals for the event γ due to the overlapping 
P waves,

We inverted the data using the nonnegative least 
square algorithm (Lawson and Hanson 1995) with a spa-
tial smoothing constraint. The intensity was objectively 
set in such a way as to minimize the Akaike’s Bayesian 
Information Criterion (Uchide and Ide 2007; Yabuki and 
Matsu’ura 1992).

The waveform fits by the estimated model (Figs. 3a, 4c, 
d) are shown in Fig. 4b. The variance reduction (ratio of 

the variance of the residual to that of the data) was 71%, 
which is quite reasonable. The estimated model yields a 
seismic moment of 5.1 × 1019 Nm (Mw 7.1) and implies 
that the fault rupture extends below the northern part 
of the Aso caldera, rupturing the shallow portion of the 
Aso gap by the oblique slip with a peak slip of around 
6 m. Few fore- and aftershocks occurred in the large slip 
areas. This result has an overall similarity to a model pro-
posed by Yagi et al. (2016) inferred from teleseismic data. 
The existence of the large slip area penetrating the Aso 
caldera is also supported by the field observation of the 
surface rupture (Shirahama et  al. 2016) and the InSAR 
analysis (Geospatial Information Authority of Japan 
2016).

Dynamic triggering in Yufuin–Beppu area
In the Yufuin–Beppu area, we investigated the beginning 
of seismicity by a visual inspection of seismic waveforms 
from the event γ observed in this area and identified an 
earthquake in the wave trains from the event γ (Fig. 5b) 
and located its hypocenter using manually picked P- and 
S-wave arrival times and the hypomh code (Hirata and 
Matsu’ura 1987). When picking the arrival times, we 
applied a high-pass filter at 16 Hz to the original seismo-
grams in order to emphasize the local event, because the 
amplitudes in seismic waves from the event γ at higher 
frequencies are reduced due to the anelastic attenuation 
effect. The estimated hypocenter is located at 33.266N, 
131.340E at a depth of around 5 km with 0.5 and 1.1 km 
of the horizontal and vertical location errors, respec-
tively, beneath the Yufuin area at the western edge of 
the activated seismic area (Fig. 5a). This event occurred 
32.6 s after the onset of the event γ and surely after the 
termination of the event γ, the source duration of which 
is shorter than 30 s (Fig. 4c). Around the origin time of 
the identified event, large low-frequency waves (S wave 
or Rayleigh wave according to the travel time) were 
observed at OIT009, the closest station to the hypo-
center of the identified event (Fig. 5d), which implies the 
dynamic triggering, as often done by large earthquakes 
(Anderson et al. 1994), especially in volcanic areas (Brod-
sky et  al. 2000; Gomberg et  al. 2001; Hill and Prejean 
2007; Kilb et al. 2000; Yukutake et al. 2012). Note that the 
peak ground acceleration at OIT009 was brought by the 
triggered event, not the event γ.

The magnitude estimation of the triggered event is chal-
lenging due to the overlapping seismic waves from the 
event γ, especially at low frequencies. JMA preliminarily 
reported the JMA magnitude of 5.7 using velocity seis-
mograms from two stations. Here, we attempt to estimate 
the moment magnitude of the triggered event based on 
the amplitude ratios between the triggered event and the 
nearby Mw 5.1 event that occurred at 7:11 on April 16, 



Page 6 of 10Uchide et al. Earth, Planets and Space  (2016) 68:180 

a

60 s

b

d

UD NS EW UD NS EW

c

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Slip Velocity [m/s]

E E

FKOH10
KMMH02

OITH08KMMH06

MYZH04

MYZH08
KMMH09

KGSH08

KMMH14

KMMH12

KGSH04

KMMH16
NGSH06

SAGH02
SAGH04

FKOH03

KMMH01

FKOH10

KMMH02

OITH08

KMMH06

MYZH04

MYZH08

KMMH09

KGSH08

KMMH14

KMMH12

KGSH04

KMMH16

NGSH06

SAGH02

SAGH04

FKOH03

KMMH01

0.0 s 2.0 s 4.0 s 6.0 s 8.0 s 10.0 s 12.0 s

14.0 s 16.0 s 18.0 s 20.0 s 22.0 s 24.0 s 26.0 s

0

2

4

6

Slip [m]

0

10

A
lo

ng
 D

ip
 [k

m
]

0 0 0
Along Strike [km]

0 10 20

Fig. 4  Summary of the slip inversion analysis of the event γ. a Map showing the KiK-net stations used in the analysis (open squares). Red star and 
gray rectangles indicate the epicenter and the fault model composed of two planes, respectively. b Comparison of the synthetic waveforms from 
the estimated model (red) to the observed waveforms (black). UD, NS, and EW denote the up–down, north–south, and east–west components, 
respectively. Peak amplitude of observed waveforms is also shown for each component. c Snapshots of the slip velocity distribution history. The 
blue star in the top left panel denotes the epicenter location. d Final slip distribution of the event γ. The blue star indicates the hypocenter location. 
Gray dots denote the hypocenters of the relocated fore- and aftershocks within 5 km from the fault model. Contours are drawn every 2 m of the 
final slip. The slip directions are shown with an arrow whose length is proportional to the slip amount



Page 7 of 10Uchide et al. Earth, Planets and Space  (2016) 68:180 

2016. While the amplitudes are affected during wave prop-
agation, the co-located events were influenced equally; 
hence, the wave propagation effect does not significantly 
bias the amplitude ratio. Here, we focused on high-fre-
quency components, in which the seismic wave from the 
event γ is weak relative to the triggered event due to the 
anelastic attenuation. According to the ω2 model (Aki 
1967), the source spectrum is given by

where f, fc, and Mo are the frequency, corner fre-
quency, and seismic moment, respectively. A self-sim-
ilar scaling law indicates that fc ∝ Mo

−1/3; thus, for f ≫  fc, 
M̃o

(
f
)
≈ Mo

/(
f
/
fc
)2

∝ M
1/ 3
o

/
f 2. This relation sug-

gests that the amplitude ratio corresponds to the cube root 
of the moment ratio. In other words, the moment ratio is 
estimated by the cube of the amplitude ratio. This relation-
ship was also used in the definition of the magnitude by 
Atkinson and Hanks (1995) based on high-frequency level 
of acceleration amplitude spectrum. Atkinson and Hanks 
(1995) constructed a formula of the magnitude, whereas 
we measure the magnitude difference of two events.

The amplitude ratios of the accelerograms high-pass-
filtered at 16 Hz range from 3 to 13 with a median of 5 
(Fig.  5). This inter-station variation in the amplitude 
ratios is due to many factors including the differences in 
source locations and focal mechanisms. Therefore, we 
choose the median value as the high-frequency ampli-
tude ratio of these two events. The moment ratio of the 
triggered event to the Mw 5.1 event is then estimated to 
be 125, implying that the Mw of the triggered event was 
6.5. It should be noted that this estimation is very rough 
because it strongly relies on the validity of the assump-
tion of the ω2 model and the self-similar scaling law. 
Therefore, we conservatively conclude that the triggered 
event was a mid-Mw 6 event.

Discussion and conclusions
First, we have revealed the geometries of the faults rup-
tured by three distinct large earthquakes. The complex 
fault system may have prevented the simultaneous rup-
ture of all these faults (Anderson et al. 2003), and instead, 

(1)M̃o

(
f
)
=

Mo

1+
(
f
/
fc
)2 ,

large earthquakes occurred successively. However, it 
should be noted that complexities in fault geometry do 
not always stop earthquake rupture. For example, in the 
2012 off Sumatra earthquake, multiple strike-slip faults 
were ruptured by a single earthquake (Meng et al. 2012; 
Satriano et al. 2012; Wang et al. 2012; Yue et al. 2012). In 
the Nankai and Tonankai megathrust earthquakes, some 
M8-class events ruptured one of these regions, and some 
events ruptured both regions simultaneously (Ando 
1975). Further investigations are needed to confirm how 
the irregularities of fault geometries contributed the 
earthquake generation.

Next, we have shown that the Aso gap corresponds to 
the large slip area by the largest event (event γ). Owing 
to the small amount of stress remaining for aftershock 
production, it is often observed that fewer aftershocks 
occur in the fault segments with a large slip area (Men-
doza and Hartzell 1988). However, it is quite unusual 
that fewer aftershocks in the Aso gap are observed even 
below the large slip area. While a rigorous discussion on 
the origins of the Aso gap requires further investigation 
of the volcanic structure and resultant fault behaviors, a 
high temperature due to the geotherm of Mt. Aso must 
play an important role. Three-dimensional magnetotel-
luric surveys (Asaue et  al. 2012; Hata et  al. 2016) iden-
tified low electric resistivity in this area. Although the 
interpretation of the low resistivity is still ambiguous, one 
can interpret the low resistivity as indication of high tem-
perature area, because, relatively high geothermal gradi-
ent (40–90 K/km around 1 km of depth) was observed in 
Mt. Aso (Tanaka et al. 2004a, b). Moreover, Curie-point 
depth (Okubo et  al. 1985) in the Aso gap is shallower 
than that in the rupture area of the event γ. The magma 
chamber of Mt. Aso located west of the active crater and 
east of the Aso gap (Sudo and Kong 2001) will contrib-
ute the high temperature in the Aso gap. The fact that 
earthquakes before the Kumamoto earthquake distrib-
ute in the very shallow portion of the Aso gap (Fig.  3c) 
may reflect an effect of the geotherm. These observations 
will be a key to understand the influence of the volcanic 
geotherm on the formation of the Aso gap. Our fault slip 
model further suggests that the seismicity in the north-
ern Aso can be interpreted as usual aftershocks of the 
event γ.

On the dynamic triggering event, we hypothesize 
that the triggered rupture reached Beppu from Yufuin, 
which is supported by the following empirical relation 
and observations: The scaling law for the fault length 
(Wells and Coppersmith 1994) implies a fault length 
of 10–20  km for this mid-Mw 6.0 triggered earthquake; 
the seismicity was activated immediately after the event 
γ (Fig. 1b) in the elongated zone with a length of almost 
20 km; and the In-SAR image from ALOS-2 also indicates 

Table 2  Geometry of the fault model for the slip inversion 
analysis

NE and SW denote the northeastern and southwestern segments, respectively

Strike (deg.) Dip (deg.) Length (km) Width (km)

NE 230 60 42.5 25

SW 205 72 22.5 25
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a surface offset of up to 6 cm for 10 km or longer along 
the surface trace of a pre-existing fault (Geospatial 
Information Authority of Japan 2016). This dynamic 
triggering mechanism produced an apparent gap in seis-
micity between the northern Aso and Yufuin–Beppu 

areas, which is different from the case in the Aso gap 
described above.

The features of the earthquake sequence we revealed 
give rise to new questions. It is important to understand 
the mechanism of the formation of the complex system 
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Fig. 5  Dynamic triggering in the Yufuin–Beppu area. a Map for epicenters and seismic stations. The epicenter of the triggered event identified in 
this study marked by the star. Gray circles show other events, and triangles show the locations of the KiK-net and K-NET seismic stations. The blue line 
indicates the rim of the Aso caldera inferred from the topography. Red dots in the inset map denote epicenters of this earthquake sequence, and 
the dotted box indicates the area of the main map. b Vertical component of acceleration seismograms high-pass-filtered (HPF) at 16 Hz and sorted 
by distance from the hypocenter of the event γ (the bottom is closer). All traces are drawn in red after the arrival of the P-wave from the triggered 
event. At OIT009, the seismic waves from the event γ are invisible due to too strong waves from the triggered event. The maximum absolute value 
for each trace is denoted on the right. c Vertical component of acceleration records high-pass-filtered at 16 Hz from the Mw 5.1 event at 7:11 on 
April 16, 2016, indicated by the cross in (a). Note that different magnification factors attached to each trace are applied for different stations. d 
Accelerograms at the station OIT009 of K-NET, closest to the hypocenter of the triggered event. The vertical, radial, and transverse (with respect to 
the hypocenter of the event γ) components of the raw data, the data bandpass-filtered between 0.025 and 0.25 Hz, and the data high-pass-filtered 
at 16 Hz are plotted
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of the Futagawa and Hinagu faults. The fault slip model 
strongly suggests that large stress accumulation is pos-
sible at shallow depths near the volcanos, where the 
accumulation mechanism remains an open question. 
Furthermore, the formation mechanism of the Aso gap 
is not yet fully elucidated. Here, detailed information on 
the structure of Mt. Aso should advance our understand-
ing. While, in this paper, we discuss the influence of vol-
canic areas on earthquake generation, the effect of this 
earthquake sequence on the volcanic activities should 
also be investigated. These studies will contribute to the 
improvement in the accuracy of the scenarios of potential 
disaster in the seismo-volcano tectonics, which are used 
for evaluating the natural hazards posed by these events.
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