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Rupture process of the 2016 Kumamoto 
earthquake in relation to the thermal structure 
around Aso volcano
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Abstract 

We constructed the rupture process model for the 2016 Kumamoto, Japan, earthquake from broadband teleseismic 
body waveforms (P-waves) by using a novel waveform inversion method that takes into account the uncertainty 
of Green’s function. The estimated source parameters are: seismic moment = 5.1 × 1019 Nm (Mw = 7.1), fault 
length = 40 km, and fault width = 15 km. The mainshock rupture mainly propagated northeastward from the epi-
center, for about 30 km, along an active strike-slip fault. The rupture propagation of the mainshock decelerated and 
terminated near the southwest side of the Aso volcano; the aftershock activity was low around the northeastern edge 
of the major slip area. Our results suggest that the rupture process of the mainshock and the distribution of after-
shocks were influenced by the high-temperature area around the magma chamber of Mt. Aso.
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Introduction
A large and destructive earthquake (MJMA 7.3) occurred 
on April 15, 2016 [Coordinated Universal Time (UTC)], 
in Kumamoto region, Kyushu Island, Japan. The ori-
gin time of the earthquake was April 16, 2016, 01:25 
[Japan Standard Time (JST)], its epicenter was located at 
32.76°N, 130.76°E, and its hypocentral depth was 12 km, 
as determined by the Japan Meteorological Agency 
(JMA). Figure  1a shows the largest foreshock (MJMA 
6.5) occurred on 14 April, the mainshock, and on- and 
off-fault aftershock activity within 3 days after the 2016 
Kumamoto earthquake (epicenters determined by the 
JMA). The aftershock distribution and a focal mechanism 
determined in this study (Fig. 1a) indicate that the 2016 
Kumamoto earthquake occurred along an active strike-
slip fault, known as the Futagawa fault (Fig. 1a; Research 
Group for Active Faults of Japan 1991), which belongs to 
the Oita–Kumamoto Tectonic Line (OKTL; Fig. 1b) (e.g., 

Kamata and Kodama 1994) and is adjacent to the major 
shear zone in Kyushu (Matsumoto et al. 2015).

The geologic structure, which includes the Aso volcano, 
locates in the central part of the OKTL and might have 
contributed to the complex rupture process during fore-
shocks, mainshock, and aftershocks. The source model 
of the mainshock, in particular, may help to understand 
the seismicity evolution during the 2016 Kumamoto 
earthquake sequence in its geologic context. Here, we 
first determine the robust seismic source process of the 
2016 Kumamoto earthquake by applying a novel inver-
sion technique (Yagi and Fukahata 2011a) that takes 
into account the modeling errors due to the uncertainty 
of Green’s function. Then, we discuss the relationship 
between the rupture process of the mainshock, seismic-
ity, and the geologic structure around the Aso volcano. 
Understanding the relationship between seismicity and 
crustal geophysics (e.g., Hauksson 2011), in particular the 
crustal thermal structure (Enescu et al. 2009), may help 
in a better assessment of seismic hazard.

Methods
The spatiotemporal slip-rate distributions of large earth-
quakes have been estimated by waveform inversion since 
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early 1980s (e.g., Hartzell and Heaton 1983). However, the 
results of inversions conducted for the same earthquake are 
often different from one another (e.g., Beresnev 2003). The 
modeling errors originated from the accuracy limitations 
of Green’s function are a major problem in seismic source 
inversion studies and may often bias the inversion result.

To obtain a robust seismic source model for the 2016 
Kumamoto earthquake, we applied the inversion formu-
lation developed by Yagi and Fukahata (2011a) to tel-
eseismic P-waves. This inversion formulation takes into 
account the uncertainty of Green’s function and objec-
tively determines the smoothness of the spatiotempo-
ral slip-rate distribution from observed data, using the 
Akaike’s Bayesian information criterion (e.g., Akaike 
1980). Such features of the inversion formulation enable 
us to estimate the complex and irregular rupture process, 
including the back rupture propagation; the inversion 
formulation has been applied, for example, to the 2006 
Java, Indonesia, tsunami earthquake (Yagi and Fukahata 
2011a), the 2011 Tohoku-oki megathrust earthquake 

(Yagi and Fukahata 2011b), the 2008 Wenchuan, China, 
earthquake (Yagi et  al. 2012), and the 2015 Illapel, 
Chile, earthquake (Okuwaki et al. 2016). Yagi and Fuka-
hata (2011a, b) show that if we neglect the data covari-
ance components, the slip-rate distribution is distorted 
by modeling errors originated from the uncertainty of 
Green’s function.

We have used the vertical component teleseismic 
P-wave data recorded at 27 broadband seismic stations 
(Fig.  2a). In general, we can obtain the robust slip-rate 
distribution of large earthquakes from teleseismic P-wave 
data, which are insensitive to the assumed structure 
(Yagi et al. 2004). We removed the seismograph response 
from the original waveforms to convert them into veloc-
ity waveforms and then re-sampled the waveform data at 
0.3-s intervals. In order to mitigate aliasing and low fre-
quency noise, a 0.001- to 0.56-Hz Butterworth band-pass 
filter was applied before re-sampling. The first arrival of 
P-phase on each original waveform was manually picked 
so that it corresponds to the initial rupture break.
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Fig. 1  Overview of the 2016 Kumamoto earthquake and magnitude of gradient of Bouguer gravity anomaly. a The yellow and white stars indicate 
the mainshock epicenter and the largest foreshock epicenter, respectively, determined by the JMA. Also shown are the focal mechanism and the 
moment-rate function of the mainshock determined in this study and aftershocks occurring in the first 3 days after the mainshock (black dots) 
determined by the JMA. Transparent black lines represent the Hinagu and Futagawa faults (headquarters for Earthquake Research Promotion, http://
www.jishin.go.jp/main/index-e.html; last accessed on April 28, 2016). The red triangles show the active volcanoes. Inset map shows the Kyushu 
region, with a rectangle fringing the study area and the locations of active volcanoes as triangles. Thin lines denote the coastline and the boundaries 
of the prefectures. b The magnitude of horizontal gradient of Bouguer gravity anomaly (reduced for a density of 2.3 g/cm3) (Komazawa 2013). The 
strong horizontal gradient lines crossing Kyushu Island correspond to the Oita–Kumamoto Tectonic Line (OKTL). The blank triangles show the active 
volcanoes. The circular structure located in the center of OKTL is comparable with the Aso caldera. Overlaid blue contours represent the inverted slip 
distribution delimiting 1.14 m slip. Thin lines denote the coastline and the boundaries of the prefectures
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We assumed the rupture occurring on a single fault 
plane of (strike, dip) =  (234°, 64°) and the fault area of 
58  km length and 20  km width. The geographical coor-
dinates of the initial break point are the same as for the 
JMA epicenter. The fault plane was slightly modified 
from that obtained by moment tensor inversion of tel-
eseismic body waves to be consistent with the geom-
etry and location of the Futagawa fault (Headquarters 
for Earthquake Research Promotion, http://www.jishin.
go.jp/main/index‐e.html; last accessed on April 28, 2016). 
For the same reason, the break point depth (i.e., hypo-
central depth) was taken at 9  km. Assumed dip angle 
was shallower than the estimated value of the regional 
seismic network (National Research Institute for Earth 
Science and Disaster Resilience, Japan, http://www.fnet.
bosai.go.jp/top.php?LANG=en; last accessed on June 13, 
2016). We performed inversions using several dip angles 
and found that the center of the maximum slip area was 
stable (Additional file  1: Figure A2). We imposed no 
specific constraints on the rake angles. As the structure 
model near the source, we used CRUST 1.0 (Additional 
file  1: Table A1; Laske et  al. 2013). We adopted a slip-
rate function represented as linear B-splines with a grid 
interval of 0.3  s and having a duration of 15  s on each 
fault patch. The assumed rupture duration was taken as 
18  s. The theoretical Green’s functions of each source 
node were calculated with the method of Kikuchi and 

Kanamori (1991). The maximum rupture front veloc-
ity, which defines the rupture onset time at each spatial 
node, was set to 2.4  km/s. The center of the maximum 
slip area was stable even when we have assumed various 
maximum rupture front velocities (Additional file 1: Fig-
ure A3). We also examined two kinds of initial slip model: 
uniform slip model and vertical striped slip models in the 
same way as Yagi and Fukahata (2011a), and found that 
exactly the same solution was obtained for both of the 
initial slip models.

Results and discussion
The total slip distribution, the moment-rate function, 
and the focal mechanism are given in Fig. 1a. We found 
that the rupture mainly propagated toward northeast 
from the epicenter. The rupture direction is consistent 
with the characteristics of the mainshock waveforms 
(Fig. 2b), which are shorter toward northeast and broader 
toward southwest. The area of large slip, with a maxi-
mum of 5.7 m, is centered about 10 km northeast from 
the epicenter. The effective slip area extends about 40 km 
long and 15 km wide. The average rake angle was −148°, 
which is approximately consistent with the fault motion 
of historical earthquakes estimated by geological surveys 
(Research Group for Active Faults of Japan 1991). The 
total seismic moment was 5.1 ×  1019  Nm (Mw =  7.0), 
which is comparable to the Global Centroid Moment 
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Fig. 2  Station distribution and observed waveforms. a Map showing the locations of teleseismic observation stations (triangles) used for the wave-
form inversion and the epicenter (star) of the 2016 Kumamoto earthquake determined by the JMA. Dotted lines represent the teleseismic distances 
of 30° and 90°. b Normalized traces of displacement waveforms used in this study, sorted by azimuth and aligned by the arrival of the P-phase. One 
side of each trace is shaded with black color. No polarity flip was applied to the trace
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Tensor solution of 4.5 × 1019 Nm (http://www.globalcmt.
org; last accessed on April 28, 2016).

Figure 3 shows the distribution of foreshocks, the spa-
tiotemporal slip rate of the mainshock, and the after-
shocks. The foreshocks started in the northern part of 
an active strike-slip fault, known as the Hinagu fault 
(Fig.  3a), and expanded northeastward and southwest-
ward along the Hinagu fault. The rupture of the main-
shock started near the junction of the Hinagu and the 

Futagawa fault zones. Such a foreshock–mainshock rup-
ture pattern is well known for complex fault zones (e.g., 
King and Nabelek 1985), suggesting that the foreshock 
activity near the junction between the Hinagu and Futa-
gawa faults contributed to the initiation of the mainshock 
rupture.

The slip-rate distribution shows that the rupture propa-
gated to southwest during the first 5 s. At 5 s after the ori-
gin time, the main rupture started to propagate toward 
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Fig. 3  The 2016 Kumamoto earthquake sequence. a Time evolution of foreshock (blue dots) distribution. The left panel shows the first 30 min after 
the MJMA 6.5 foreshock (April 14, 2016, at 12:26 UTC). The center panel shows foreshocks from 30 min after the MJMA 6.5 foreshock to the MJMA 6.4 
foreshock (April 14, 2016, at 15:03 UTC). The right panel shows foreshocks from the MJMA 6.4 foreshock to the mainshock. White, red, and yellow stars 
represent the epicenters for the MJMA 6.5 foreshock, the MJMA 6.4 foreshock, and the mainshock, respectively, determined by the JMA. The transpar-
ent black lines represent the Hinagu and Futagawa fault traces. b Snapshots of the inverted slip rate of the mainshock. The left top time is a time of 
each snapshot from the origin time. The yellow star indicates the epicenter determined by the JMA. c Red dots represent aftershocks occurring in the 
first 3 days after the mainshock as determined by the JMA. The transparent black lines represent the Hinagu and the Futagawa fault traces. Topogra-
phy underlying all the panels of Fig. 3 is derived from NASA’s Shuttle Radar Topography Mission (SRTM; Farr et al. 2007). The blank triangles on all the 
panels of Fig. 3 represent the active volcanoes in the region

http://www.globalcmt.org
http://www.globalcmt.org


Page 5 of 6Yagi et al. Earth, Planets and Space  (2016) 68:118 

northeast. The slip rate started decreasing from 15 s and 
terminated at about 17 s after the initial break. The on-
fault aftershocks occurred along the Futagawa fault zone, 
and the off-fault aftershocks were triggered along the 
OKTL (Figs. 1a, 3c).

To better understand the complex relationship between 
the geologic structure, the rupture process of the main-
shock, and the aftershock activity, we compare in Fig. 4 
the land elevation (Fig. 4a), aftershock density (Fig.  4b), 
and shear stress change along the fault strike (Fig. 4c). We 
calculated the shear stress change corresponding to the 
average slip direction on the assumed fault plane using 
the formulation for a static dislocation in a homogene-
ous half-space (Okada 1992). The maximum stress drop 
was 9.5 MPa (Fig. 4c) near the largest slip area (Fig. 1a). 
On the other hand, we notice a zone of stress increase 
(stress rise values up to 5.6  MPa) immediately north-
east of the large stress drop zone. The aftershock activity 
(Fig. 4b) is highest in the hypocentral region [Fig. 4b: (−5 
to +10 km), along strike], next to the area of large stress 
drop during the mainshock. Note that the enhanced 
aftershock activity here is likely the result of “superposed” 
aftershocks of the mainshock and largest (MJMA 6.5) 
foreshock (Fig.  3a, c). The along-strike aftershock den-
sity decreases gradually toward northeast [0 to −20 km, 
along strike]. The moderate aftershock activity taking 
place at the same along-strike distances [Fig. 4b: (−5 to 
−15 km), along strike] as the maximum shear stress drop 
reflects mainly deeper aftershock activity (i.e., below the 
large slip area, see Figs. 1a, 4c). Further to the northeast, 
there is a quite sudden decrease in the aftershock activ-
ity toward very low levels [Fig.  4b: (−20 to −30  km), 
along strike], followed by an along-strike increase that 
reaches a maximum [Fig.  4b: ~(−40  km), along strike] 
around the northeastern edge of the Aso volcano. Note 
that it is difficult to discuss the relationship between this 
northeastern-most increase in seismicity and the shear 
stress change due to small slip near the northeastern 
edge (Figs. 1a, 4c), since the uncertainty of slip distribu-
tion increases with distance from the hypocenter (Yagi 
and Fukahata 2011a). However, it is clear that the after-
shock activity is low around the rupture deceleration 
area, where the shear stress was increasing due to the 
coseismic slip of the mainshock, and thus, we would have 
expected an increased aftershock activity. In general, 
high-temperature areas promote plastic deformation and 
inhibit dynamic rupture propagation during earthquakes 
(e.g., Scholz 1998). A tomography study conducted in 
the region shows that the low seismic velocity sphere, 
located shallower than 10 km beneath the Aso volcano, 
relates to the existence of a magma chamber (Sudo and 
Kong 2001). The thermal structure model determined by 
magnetic data (Okubo and Shibuya 1993) shows that the 

high temperature (over approximately 500 °C) reached to 
about 3  km beneath the Aso caldera. The high-temper-
ature area around the magma chamber of Mt. Aso may 
have contributed to the termination of the rupture dur-
ing the mainshock and the low aftershock activity around 
the Aso volcano.

Conclusions
We estimated the robust spatiotemporal slip-rate distri-
bution of the 2016 Kumamoto earthquake using the wave-
form inversion of teleseismic P-wave data and examined 
the 2016 Kumamoto earthquake sequence, including the 
foreshock and aftershock activity. The foreshocks started 
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in the northern part of the Hinagu fault, and the rupture 
of the mainshock initiated at the junction between the 
Hinagu and the Futagawa fault zones. The dynamic rup-
ture of the mainshock mainly propagated 30  km north-
eastward from the epicenter, along the Futagawa fault. 
The rupture of the mainshock decelerated and terminated 
near the southwest side of the Aso volcano, and after-
shock activity was low around the northeastern edge of 
the major slip area (where shear stress was increasing due 
to the coseismic slip of the mainshock). The high-temper-
ature area around the magma chamber of Mt. Aso may 
contribute to the termination of the rupture during the 
mainshock and peculiarly low aftershock activity of the 
2016 Kumamoto earthquake, around Mt. Aso.
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