
Hao et al.
International Journal of STEM Education (2023) 10:42
https://doi.org/10.1186/s40594-023-00432-9

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

International Journal of
STEM Education

The effect of embedded structures
on cognitive load for novice learners
during block‑based code comprehension
Xiaoxin Hao1, Zhiyi Xu1, Mingyue Guo1, Yuzheng Hu3 and Fengji Geng1,2*    

Abstract 

Background  Coding has become an integral part of STEM education. However, novice learners face difficulties in
processing codes within embedded structures (also termed nested structures). This study aimed to investigate the
cognitive mechanism underlying the processing of embedded coding structures based on hierarchical complexity
theory, which suggests that more complex hierarchies are involved in embedded versus sequential coding struc-
tures. Hierarchical processing is expected to place a great load on the working memory system to maintain, update,
and manipulate information. We therefore examined the difference in cognitive load induced by embedded versus
sequential structures, and the relations between the difference in cognitive load and working memory capacity.

Results  The results of Experiment 1 did not fully support our hypotheses, possibly due to the unexpected use of
cognitive strategies and the way stimuli were presented. With these factors well controlled, a new paradigm was
designed in Experiment 2. Results indicate that the cognitive load, as measured by the accuracy and response times
of a code comprehension task, was greater in embedded versus sequential conditions. Additionally, the extra cogni-
tive load induced by embedded coding structures was significantly related to working memory capacity.

Conclusions  The findings of these analyses suggest that processing embedded coding structures exerts great
demands on the working memory system to maintain and manipulate hierarchical information. It is therefore impor-
tant to provide scaffolding strategies to help novice learners process codes across different hierarchical levels within
embedded coding structures.

Keywords  Embedded structures, Hierarchical complexity, Cognitive load, Working memory, Novice learners

Introduction
Coding has become an integral part of STEM edu-
cation as it not only supports the development of
technical proficiency (the “T” component), but also

enables the interdisciplinary connections with science,
engineering, and mathematics (Liu & Schunn, 2020;
Tucker-Raymond et al., 2019; Ye et al., 2023). Compu-
tational thinking (CT), primarily facilitated through
coding education, is recognized as a trans-disciplinary
competency that empowers individuals to address
real-life problems and confront challenges within
the STEM domains (Li et al., 2020a, 2020b; Ntemngwa
& Oliver, 2018; So, 2023). Recently, block-based coding
languages (e.g., Scratch) have become increasingly pop-
ular because they allow students to drag and drop code
commands, reducing the burden of dealing with com-
plex syntax involved in text-based programming (Hu
et al., 2021; Weintrop, 2019; Xu et al., 2019). However,

*Correspondence:
Fengji Geng
gengf@zju.edu.cn
1 Department of Curriculum and Learning Sciences, Zhejiang University,
866 Yuhangtang Road, Zijingang Campus, Hangzhou 310058, China
2 Children’s Hospital, Zhejiang University School of Medicine, National
Clinical Research Center for Child Health, Hangzhou 310052, China
3 Department of Psychology and Behavioral Sciences, Zhejiang University,
866 Yuhangtang Road, Zijingang Campus, 310058 Hangzhou, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40594-023-00432-9&domain=pdf
http://orcid.org/0000-0003-2391-0579

Page 2 of 16Hao et al. International Journal of STEM Education (2023) 10:42

novice learners still face many challenges when learn-
ing block-based coding (Qian et al., 2020; Wang et al.,
2021; Wiggins et al., 2021). One such challenge regards
processing nested structures, where one control struc-
ture (e.g., repeat) is placed inside another (Fig. 1). Such
structures are also referred to as embedded structures.
Novice learners generally have greater difficulty in

using nested structures compared to sequential struc-
tures that organize two or more control structures in
a flat form (Fig. 1) (Bers et al., 2019; Kelleher & Hnin,
2019; Mladenović et al., 2018; Yamashita et al., 2016).
To better understand and address this challenge, this
study amis to explore the cognitive mechanism under-
lying the processing of nested coding structures.

Fig. 1  Topological maps of embedded and sequential coding structures

Page 3 of 16Hao et al. International Journal of STEM Education (2023) 10:42 	

Theoretical framework
According to hierarchical complexity theory (Commons,
2007; Commons et al., 1998), nested and sequential con-
trol structures differ in their hierarchical complexity and
horizontal complexity, which can be clearly depicted
using nodes and edges rooted in graph theory (Uddén
et al., 2020; West, 2001). As shown in Fig. 1, there are two
types of nodes. The first type refers to commands (e.g.,
“Transform color”) that explicitly specify operations (rep-
resented by ●), while the second type represents com-
mands (e.g., “Repeat 2 times”) that indicate the number
of times to execute each individual command within a
loop body (represented by ○). Hierarchy is formed when
the latter type of commands are placed at the higher
level to coordinate the former type of commands at the
lower level.

Processing coding structures with multiple hierarchi-
cal levels is expected to generate substantial cognitive
load, which refers to the cognitive demands imposed on
learners’ working memory system (Anmarkrud et al.,
2019; Paas & Van Merriënboer, 1994). Based on previ-
ous studies (Badre & Nee, 2018; O’Reilly & Frank, 2006),
there are three critical cognitive demands associated
with processing hierarchical structures. The first demand
involves rapid encoding of information at the lower lev-
els of a hierarchy (e.g., the commands represented by •
in Fig. 1). The second demand involves robust mainte-
nance of information at the higher levels of a hierarchy
(e.g., commands as represented by ○ in Fig. 1). The third
demand involves selective updating of specific informa-
tion in working memory while simultaneously main-
taining others across different hierarchical levels (Murty
et al., 2011). For example, when executing codes within
nested structures, participants need to selectively update
the number of repetition times for the inner loop while
simultaneously maintaining the repetitions of the outer
loop.

Nested structures possess greater hierarchical com-
plexity than sequential ones when other factors are
well-matched because they organize commands across
more hierarchical levels (Fig. 1). Thus, executing com-
mands in nested structures necessitates more iterative
switches between different hierarchical levels compared
to sequential structures. The execution of these itera-
tive switches engages the working memory system to
maintain and selectively update hierarchical information
(e.g., the repetition times for the inner and outer loops).
In contrast, sequential structures present greater hori-
zontal complexity than nested structures (Fig. 1). While
processing horizontal complexity also consumes working
memory resources, such demand primarily arises from
the rapid encoding of stimuli rather than the mainte-
nance and updating required for processing hierarchical

complexity. Therefore, we aimed to test whether pro-
cessing nested coding structures compared to sequential
structures would result in greater cognitive load due to
the different demands on the working memory system
(Prediction 1). Meanwhile, as there are great individual
variations in working memory capacity (Baddeley, 1992;
Barrett et al., 2004), we also predicted that the amount of
extra cognitive load generated by processing nested ver-
sus sequential coding structures was significantly related
to individual working memory capacity (Prediction 2).

In addition, we further examined the extra cognitive
load induced by greater horizontal complexity in both
nested and sequential conditions. A different number of
code commands were inserted in these two conditions
to manipulate horizontal complexity. Unlike hierarchi-
cal complexity, processing horizontal complexity mainly
poses cognitive demands on rapid encoding. Therefore,
we predicted that increasing the number of inserted
commands would lead to extra cognitive load (Prediction
3). However, such cognitive load would not be associated
with working memory capacity, as measured by tasks
emphasizing the maintenance and selective updating of
stimuli information (Prediction 4). Moreover, the rapid
encoding of more inserted commands may interfere with
information maintenance and updating, especially for
nested conditions. Accordingly, we predicted that the
difference in cognitive load between nested and sequen-
tial conditions would be modulated by the number of
inserted commands (Prediction 5).

In summary, testing the aforementioned predictions
would enhance our understanding of how individuals
process nested structures and provide valuable insights
to guide the teaching and learning of coding. Novice
learners often face challenges in learning nested cod-
ing structures due to the complex hierarchical informa-
tion involved. Processing such hierarchical complexity
is thought to impose significant demands on the work-
ing memory system for information maintenance and
manipulation, thus leading to increased cognitive load.
Hence, effective teaching or learning strategies should be
incorporated into educational practices to support nov-
ice learners in processing the hierarchical information
involved in nested coding structures.

Literature review
Nested structures exist not only in coding, but also in
many other domains, including natural language, artifi-
cial grammar, and music (Hochmann et al., 2008; Koelsch
et al., 2013; Lakretz et al., 2020). Studies in these domains
have widely investigated the cognitive and neural mecha-
nisms involved in the processing of nested structures.
The current study mainly drew on the findings in these
fields to investigate the cognitive mechanism underlying

Page 4 of 16Hao et al. International Journal of STEM Education (2023) 10:42

novices’ comprehension of block-based codes within
nested structures. To be consistent with the research in
other domains, the term “nested structures” is replaced
by the term “embedded structures” below.

Embedded structures in the domain of natural language
In the domain of natural language, many studies have
focused on the difficulty in processing embedded sen-
tences. Behavioral studies have consistently found that
processing sentences in embedded structures (e.g., [The
boy [the girl chased] kicked the ball]) is more difficult
than processing nonembedded sentences (e.g., The boy
kicked the ball on the grass), as evidenced by slower
responses (Holmes et al., 1987) and lower accuracy
(Opitz & Friederici, 2007). Additionally, neurological
studies indicated that the processing of embedded sen-
tences, compared to nonembedded sentences, activated
the left inferior frontal gyrus to a greater extent, suggest-
ing increased cognitive demands (Meyer & Friederici,
2016; Shetreet et al., 2009). Furthermore, cognitive efforts
induced by other factors involved in embedded sentences
have been examined. For example, a neuroimaging study
compared the processing of embedded sentences with
varying dependency distance, which signifies the dis-
tance between the subject noun and its verb in the main
sentence. The results showed that processing embedded
sentences with a long dependency distance (e.g., “Maria
who loved Hans who was good looking kissed Johann”)
enhanced the functional coupling between the left infe-
rior frontal gyrus and other brain regions compared to
embedded sentences with a short dependency distance
(e.g., “Maria who cried kissed Johann and that was yes-
terday night”). This finding suggests that processing long
embedded sentences is so demanding that greater inter-
action is required between different brain regions (Maku-
uchi et al., 2009).

Embedded structures in the domain of grammar learning
In the domain of artificial grammar, the neural mecha-
nism underlying the processing of embedded structures
has been widely explored using two types of symbolic
sequences: nonembedded sequences following the
adjacent dependency rule (AB)n (e.g., A1B1A2B2) and
embedded sequences following the hierarchical depend-
ency rule AnBn (e.g., A1A2B2B1) (Fitch & Hauser, 2004;
Levelt, 2020; Perruchet & Rey, 2005; Poletiek et al., 2021).
For example, an electrophysiology study used auditory
sequences organized according to the AnBn rule to meas-
ure infants’ ability to process embedded structures with
different levels of complexity: 5 versus 7 tones. Each level
included standard sequences conforming to the embed-
ded rule (e.g., A1A2CB2B1) and deviant sequences vio-
lating the embedded rule (e.g., A1A2CB1B2). The results

showed that mismatch responses to deviant tones within
the 7-tone embedded sequences occurred approximately
90 ms later than those within the 5-tone embedded
sequences, indicating that processing embedded struc-
tures with greater complexity recruited more cognitive
resources compared to those with less complexity (Win-
kler et al., 2018).

Embedded structures in the music domain
In the music domain, previous studies have also explored
the cognitive complexity of embedded transposition
chords (Koelsch et al., 2013; Ma et al., 2018). For exam-
ple, an electrophysiology study separately compared the
difference in neural responses of music experts and non-
experts when processing musical chords with and with-
out embedded transposition (Ma et al., 2018). The results
indicated that nonexperts exhibited larger amplitudes of
the early right anterior negativity (ERAN) and the late N5
components when processing embedded chords com-
pared to nonembedded chords, suggesting that the dif-
ficulty in interpreting embedded structures appeared at
both early (i.e., a larger ERAN) and late (i.e., a larger N5)
processing stages. In contrast, experts showed significant
differences between embedded and nonembedded con-
ditions in beta activity, which have been regarded as an
indicator of top-down cognitive effort (Bressler & Rich-
ter, 2015; Wang et al., 2012). These findings suggest dif-
ferences in the processing of embedded musical chords
between experts and nonexperts.

Embedded structures in the programming domain
In the programming domain, the difficulty in process-
ing embedded coding structures has been repeatedly
observed (Asenov et al., 2016; Cetin, 2015; Ginat, 2004;
Kelleher & Hnin, 2019). For example, when process-
ing embedded structures, one common mistake made
by students was that they ignored the embedded rela-
tions between inner and outer repeats but just executed
them separately (Izu et al., 2016; Mladenović et al.,
2018). Another study analyzed the code scripts gener-
ated by novice learners to solve computational problems
(Chao, 2016). The results indicated that novices preferred
sequential over embedded control structures. Once
embedded structures were involved, they debugged the
code scripts more frequently, suggesting more errors and
greater difficulty.

In addition, a study conducted by Cetin (2015) indi-
cated that novice learners experienced different stages
when learning nested loops. In the early stage, students
tend to execute each command within a loop explicitly.
As they advanced to the late stage, students can concep-
tualize all commands within a loop as a single function or
procedure, thereby eliminating the need for step-by-step

Page 5 of 16Hao et al. International Journal of STEM Education (2023) 10:42 	

execution to obtain an output. Furthermore, given the
difficulty in learning embedded coding structures, teach-
ing or learning strategies have been proposed to help
novice learners (Cetin, 2020; Yamashita et al., 2016).
However, these strategies are not yet well grounded in
theory due to the limited understanding of the cogni-
tive mechanism underlying embedded coding structures
processing.

The current study
Based on hierarchical complexity theory (Commons,
2007; Commons et al., 1998) and previous studies in
other domains (e.g., Makuuchi et al., 2009; Winkler et al.,
2018), this study aimed to investigate the cognitive mech-
anism underlying the comprehension of embedded cod-
ing structures among novice learners. Two experiments
were conducted in which participants were required to
perform a code comprehension task that incorporated
both embedded and sequential conditions, each with a
different number of commands inserted. Consistent with
previous studies (Brünken et al., 2010; Paas et al., 2003),
the cognitive load generated in each condition was meas-
ured based on task performance, as indexed by accuracy
and response times. Furthermore, we measured indi-
vidual working memory capacity using a behavioral task
that targets the components of maintenance and updat-
ing. In each experiment, we used these measures to test
the three hypotheses derived from the predictions in the
Theoretical Framework.

H1  Novice learners would exhibit slower responses and
lower accuracy in embedded versus sequential condi-
tions, as well as in the conditions with more versus fewer
inserted commands.

H2  Working memory capacity would be negatively
related to the differences in response times and accuracy
between embedded and sequential conditions, but unre-
lated to the differences in response times and accuracy
caused by the increasing inserted commands.

H3  The differences in response times and accuracy
between embedded and sequential conditions would
be more significant when there were more inserted
commands.

Experiment 1
Method
Participants
Experiment 1 involved a total of 73 participants
(mean age = 21.570 years, SD = 1.930, 49 females) who
were recruited from Zhejiang University, which is a

top-ranked comprehensive university in China (https://​
www.​topun​ivers​ities.​com/​unive​rsity-​ranki​ngs/​world-​
unive​rsity-​ranki​ngs/​2023). Among 71 participants who
reported their coding experience, 31 students had never
learned coding, and the others had more or less cod-
ing learning experience (two students: < 1 month, ten:
1–3 months, eleven: 3–6 months, four: 6–12 months,
ten: > 12 months). Finally, 58 participants were included
in statistical analyses after excluding 15 participants (i.e.,
two students did not report coding experience, ten stu-
dents learned coding longer than 12 months, and three
students failed to pass the practice). The effect of prior
coding experience has been examined in Additional
file 1. All participants signed the informed consent form
before participating in the experiment and were reim-
bursed for their time and travel. This study was approved
by the Research Ethics Committee of Zhejiang University.

Code comprehension task
In this task, we created two experimental conditions
by organizing two repeat blocks in an embedded or
sequential form. Except for this difference, the two con-
ditions were exactly matched in other dimensions (e.g.,
the number of inserted commands and repeat blocks).
As shown in Fig. 2, the sequential structures were com-
posed of two adjacent repeat blocks, with one or two
inserted commands placed outside the repeat blocks.
In contrast, the embedded structures were designed
to nest one repeat block within another, with one or
two commands inserted between the outer and inner
repeats (Fig. 2). Each command (i.e., “Transform color”,
“Transform shape”, or “Number ± 1, 2, 3”) with a size of
2.8 cm × 0.5 cm was displayed to instruct the transforma-
tion in the color (i.e., red, blue, yellow, green, and purple),
shape (i.e., alternation of color parts), or number (i.e.,
1–15) dimension.

Corresponding to the commands within each code
snippet displayed on the left side of a 14-in. screen with
a resolution of 1920 × 1080 pixels, an initial circle and
14–16 transformed circles, each with an area of 4 cm2,
were displayed on the right side of the screen (Fig. 2).
These transformed circles were arranged into 4 rows.
Among them, there were 3 or 4 probing errors, sug-
gesting that the changed dimension (i.e., color, shape
or number) in the new circle was inconsistent with that
instructed by the command. For example, when the com-
mand was “Transform color”, the transformation applied
to the new circle occurred in the number dimension.
The adjacent circles were designed to differ only in one
dimension to avoid obvious errors that could be detected
without processing commands. Additionally, probing
errors were not presented consecutively. Participants

https://www.topuniversities.com/university-rankings/world-university-rankings/2023
https://www.topuniversities.com/university-rankings/world-university-rankings/2023
https://www.topuniversities.com/university-rankings/world-university-rankings/2023

Page 6 of 16Hao et al. International Journal of STEM Education (2023) 10:42

were instructed to identify all probe errors by checking
the boxes underneath the circles.

The task was programmed using E-prime 3.0 software
(https://​www.​eprime.​info/). Overall, the task used a 2
(Structure: sequential versus embedded) × 2 (Inserted
Command: 1 versus 2) experimental design that yielded
4 types of blocks. Each block included 8 trials. The code
snippet in each trial was randomly selected from 16
predesigned code snippets. Participants were asked to
respond as fast and accurately as possible within 50 s.
After executing all commands in a trial, participants just

clicked the “Next” button to proceed to the next trial. The
cognitive load in each condition was quantified by the
average accuracy of all trials and the average response
times of trials with no error.

The experimental procedure for the code comprehen-
sion task consisted of three phases. During the learning
phase, participants watched an instructional video where
the instructor illustrated the execution order of code
commands within different structures and provided an
example to explain the task. Then, participants practiced
the code comprehension task. In total, they practiced

Fig. 2  Code comprehension task in Experiment 1

https://www.eprime.info/

Page 7 of 16Hao et al. International Journal of STEM Education (2023) 10:42 	

8 trials with 2 in each condition. Only when the prac-
tice accuracy was greater than 80% would participants
enter the formal testing. Finally, participants performed
the formal test with short breaks between different
conditions.

Working memory task
We used the n-back task to measure working memory
because this task specifically measures the maintenance
and selective updating of information in mind (Gajew-
ski et al., 2018; Rac-Lubashevsky & Kessler, 2016). In this
task, a series of letters (i.e., A, B, C, D, E, F, G, and H)
were presented one by one on the screen (Braver et al.,
1997). Participants were asked to memorize the letters
and press the space bar when the current letter was the
same as the first one (i.e., n = 0) or the one presented n
trials ago (e.g., n = 3), as shown in Fig. 3. After learning
these rules, participants performed the practice test.
Only when they correctly identified more than 3 out of 6
target letters with no more than 2 nontarget letters inac-
curately responded at each level would they enter the for-
mal test. In the formal test, the 0-back level contained 10
blocks with 11 trials in each block, whereas the 3-back
level contained 10 blocks with 12 trials in each block. The
percentage of targets that needed responses in each block
was 27.2% for the 0-back level and 25% for the 3-back
level. Each trial lasted 2000 ms with a stimulus duration
of 500 ms and an interval between stimuli of 1500 ms.

Individuals’ working memory capacity was indexed by
the difference in discriminability (d-prime) and response
times between 0- and 3-back conditions. For each condi-
tion, d-prime was calculated using the following formula

(Haatveit et al., 2010): d-prime = Z (HIT) − Z (FA). The
HIT refers to the proportion of targets that are correctly
identified, whereas the false alarm (FA) is the proportion
of nontargets that are incorrectly identified as targets.
Additionally, the mean response times of correctly iden-
tified targets were calculated for each condition. Finally,
working memory performance was calculated using the
difference in d-prime (3-back minus 0-back) and mean
response times (0-back minus 3-back), which was sepa-
rately represented as WMdprime and WMrt below. In this
study, greater WMdprime and WMrt indicated better work-
ing memory capacity.

Statistical analyses
To compare the difference in cognitive load between
conditions, a series of linear mixed-effects models were
built with performance in the code comprehension task
(i.e., accuracy or response times) as the dependent vari-
able and with Structure (sequential versus embedded)
and Inserted Command (1 versus 2) as independent vari-
ables. The basic models only contained the main effects
of Structure and Inserted Command. Such basic mod-
els were further compared with the new ones that con-
tained both the main effects and the Structure × Inserted
Command interaction. The new models could be chosen
only if the Akaike’s Information Criterion (AIC) value
decreased more than 2 compared to the basic models. For
all models, the Satterthwaite approximation was adopted
to estimate the degrees of freedom. If there was a signifi-
cant Structure × Inserted Command interaction, further
analyses were conducted to interpret this interaction.

Fig. 3  Illustration of the working memory task

Page 8 of 16Hao et al. International Journal of STEM Education (2023) 10:42

Additionally, to test the relations between working
memory and cognitive load, we constructed separate
models for working memory as indexed by discrimina-
bility (WMdprime) and response times (WMrt) (see the
details about these models in Additional file 5). Spe-
cifically, the basic models contained the main effects of
Structure, Inserted Command, and Working Memory
and the Structure × Inserted Command interaction.
In addition to these variables, the new models further
included the Structure × Working Memory and Inserted
Command × Working Memory interactions. We selected
the basic or new models based on the AIC value men-
tioned above. Further analyses were conducted if there
was any significant interaction involving working mem-
ory. The significance level for results involving working
memory was adjusted to 0.025 to reduce the Type I error
rates.

In the above analyses, the subject factor was included
in all models to test the random intercept effect. If this
effect was not significant, the subject factor was removed,
and the analyses were continued using fixed-effects
models.

Results
Cognitive load in the code comprehension task
For accuracy, we selected the basic model that contained
only the main effects of Structure and Inserted Com-
mand. However, there was no significant difference in
accuracy between embedded and sequential conditions
as well as between conditions with 1- versus 2-inserted
commands (ps > 0.379). For response times, the selected
model included the main effects of Structure and
Inserted Command as well as the Structure × Inserted

Command interaction. The results indicated that both
the main effects and the interaction were significant
(Structure: β = − 2.271, SE = 0.733, t (169) = − 3.100,
p < 0.01; Inserted Command: β = − 3.308, SE = 0.733,
t (169) = − 4.515, p < 0.001; Interaction: β = 3.680,
SE = 1.033, t (169) = 3.561, p < 0.001). Such main effects
suggested that responses were faster in sequential ver-
sus embedded conditions, as well as in conditions with
1- versus 2-inserted commands. Then, we conducted
further analyses to interpret the significant interac-
tion. The results indicated that when there were two
inserted commands, responses were faster in sequential
versus embedded conditions (β = − 2.214, SE = 0.642, t
(56) = − 3.447, p < 0.01), but this difference was reversed
when there was one inserted command (β = 1.421,
SE = 0.711, t (57) = 2.000, p = 0.05). Additionally, when
there were embedded relations between control struc-
tures, the responses were slower in the conditions with
2- versus 1-inserted command (β = − 3.277, SE = 0.920, t
(112) = − 3.562, p < 0.01). In contrast, such condition dif-
ference was not significant when control structures were
organized sequentially (Fig. 4).

Relations between cognitive load and working memory
Since the main effects of Structure and Inserted Com-
mand on accuracy were not significant, response times
were selected to test the relations between cognitive load
and working memory. In addition, the results indicated
that when there was one inserted command, responses
were faster in embedded versus sequential conditions,
which was inconsistent with our hypothesis. Therefore,
we only examined the relations of working memory to
the difference in cognitive load between embedded and

Fig. 4  Behavioral performance in Experiment 1. S1: Sequential/1-Inserted Command; S2: Sequential/2-Inserted Command; E1:
Embedded/1-Inserted Command; E2: Embedded/2-Inserted Command. Error bars represent standard deviation

Page 9 of 16Hao et al. International Journal of STEM Education (2023) 10:42 	

sequential conditions when there were two inserted com-
mands. Accordingly, we compared the basic model that
only included the main effects of Structure and Working
Memory to the new model that included both the main
effects and the Structure × Working Memory interaction.
The new model was then selected, but there were no sig-
nificant results involving working memory (ps > 0.401).

Similarity, only in embedded condition, the differ-
ence in response times between conditions with 1- ver-
sus 2-inserted commands was significant. Therefore, we
examined the relations of working memory to the differ-
ence in cognitive load induced by different numbers of
inserted commands in embedded condition. We com-
pared the basic model that included the main effects of
Inserted Command and Working Memory to the new
model that also included the Inserted Command × Work-
ing Memory interaction. With the new model selected,
we did not find significant results involving working
memory (ps > 0.144).

Interim discussion
Consistent with our hypotheses, the findings indicated
that when there were two commands inserted between
repeat control structures, participants responded slower
in embedded versus sequential conditions, suggesting
greater cognitive load. However, when there was one
inserted command, responses were slower in sequen-
tial versus embedded conditions. The findings might be
associated with the use of cognitive strategies. Specifi-
cally, as reported by participants, when there was only
one inserted command within embedded structure, all
commands in the repeat control block could be easily
memorized as a chunk containing information about the
transformed dimensions and their execution orders. For
example, in embedded condition with 1-inserted com-
mand (Fig. 2), after executing the commands (i.e., “Trans-
form shape”, “Transform color”, and “Number-3”) within
the inner control structure for the first time, the three
commands and related information were memorized,
and their subsequent execution did not require a shift in
attention to the code snippet on the left side of the screen.
In contrast, in sequential condition, the commands con-
tained in the upper and lower repeat blocks were differ-
ent. Therefore, if the chunking strategy was ever used,
participants had to chunk the two repeat blocks sepa-
rately, which might contribute to the longer response
times in sequential than in embedded conditions.

In addition, the using of chunking strategy may be
affected by the number of inserted commands. With
more commands inserted into embedded condition,
greater challenge might be imposed on the working
memory system. Previous studies have indicated that
such a challenge may prevent the use of chunking strategy

or reduce the benefit of using this strategy (Janssen &
Brumby, 2010; Schorr et al., 2003). Accordingly, we spec-
ulated that the effect of the chunking strategy might be
compromised when there were two commands inserted
between control structures in embedded condition. Such
speculation was supported by the results of this study,
which indicated that when there were two inserted com-
mands, the comprehension of embedded structures led
to slower responses than sequential structures.

Furthermore, there was no significant relation between
working memory and the difference in response times
between embedded and sequential conditions. One pos-
sible reason may be that listing all transformed circles
corresponding to the commands on the screen reduced
the cognitive load associated with the mental represen-
tation of embedded relations. For example, in embedded
condition with 2-inserted commands (Fig. 2), the execu-
tion of each external repeat included eight commands
that were exactly represented by two rows of circles.
According to the number of circles that had been pro-
cessed, participants could easily count the times the inner
and outer loops had been repeated. Therefore, we con-
jectured that the organization of circles concretized the
hierarchical representation of embedded relations and
reduced the cognitive cost induced by switching between
inner and outer repeats. Another possible reason for the
absence of a relation between working memory and cog-
nitive load might be related to the use of different colors
to distinguish inner and outer repeat control structures
only in embedded condition. This color difference may
help participants build the representation of hierarchi-
cal relations, which may reduce the cognitive load gener-
ated from processing the code commands in embedded
condition.

To summarize, the design of the code comprehension
task in Experiment 1 might lead to the unexpected use
of cognitive strategies and the decrease in cognitive load
associated with the processing of hierarchical relations in
embedded condition. Therefore, we further conducted
Experiment 2, in which the code comprehension task was
redesigned to exclude the possible impacts of strategy
use and stimuli presentation on cognitive processing (see
details below).

Experiment 2
Method
Participants
A total of 79 college students (mean age = 21.67,
SD = 1.97, 55 female) participated in Experiment 2,
including 29 participants from Experiment 1 and 50
newly recruited participants.The influence of partici-
pant resue have been examined in Additional file 2. All
participants performed the n-back task in Experiment 1

Page 10 of 16Hao et al. International Journal of STEM Education (2023) 10:42

or 2. Additionally, among 75 participants with reported
coding experience, 38 students had never learned coding,
and the others had learning experience shorter than one
year (three students: < 1 month, ten: 1–3 months, eleven:
3–6 months, four: 6–12 months, nine: > 12 months).
Finally, 66 participants were included in the analyses,
with 13 excluded (i.e., four students did not report coding
experience, and nine students learned coding for longer
than 12 months).

Code comprehension task
As discussed above, the design of the code comprehen-
sion task in Experiment 1 might induce confusions that
we did not expect. Therefore, we redesigned the task in
Experiment 2. Consistent with the task in Experiment
1, the code snippet in the new task also assembled two
repeat control blocks in an embedded or sequential man-
ner. We also inserted one or two commands outside the
repeat block in sequential condition and between the
inner and outer repeat blocks in embedded condition
(Fig. 5). Overall, 4 types of code snippets were classified

Fig. 5  Code comprehension task in Experiment 2

Page 11 of 16Hao et al. International Journal of STEM Education (2023) 10:42 	

based on the Structure (sequential versus embedded)
and Inserted Command (1 versus 2). Contrary to the
task in Experiment 1, the new task required participants
to imagine the moving route of a bee on a map based
on their comprehension of code commands. There-
fore, participants need to maintain and update the loca-
tion and direction of the bee in their minds all the time.
Additionally, the embedded and sequential conditions
were matched in the use of colors. These changes in task
design were expected to exclude the possible influence
of strategy use and stimuli presentation, as mentioned in
the “Discussion” section of Experiment 1.

The new code comprehension task was programmed
using Opensesame software (https://​osdoc.​cogsci.​nl/)
with a 2 (Structure: sequential versus embedded) × 2
(Inserted Command: 1 versus 2) experimental design.
Each condition contained 8 trials involving different code
snippets that were randomly selected from 16 prede-
signed code snippets.

The experimental procedure was the same as that in
Experiment 1. On the left side of the screen, a code snip-
pet containing 14 to 16 commands was presented, each
command had a height of 0.5 cm and a width between
1.4 and 1.8 cm. The commands “Move forward”, “Turn
left”, “Turn right”, and “Get nectar” were designed with
reference to the code.org platform (https://​code.​org/)
(Fig. 5). The number of different types of commands was
well-matched (see Additional file 6) across experimen-
tal conditions, and the order of commands was different
between conditions to prevent the learning effect.

The actions instructed by code commands were exe-
cuted on a grid map presented on the right side of the
screen (Fig. 5). The map had 6 × 6 grids, each of which
was 1.6 cm × 1.6 cm in size. A bee and some nectars were
presented on the map. The forward direction of the bee
was always in line with the orientation of its head. In
addition to the nectars in the moving route of the bee,
three or four nectars were placed in the grids outside the
moving route to prevent guessing.

As participants performed the task, the bee stayed in
its initial grid all the time. Participants had to imagine the
moving route of the bee and click on each grid to per-
form the actions as instructed by commands. Specifically,
when the command was “Move forward”, participants
had to click on the grid that the bee would move to; when
the command was “Turn left”, “Turn right”, or “Get nec-
tar”, participants had to click on the current grid again.
The position and time of each click made by participants
were recorded. In each trial, participants were asked to
respond as quickly and accurately as possible within 50 s.

These recordings of clicks were used to calculate accu-
racy. First, we created MATLAB scripts to reconstruct
the moving routes of the bee based on these clicks. Then,

we manually counted the proportion of correct grids that
the bee passed on each route to represent the accuracy of
each trial (see Additional file 4 for examples). Finally, for
each condition, the accuracy was computed as the mean
accuracy of all trials, and the response times were aver-
aged across all trials in which the bee had finally reached
the correct destination. Two raters were trained by an
expert in a group meeting to determine whether cor-
rect destinations had been reached based on the recon-
structed routes. After reaching good reliability for 160
trials (alpha coefficient = 0.972), each rater independently
evaluated the data from half of the participants. Approxi-
mately two weeks later, the raters re-evaluated 480 trials
to calculate the intrarater reliability. The two raters were
consistent with their own ratings according to Cohen’s
kappa: rater 1 = 0.991; rater 2 = 0.997.

Working memory task
Working memory was measured using the same n-back
task as described in Experiment 1.

Statistical analyses
The data analysis approaches were the same as those
used in Experiment 1. In addition, to exlcude the possi-
ble influence of different number of commands between
conditions, we further re-analyzed the data from embed-
ded and sequential conditions with only 1-inserted com-
mand (see Additional file 3).

Results
Cognitive load in the code comprehension task
When accuracy as a measure of cognitive load was
included as the dependent variable, the model that
contained the main effects of Structure and Inserted
Command had the best fit. The results indicated that
the main effect of Inserted Command was significant
(β = 0.056, SE = 0.010, t (188) = 5.442, p < 0.001), suggest-
ing that accuracy was greater in conditions with 1- ver-
sus 2-inserted commands. However, the main effect of
Structure was not significant (β = 0.003, SE = 0.010, t
(186) = 0.316, p = 0.753). For response times, the selected
model included the main effects of Structure and Inserted
Command as well as the Structure × Inserted Command
interaction. The results indicated that the main effects
of both Structure and Inserted Command were signifi-
cant (Structure: β = − 3.735, SE = 0.623, t (181) = − 5.991,
p < 0.001; Inserted Command: β = − 3.379, SE = 0.619, t
(181) = − 5.460, p < 0.001), suggesting that the responses
were faster in sequential versus embedded conditions
as well as in 1- versus 2- inserted commands conditions
(Fig. 6). However, the interaction between Structure
and Inserted Command was not significant (β = 1.081,
SE = 0.867, t (181) = 1.248, p > 0.05), suggesting that

https://osdoc.cogsci.nl/
https://code.org/

Page 12 of 16Hao et al. International Journal of STEM Education (2023) 10:42

the extra cognitive load induced by embedded coding
structures was not affected by the number of inserted
commands.

Relations between cognitive load and working memory
To further examine the relations between cognitive load
and working memory, we selected the response times in
code comprehension task as the dependent variable since
there was no significant difference in accuracy between
embedded and sequential conditions. The best-fitting
models included the main effects of Structure, Inserted
Command, and Working Memory as well as the Struc-
ture × Inserted Command, Working Memory × Structure
and Working Memory × Inserted Command interac-
tions. The results indicated that there were significant
interactions between Structure and Working Memory
(WMdprime: β = − 1.523, SE = 0.444, t (172) = − 3.434,
p < 0.01; WMrt: β = − 1.229, SE = 0.421, t (172) = − 2.916,
p < 0.01).

To interpret these interactions, we tested the relations
between working memory and the difference in response
times between embedded and sequential conditions.
The results indicated that for participants with greater
working memory, responses slowed down less in embed-
ded versus sequential conditions (Fig. 7). In contrast,
there was no significant interaction between Inserted
Command and Working Memory (ps > 0.401), suggest-
ing that working memory was not significantly related to
the change in response times caused by the increase in
inserted commands (Fig. 7).

Interim discussion
Consistent with our hypotheses, the results indicated that
responses were slower in embedded versus sequential

conditions, suggesting that the cognitive load was greater
in the former than the latter when these two conditions
were well-matched in other dimensions. Such condi-
tion difference in cognitive load may be caused by the
greater hierarchical complexity involved in embedded
structures compared to sequential structures. Addition-
ally, as we expected, the extra cognitive load generated by
processing embedded structures was negatively related
to individual working memory capacity, indicating that
the amount of cognitive load induced by embedded cod-
ing structures varies significantly across individuals with
different working memory capacities. In contrast, there
was no significant relation between working memory and
cognitive load induced by more inserted commands.

Therefore, although both embedded structures and
the increase in inserted commands induced extra cogni-
tive load, there are differences in the cognitive mecha-
nisms underlying the processing of these two types of
information. As the maintenance and manipulation of
information within hierarchical structures relies upon
the working memory system (Glahn et al., 2000; Stuk-
ken et al., 2016), we infer that processing embedded
structures involves greater participation of the working
memory system to maintain and update the hierarchical
information in mind.

Additionally, inconsistent with our prediction, the
results suggested that the difference in cognitive load
between embedded and sequential conditions was not
affected by the number of inserted commands. One pos-
sible reason might be that the change in inserted com-
mands from one to two was too small to influence the
processing of hierarchical relations in embedded condi-
tion. This speculation needs to be further tested by creat-
ing conditions with more commands inserted.

Fig. 6  Behavioral performance in Experiment 2. S1: Sequential/1-Inserted Command; S2: Sequential/2-Inserted Command; E1:
Embedded/1-Inserted Command; E2: Embedded/2-Inserted Command. Error bars represent standard deviation

Page 13 of 16Hao et al. International Journal of STEM Education (2023) 10:42 	

General discussion
The difficulty in processing embedded coding structures
has been repeatedly observed in the coding learning of
novice learners. Based on hierarchical complexity theory,
we predicted that such difficulty is related to the complex
hierarchies involved in embedded coding structures. To
test such hypotheses, we developed a well-controlled
experimental paradigm to measure and compare the dif-
ference in cognitive load generated from processing the
codes within embedded and sequential structures. As
these two conditions were well-matched in all dimen-
sions except hierarchical complexity, the greater cogni-
tive load in embedded versus sequential conditions can
be attributed to the difficulty in processing complex hier-
archical information.

In addition, the extra cognitive load induced by embed-
ded structures was significantly related to working mem-
ory capacity, supporting the hypotheses that processing
embedded structures may exert great demands on the
working memory system. In other words, individuals
with different working memory capacities vary in the
ability to process embedded coding structures. These
findings suggest that the difficulty in processing embed-
ded coding structures for novice learners may arise
from the maintenance and manipulation of complex

hierarchical information, which imposes a great burden
on the working memory system. Understanding such
cognitive mechanisms provides important educational
implications for helping novices learn and use embedded
coding structures.

First, to reduce the cognitive load induced by complex
hierarchies involved in embedded coding structures,
well-designed cognitive strategies or scaffolds should
be used to support the processing of embedded coding
structures. For example, providing reminders during the
transition between inner and outer control structures
can reduce the cognitive demands on maintaining and
manipulating hierarchical information in mind. In addi-
tion, as discussed in Experiment 1, using chunking strate-
gies in certain situations can reduce the cognitive efforts
required to process complex hierarchical structures.

Second, it is important to integrate strategies in appro-
priate ways at different learning stages. For example,
teaching strategies can be incorporated to help novice
learners with the hierarchical processing of embedded
structures. Specifically, teachers can use a visual display,
such as Fig. 1, to show novice learners the hierarchical
relations involved in embedded coding structures and
help students track the execution of code commands.
However, visualization strategies should also be gradually

Fig. 7  Relations of working memory to the difference in cognitive load across different conditions. WMdprime and WMrt separately refer to working
memory capacity as indexed by d-prime and response times

Page 14 of 16Hao et al. International Journal of STEM Education (2023) 10:42

reduced or cancelled to foster the development of stu-
dents’ ability to process hierarchical information. In addi-
tion, this study found that the cognitive load induced by
embedded structures was significantly related to individ-
ual working memory capacity, which varied substantially
across individuals (e.g., Jarrold & Towse, 2006; Luck &
Vogel, 2013). Therefore, it is important to consider indi-
vidual differences when teaching novices to learn embed-
ded coding structures.

Third, hierarchical decomposition and organization
can be used to help students create embedded coding
structures. CT emphasizes developing students’ ability
to use coding concepts (e.g., embedded structures) and
skills to solve problems. However, students often strug-
gle with identifying which code commands should be
placed within the inner or outer control structures when
creating embedded structures to solve problems (e.g.,
Mladenović et al., 2018). To address this challenge, it is
essential to educate students on breaking down complex
problems into smaller subproblems and organizing them
hierarchically. This approach enables the effective repre-
sentation of code commands at different hierarchical lev-
els within embedded coding structures.

Strengths and limitations
This study has limitations. First, the differences in some
visual properties, such as visual length and color use,
between embedded and sequential conditions as well as
between different types of code commands may inter-
fere with the findings of this study. Future studies can use
other techniques or control experiments to test whether
or how these properties influence the findings. Addition-
ally, the code comprehension task used in Experiment 2
was designed to have good ecological validity, but such a
design may prevent us from carrying out command-level
analyses to explore whether processing embedded cod-
ing structures is generally more challenging compared
to sequential structures or if the challenge is specific to
certain commands. Future studies can use alternative
research techniques (e.g., neuroimaging methods) to
explore the cognitive load associated with each command
within embedded structures. Moreover, this study only
included adults with few coding experience. Recently,
wide attention has been given to coding education for
children and adolescents (e.g., Angeli & Giannakos, 2020;
Lye & Koh, 2014), whose ability to maintain and update
information in working memory was significantly lower
than that of adults (Jarrold & Towse, 2006; Kharitonova
et al., 2015). Therefore, future studies should examine
whether there are age differences in the processing of
embedded coding structures. Despite these limitations,
this study also has strengths. Specifically, to our knowl-
edge, this is the first study to quantify the difficulty in

processing embedded coding structures through the
measurement of cognitive load induced by hierarchical
complexity and to examine its relation with individual
working memory capacity.

Conclusion
To conclude, this study designed a well-controlled exper-
imental paradigm to measure the cognitive load induced
by the comprehension of block-based codes within
embedded versus sequential structures. The results
showed that novice learners generated greater cognitive
load when processing embedded structures compared to
sequential structures. In addition, although the increase
in inserted commands also induced additional cognitive
load, only the extra cognitive load induced by embed-
ded coding structures was significantly related to indi-
vidual working memory capacity. These findings suggest
that processing codes within embedded structures exerts
great demands on the working memory system to main-
tain and manipulate hierarchical information. This cog-
nitive mechanism can be applied to guide the design of
instructional strategies in coding education and inspire
its integration with educational practices in other STEM
fields.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40594-​023-​00432-9.

Additional file 1. Testing whether prior coding experiences affected
behavioral performance.

Additional file 2. Testing whether reusing participants affected the
results of Experiment 2.

Additional file 3. Re-analyzing data from conditions with 1 inserted com-
mand in Experiment 2.

Additional file 4. Rating examples from Experiment 2.

Additional file 5. The AIC values for all basic and comparison models.

Additional file 6. Number of each command type within 16 pre-
designed code snippets in each condition.

Acknowledgements
We thank all participants for their contributions.

Author contributions
XH and FG were major contributors in study design and administration, data
analyses, and manuscript preparation. ZX and MG contributed to data collec-
tion and analyses. YH was a major contributor in data analyses and writing. All
authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of
China (General Program: 62077042; 81971245), Fundamental Research Funds
for the Central Universities, the MOE (Ministry of Education in China) Project
of Humanities and Social Sciences (20YJA190002), and Zhejiang University
Education Foundation Global Partnership Fund.

https://doi.org/10.1186/s40594-023-00432-9
https://doi.org/10.1186/s40594-023-00432-9

Page 15 of 16Hao et al. International Journal of STEM Education (2023) 10:42 	

Availability of data and materials
The dataset used and/or analyzed during the current study is available from
the corresponding author on reasonable request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 2 May 2022 Accepted: 24 May 2023

References
Angeli, C., & Giannakos, M. (2020). Computational thinking education: Issues

and challenges. Computers in Human Behavior, 105, 106185. https://​doi.​
org/​10.​1016/j.​chb.​2019.​106185

Anmarkrud, Ø., Andresen, A., & Bråten, I. (2019). Cognitive load and working
memory in multimedia learning: Conceptual and measurement issues.
Educational Psychologist, 54(2), 61–83. https://​doi.​org/​10.​1080/​00461​520.​
2018.​15544​84

Asenov, D., Hilliges, O., & Müller, P. (2016). The effect of richer visualizations on
code comprehension. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (pp. 5040–5045). https://​doi.​org/​10.​1145/​
28580​36.​28583​72

Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559. https://​doi.​
org/​10.​1126/​scien​ce.​17363​59

Badre, D., & Nee, D. E. (2018). Frontal cortex and the hierarchical control of
behavior. Trends in Cognitive Sciences, 22(2), 170–188. https://​doi.​org/​10.​
1016/j.​tics.​2017.​11.​005

Barrett, L. F., Tugade, M. M., & Engle, R. W. (2004). Individual differences in work-
ing memory capacity and dual-process theories of the mind. Psychologi-
cal Bulletin, 130(4), 553. https://​doi.​org/​10.​1037/​0033-​2909.​130.4.​553

Bers, M. U., González-González, C., & Armas-Torres, M. B. (2019). Coding as a
playground: Promoting positive learning experiences in childhood class-
rooms. Computers & Education, 138, 130–145. https://​doi.​org/​10.​1016/j.​
compe​du.​2019.​04.​013

Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C.
(1997). A parametric study of prefrontal cortex involvement in human
working memory. NeuroImage, 5(1), 49–62. https://​doi.​org/​10.​1006/​nimg.​
1996.​0247

Bressler, S. L., & Richter, C. G. (2015). Interareal oscillatory synchronization in
top-down neocortical processing. Current Opinion in Neurobiology, 31,
62–66. https://​doi.​org/​10.​1016/j.​conb.​2014.​08.​010

Brünken, R., Seufert, T., & Paas, F. (2010). Measuring cognitive load. Cognitive
Load Theory, 181–202. https://​doi.​org/​10.​1017/​cbo97​80511​844744.​011

Cetin, I. (2015). Students’ understanding of loops and nested loops in com-
puter programming: An APOS theory perspective. Canadian Journal of
Science, Mathematics and Technology Education, 15, 155–170. https://​doi.​
org/​10.​1080/​14926​156.​2015.​10140​75

Cetin, I. (2020). Teaching loops concept through visualization construction.
Informatics in Education an International Journal, 19(4), 589–609. https://​
doi.​org/​10.​15388/​infedu.​2020.​26

Chao, P. Y. (2016). Exploring students’ computational practice, design and
performance of problem-solving through a visual programming environ-
ment. Computers & Education, 95, 202–215. https://​doi.​org/​10.​1016/j.​
compe​du.​2016.​01.​010

Commons, M. L. (2007). Introduction to the model of hierarchical complexity.
Behavioral Development Bulletin, 13(1), 1. https://​doi.​org/​10.​1037/​h0100​
493

Commons, M. L., Trudeau, E. J., Stein, S. A., Richards, F. A., & Krause, S. R. (1998).
Hierarchical complexity of tasks shows the existence of developmental
stages. Developmental Review, 18(3), 237–278. https://​doi.​org/​10.​1006/​
drev.​1998.​0467

Fitch, W. T., & Hauser, D. M. (2004). Computational constraints on syntactic
processing in a nonhuman primate. Science, 303(5656), 377–380. https://​
doi.​org/​10.​1126/​scien​ce.​108940

Gajewski, P. D., Hanisch, E., Falkenstein, M., Thönes, S., & Wascher, E. (2018).
What does the n-Back task measure as we get older? Relations between
working-memory measures and other cognitive functions across the
lifespan. Frontiers in Psychology, 9, 2208. https://​doi.​org/​10.​3389/​fpsyg.​
2018.​02208

Ginat, D. (2004). On novice loop boundaries and range conceptions. Computer
Science Education, 14(3), 165–181. https://​doi.​org/​10.​1080/​08993​40042​
00030​2709

Glahn, D. C., Cannon, T. D., Gur, R. E., Ragland, J. D., & Gur, R. C. (2000). Working
memory constrains abstraction in schizophrenia. Biological Psychiatry,
47(1), 34–42. https://​doi.​org/​10.​1016/​S0006-​3223(99)​00187-0

Haatveit, B. C., Sundet, K., Hugdahl, K., Ueland, T., Melle, I., & Andreassen, O. A.
(2010). The validity of d prime as a working memory index: Results from
the “Bergen n-back task.” Journal of Clinical and Experimental Neuropsychol-
ogy, 32(8), 871–880. https://​doi.​org/​10.​1080/​13803​39100​35964​21

Hochmann, J. R., Azadpour, M., & Mehler, J. (2008). Do humans really learn
AnBn artificial grammars from exemplars? Cognitive Science, 32(6),
1021–1036. https://​doi.​org/​10.​1080/​03640​21080​18978​49

Holmes, V. M., Kennedy, A., & Murray, W. S. (1987). Syntactic structure and the
garden path. The Quarterly Journal of Experimental Psychology Section A,
39(2), 277–293. https://​doi.​org/​10.​1080/​14640​74870​84017​87

Hu, Y., Chen, C. H., & Su, C. Y. (2021). Exploring the effectiveness and modera-
tors of block-based visual programming on student learning: A meta-
analysis. Journal of Educational Computing Research, 58(8), 1467–1493.
https://​doi.​org/​10.​1177/​07356​33120​945935

Izu, C., Weerasinghe, A., & Pope, C. (2016). A study of code design skills in
novice programmers using the SOLO taxonomy. In Proceedings of the
2016 ACM Conference on International Computing Education Research (pp.
251–259). https://​doi.​org/​10.​1145/​29603​10.​29603​24.

Janssen, C. P., & Brumby, D. P. (2010). Strategic adaptation to performance
objectives in a dual-task setting. Cognitive Science, 34(8), 1548–1560.
https://​doi.​org/​10.​1111/j.​1551-​6709.​2010.​01124.x

Jarrold, C., & Towse, J. N. (2006). Individual differences in working memory.
Neuroscience, 139(1), 39–50. https://​doi.​org/​10.​1016/j.​neuro​scien​ce.​2005.​
07.​002

Kelleher, C., & Hnin, W. (2019). Predicting cognitive load in future code puzzles.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (pp. 1–12). https://​doi.​org/​10.​1145/​32906​05.​33004​87

Kharitonova, M., Warren, W., & Sheridan, M. A. (2015). As working memory
grows: A developmental account of neural bases of working memory
capacity in 5-to 8-year old children and adults. Journal of Cognitive Neuro-
science, 27(9), 1775–1788. https://​doi.​org/​10.​1162/​jocn

Koelsch, S., Rohrmeier, M., Torrecuso, R., & Jentschke, S. (2013). Processing
of hierarchical syntactic structure in music. Proceedings of the National
Academy of Sciences, 110(38), 15443–15448. https://​doi.​org/​10.​1073/​pnas.​
13002​72110

Lakretz, Y., Dehaene, S., & King, J. (2020). What limits our capacity to process
nested long-range dependencies in sentence comprehension? Entropy,
22(4), 446. https://​doi.​org/​10.​3390/​e2204​0446

Levelt, W. J. (2020). On empirical methodology, constraints, and hierarchy in
artificial grammar learning. Topics in Cognitive Science, 12(3), 942–956.
https://​doi.​org/​10.​1111/​tops.​12441

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D.,
& Duschl, R. A. (2020a). Computational thinking is more about thinking
than computing. Journal for STEM Education Research, 3, 1–18. https://​doi.​
org/​10.​1007/​s41979-​020-​00030-2

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D.,
& Duschl, R. A. (2020b). On computational thinking and STEM education.
Journal for STEM Education Research, 3, 147–166. https://​doi.​org/​10.​1007/​
s41979-​020-​00044-w

Liu, A. S., & Schunn, C. D. (2020). Predicting pathways to optional summer
science experiences by socioeconomic status and the impact on science
attitudes and skills. International Journal of STEM Education, 7, 1–22.
https://​doi.​org/​10.​1186/​s40594-​020-​00247-y

Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity : From psycho-
physics and neurobiology to individual differences. Trends in Cognitive
Sciences, 17(8), 391–400. https://​doi.​org/​10.​1016/j.​tics.​2013.​06.​006

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computa-
tional thinking through programming: What is next for K-12? Computers
in Human Behavior, 41, 51–61. https://​doi.​org/​10.​1016/j.​chb.​2014.​09.​012

https://doi.org/10.1016/j.chb.2019.106185
https://doi.org/10.1016/j.chb.2019.106185
https://doi.org/10.1080/00461520.2018.1554484
https://doi.org/10.1080/00461520.2018.1554484
https://doi.org/10.1145/2858036.2858372
https://doi.org/10.1145/2858036.2858372
https://doi.org/10.1126/science.1736359
https://doi.org/10.1126/science.1736359
https://doi.org/10.1016/j.tics.2017.11.005
https://doi.org/10.1016/j.tics.2017.11.005
https://doi.org/10.1037/0033-2909.130.4.553
https://doi.org/10.1016/j.compedu.2019.04.013
https://doi.org/10.1016/j.compedu.2019.04.013
https://doi.org/10.1006/nimg.1996.0247
https://doi.org/10.1006/nimg.1996.0247
https://doi.org/10.1016/j.conb.2014.08.010
https://doi.org/10.1017/cbo9780511844744.011
https://doi.org/10.1080/14926156.2015.1014075
https://doi.org/10.1080/14926156.2015.1014075
https://doi.org/10.15388/infedu.2020.26
https://doi.org/10.15388/infedu.2020.26
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1037/h0100493
https://doi.org/10.1037/h0100493
https://doi.org/10.1006/drev.1998.0467
https://doi.org/10.1006/drev.1998.0467
https://doi.org/10.1126/science.108940
https://doi.org/10.1126/science.108940
https://doi.org/10.3389/fpsyg.2018.02208
https://doi.org/10.3389/fpsyg.2018.02208
https://doi.org/10.1080/0899340042000302709
https://doi.org/10.1080/0899340042000302709
https://doi.org/10.1016/S0006-3223(99)00187-0
https://doi.org/10.1080/13803391003596421
https://doi.org/10.1080/03640210801897849
https://doi.org/10.1080/14640748708401787
https://doi.org/10.1177/0735633120945935
https://doi.org/10.1145/2960310.2960324
https://doi.org/10.1111/j.1551-6709.2010.01124.x
https://doi.org/10.1016/j.neuroscience.2005.07.002
https://doi.org/10.1016/j.neuroscience.2005.07.002
https://doi.org/10.1145/3290605.3300487
https://doi.org/10.1162/jocn
https://doi.org/10.1073/pnas.1300272110
https://doi.org/10.1073/pnas.1300272110
https://doi.org/10.3390/e22040446
https://doi.org/10.1111/tops.12441
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00044-w
https://doi.org/10.1007/s41979-020-00044-w
https://doi.org/10.1186/s40594-020-00247-y
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1016/j.chb.2014.09.012

Page 16 of 16Hao et al. International Journal of STEM Education (2023) 10:42

Ma, X., Ding, N., Tao, Y., & Yang, Y. F. (2018). Differences in neurocognitive
mechanisms underlying the processing of center-embedded and non-
embedded musical structures. Frontiers in Human Neuroscience, 12, 425.
https://​doi.​org/​10.​3389/​fnhum.​2018.​00425

Makuuchi, M., Bahlmann, J., Anwander, A., & Friederici, A. D. (2009). Segregating
the core computational faculty of human language from working mem-
ory. Proceedings of the National Academy of Sciences, 106(20), 8362–8367.
https://​doi.​org/​10.​1073/​pnas.​08109​28106

Meyer, L., & Friederici, A. D. (2016). Neural systems underlying the processing of
complex sentences. Neurobiology of Language, 597–606. https://​doi.​org/​
10.​1016/​B978-0-​12-​407794-​2.​00048-1

Mladenović, M., Boljat, I., & Žanko, Ž. (2018). Comparing loops misconceptions
in block-based and text-based programming languages at the K-12 level.
Education and Information Technologies, 23, 1483–1500. https://​doi.​org/​
10.​1007/​s10639-​017-​9673-3

Murty, V. P., Sambataro, F., Radulescu, E., Altamura, M., Iudicello, J., Zoltick, B.,
Weinberger, D. R., Goldberg, T. E., & Mattay, V. S. (2011). Selective updating
of working memory content modulates meso-cortico-striatal activity.
NeuroImage, 57(3), 1264–1272. https://​doi.​org/​10.​1016/j.​neuro​image.​
2011.​05.​006

Ntemngwa, C., & Oliver, J. S. (2018). The implementation of integrated science
technology, engineering and mathematics (STEM) instruction using
robotics in the middle school science classroom. International Journal of
Education in Mathematics, Science and Technology, 6(1), 12–40. https://​doi.​
org/​10.​18404/​ijemst.​380617

O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computa-
tional model of learning in the prefrontal cortex and basal ganglia. Neural
Computation, 18(2), 283–328. https://​doi.​org/​10.​1162/​08997​66067​75093​
909

Opitz, B., & Friederici, A. D. (2007). Neural basis of processing sequential and
hierarchical syntactic structures. Human Brain Mapping, 28(7), 585–592.
https://​doi.​org/​10.​1002/​hbm.​20287

Paas, F., Tabbers, H., Gerven, P. V., & Tuovinen, J. (2003). Cognitive load measure-
ment as a means to advance cognitive load theory. Educational Psycholo-
gist, 38(1), 63–71. https://​doi.​org/​10.​1207/​S1532​6985E​P3801_8

Paas, F., & Van Merriënboer, J. (1994). Instructional control of cognitive load in
the training of complex cognitive tasks. Educational Psychology Review, 6,
351–371. https://​doi.​org/​10.​1007/​BF022​13420

Perruchet, P., & Rey, A. (2005). Does the mastery of center-embedded linguistic
structures distinguish humans from nonhuman primates? Psychonomic
Bulletin & Review, 12(2), 307–313. https://​doi.​org/​10.​3758/​BF031​96377

Poletiek, F. H., Monaghan, P., van de Velde, M., & Bocanegra, B. R. (2021).
The semantics-syntax interface: Learning grammatical categories and
hierarchical syntactic structure through semantics. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 47(7), 1141. https://​doi.​org/​
10.​1037/​xlm00​01044

Qian, Y., Hambrusch, S., Yadav, A., Gretter, S., & Li, Y. (2020). Teachers’ percep-
tions of student misconceptions in introductory programming. Journal of
Educational Computing Research, 58(2), 364–397. https://​doi.​org/​10.​1177/​
07356​33119​845413

Rac-Lubashevsky, R., & Kessler, Y. (2016). Decomposing the n-back task: An
individual differences study using the reference-back paradigm. Neu-
ropsychologia, 90, 190–199. https://​doi.​org/​10.​1016/j.​neuro​psych​ologia.​
2016.​07.​013

Schorr, T., Gerjets, P., & Scheiter, K. (2003). Analyzing effects of goal competition
and task difficulty in multiple-task performance: Volitional action control
within ACT-R. In Proceedings of the Annual Meeting of the Cognitive Science
Society (Vol. 25, No. 25).

Shetreet, E., Friedmann, N., & Hadar, U. (2009). An fMRI study of syntactic layers:
Sentential and lexical aspects of embedding. NeuroImage, 48(4), 707–716.
https://​doi.​org/​10.​1016/j.​neuro​image.​2009.​07.​001

So, W. W. M. (2023). Does computation technology matter in science, technol-
ogy, engineering and mathematics (STEM) projects? Research in Science
& Technological Education, 41(1), 232–250. https://​doi.​org/​10.​1080/​02635​
143.​2021.​18950​99

Stukken, L., Van Rensbergen, B., Vanpaemel, W., & Storms, G. (2016). Under-
standing individual differences in representational abstraction: The role
of working memory capacity. Acta Psychologica, 170, 94–102. https://​doi.​
org/​10.​1016/j.​actpsy.​2016.​06.​002

Tucker-Raymond, E., Puttick, G., Cassidy, M., Harteveld, C., & Troiano, G. M.
(2019). “I Broke Your Game!”: Critique among middle schoolers designing

computer games about climate change. International Journal of STEM
Education, 6, 1–16. https://​doi.​org/​10.​1186/​s40594-​019-​0194-z

Uddén, J., de Jesus Dias Martins, M., Zuidema, W., & Tecumseh Fitch, W. (2020).
Hierarchical structure in sequence processing: How to measure it and
determine its neural implementation. Topics in Cognitive Science, 12(3),
910–924. https://​doi.​org/​10.​1111/​tops.​12442

Wang, W., Kwatra, A., Skripchuk, J., Gomes, N., Milliken, A., Martens, C., & Price,
T. (2021). Novices’ learning barriers when using code examples in open-
ended programming. In Proceedings of the 26th ACM Conference on Inno-
vation and Technology in Computer Science Education V. 1 (pp. 394–400).
https://​doi.​org/​10.​1145/​34306​65.​34563​70.

Wang, L., Jensen, O., Van den Brink, D., Weder, N., Schoffelen, J. M., Magyari,
L., Hagoort, P., & Bastiaansen, M. (2012). Beta oscillations relate to the
N400 during language comprehension. Human Brain Mapping, 33(12),
2898–2912. https://​doi.​org/​10.​1002/​hbm.​21410

Weintrop, D. (2019). Block-based programming in computer science educa-
tion. Communications of the ACM, 62(8), 22–25. https://​doi.​org/​10.​1145/​
33412​21

West, D. B. (2001). Introduction to graph theory (Vol. 2). Upper Saddle River:
Prentice hall.

Wiggins, J. B., Fahid, F. M., Emerson, A., Hinckle, M., Smith, A., Boyer, K. E., Mott,
B., Wiebe, E., & Lester, J. (2021). Exploring novice programmers’ hint
requests in an intelligent block-based coding environment. In Proceed-
ings of the 52nd ACM Technical Symposium on Computer Science Education
(pp. 52–58). https://​doi.​org/​10.​1145/​34088​77.​34325​38

Winkler, M., Mueller, J. L., Friederici, A. D., & Männel, C. (2018). Infant cognition
includes the potentially human-unique ability to encode embedding.
Science Advances, 4(11), eaar8334. https://​doi.​org/​10.​1126/​sciadv.​aar83​34

Xu, Z., Ritzhaupt, A. D., Tian, F., & Umapathy, K. (2019). Block-based versus
text-based programming environments on novice student learning
outcomes: A meta-analysis study. Computer Science Education, 29(2–3),
177–204. https://​doi.​org/​10.​1080/​08993​408.​2019.​15652​33

Yamashita, K., Nagao, T., Kogure, S., Noguchi, Y., Konishi, T., & Itoh, Y. (2016).
Code-reading support environment visualizing three fields and
educational practice to understand nested loops. Research and Practice
in Technology Enhanced Learning, 11(1), 1–22. https://​doi.​org/​10.​1186/​
s41039-​016-​0027-3

Ye, H., Liang, B., Ng, O. L., & Chai, C. S. (2023). Integration of computational
thinking in K-12 mathematics education: A systematic review on
CT-based mathematics instruction and student learning. Interna-
tional Journal of STEM Education, 10(1), 1–26. https://​doi.​org/​10.​1186/​
s40594-​023-​00396-w

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3389/fnhum.2018.00425
https://doi.org/10.1073/pnas.0810928106
https://doi.org/10.1016/B978-0-12-407794-2.00048-1
https://doi.org/10.1016/B978-0-12-407794-2.00048-1
https://doi.org/10.1007/s10639-017-9673-3
https://doi.org/10.1007/s10639-017-9673-3
https://doi.org/10.1016/j.neuroimage.2011.05.006
https://doi.org/10.1016/j.neuroimage.2011.05.006
https://doi.org/10.18404/ijemst.380617
https://doi.org/10.18404/ijemst.380617
https://doi.org/10.1162/089976606775093909
https://doi.org/10.1162/089976606775093909
https://doi.org/10.1002/hbm.20287
https://doi.org/10.1207/S15326985EP3801_8
https://doi.org/10.1007/BF02213420
https://doi.org/10.3758/BF03196377
https://doi.org/10.1037/xlm0001044
https://doi.org/10.1037/xlm0001044
https://doi.org/10.1177/0735633119845413
https://doi.org/10.1177/0735633119845413
https://doi.org/10.1016/j.neuropsychologia.2016.07.013
https://doi.org/10.1016/j.neuropsychologia.2016.07.013
https://doi.org/10.1016/j.neuroimage.2009.07.001
https://doi.org/10.1080/02635143.2021.1895099
https://doi.org/10.1080/02635143.2021.1895099
https://doi.org/10.1016/j.actpsy.2016.06.002
https://doi.org/10.1016/j.actpsy.2016.06.002
https://doi.org/10.1186/s40594-019-0194-z
https://doi.org/10.1111/tops.12442
https://doi.org/10.1145/3430665.3456370
https://doi.org/10.1002/hbm.21410
https://doi.org/10.1145/3341221
https://doi.org/10.1145/3341221
https://doi.org/10.1145/3408877.3432538
https://doi.org/10.1126/sciadv.aar8334
https://doi.org/10.1080/08993408.2019.1565233
https://doi.org/10.1186/s41039-016-0027-3
https://doi.org/10.1186/s41039-016-0027-3
https://doi.org/10.1186/s40594-023-00396-w
https://doi.org/10.1186/s40594-023-00396-w

	The effect of embedded structures on cognitive load for novice learners during block-based code comprehension
	Abstract
	Background
	Results
	Conclusions

	Introduction
	Theoretical framework

	Literature review
	Embedded structures in the domain of natural language
	Embedded structures in the domain of grammar learning
	Embedded structures in the music domain
	Embedded structures in the programming domain

	The current study
	Experiment 1
	Method
	Participants
	Code comprehension task
	Working memory task

	Statistical analyses

	Results
	Cognitive load in the code comprehension task
	Relations between cognitive load and working memory
	Interim discussion

	Experiment 2
	Method
	Participants
	Code comprehension task
	Working memory task

	Statistical analyses

	Results
	Cognitive load in the code comprehension task
	Relations between cognitive load and working memory
	Interim discussion

	General discussion
	Strengths and limitations
	Conclusion
	Anchor 37
	Acknowledgements
	References

