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Abstract 

Background  Coding has become an integral part of STEM education. However, novice learners face difficulties in 
processing codes within embedded structures (also termed nested structures). This study aimed to investigate the 
cognitive mechanism underlying the processing of embedded coding structures based on hierarchical complexity 
theory, which suggests that more complex hierarchies are involved in embedded versus sequential coding struc-
tures. Hierarchical processing is expected to place a great load on the working memory system to maintain, update, 
and manipulate information. We therefore examined the difference in cognitive load induced by embedded versus 
sequential structures, and the relations between the difference in cognitive load and working memory capacity.

Results  The results of Experiment 1 did not fully support our hypotheses, possibly due to the unexpected use of 
cognitive strategies and the way stimuli were presented. With these factors well controlled, a new paradigm was 
designed in Experiment 2. Results indicate that the cognitive load, as measured by the accuracy and response times 
of a code comprehension task, was greater in embedded versus sequential conditions. Additionally, the extra cogni-
tive load induced by embedded coding structures was significantly related to working memory capacity.

Conclusions  The findings of these analyses suggest that processing embedded coding structures exerts great 
demands on the working memory system to maintain and manipulate hierarchical information. It is therefore impor-
tant to provide scaffolding strategies to help novice learners process codes across different hierarchical levels within 
embedded coding structures.
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Introduction
Coding has become an integral part of STEM edu-
cation as it not only supports the development of 
technical proficiency (the “T” component), but also 

enables the interdisciplinary connections with science, 
engineering, and mathematics (Liu & Schunn, 2020; 
Tucker-Raymond et  al., 2019; Ye et  al., 2023). Compu-
tational thinking (CT), primarily facilitated through 
coding education, is recognized as a trans-disciplinary 
competency that empowers individuals to address 
real-life problems and  confront  challenges within 
the STEM domains (Li et al., 2020a, 2020b; Ntemngwa 
& Oliver, 2018; So, 2023). Recently, block-based coding 
languages (e.g., Scratch) have become increasingly pop-
ular because they allow students to drag and drop code 
commands, reducing the burden of dealing with com-
plex syntax involved in text-based programming (Hu 
et al., 2021; Weintrop, 2019; Xu et al., 2019). However, 
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novice learners still face many challenges when learn-
ing block-based coding (Qian et al., 2020; Wang et al., 
2021; Wiggins et al., 2021). One such challenge regards 
processing nested structures, where one control struc-
ture (e.g., repeat) is placed inside another (Fig. 1). Such 
structures are also referred to as embedded structures. 
Novice learners generally have greater difficulty in 

using nested structures compared to sequential struc-
tures that organize two or more control structures in 
a flat form (Fig. 1) (Bers et al., 2019; Kelleher & Hnin, 
2019; Mladenović et  al., 2018; Yamashita et  al., 2016). 
To better understand and address this challenge, this 
study amis to explore the cognitive mechanism under-
lying the processing of nested coding structures.

Fig. 1  Topological maps of embedded and sequential coding structures
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Theoretical framework
According to hierarchical complexity theory (Commons, 
2007; Commons et al., 1998), nested and sequential con-
trol structures differ in their hierarchical complexity and 
horizontal complexity, which can be clearly depicted 
using nodes and edges rooted in graph theory (Uddén 
et al., 2020; West, 2001). As shown in Fig. 1, there are two 
types of nodes. The first type refers to commands (e.g., 
“Transform color”) that explicitly specify operations (rep-
resented by ●), while the second type represents com-
mands (e.g., “Repeat 2 times”) that indicate the number 
of times to execute each  individual command within a 
loop body (represented by ○). Hierarchy is formed when 
the latter   type of  commands are placed at the higher 
level to coordinate the former type of commands at the 
lower level.

Processing coding structures with multiple hierarchi-
cal levels is expected to generate substantial cognitive 
load, which refers to the cognitive demands imposed on 
learners’ working memory system (Anmarkrud et  al., 
2019; Paas & Van Merriënboer, 1994). Based on previ-
ous studies (Badre & Nee, 2018; O’Reilly & Frank, 2006), 
there are three critical cognitive demands associated 
with processing hierarchical structures. The first demand 
involves rapid encoding of information at the lower lev-
els of a hierarchy (e.g., the commands represented by • 
in Fig.  1). The second demand involves robust mainte-
nance of information at the higher levels of a hierarchy 
(e.g., commands as represented by ○ in Fig. 1). The third 
demand involves selective updating of specific informa-
tion in working memory while simultaneously main-
taining others across different hierarchical levels (Murty 
et  al., 2011). For example, when executing codes within 
nested structures, participants need to selectively update 
the number of repetition times for the inner loop while 
simultaneously maintaining the repetitions of the outer 
loop.

Nested structures possess greater hierarchical com-
plexity than sequential ones when other factors are 
well-matched because they organize commands across 
more hierarchical levels (Fig.  1). Thus, executing com-
mands in nested structures necessitates more iterative 
switches between different hierarchical levels compared 
to sequential structures. The execution of these itera-
tive switches engages the working memory system to 
maintain and selectively update hierarchical information 
(e.g., the repetition times for the inner and outer loops). 
In contrast, sequential structures present greater hori-
zontal complexity than nested structures (Fig. 1). While 
processing horizontal complexity also consumes working 
memory resources, such demand primarily arises from 
the rapid encoding of stimuli rather than the mainte-
nance and updating required for processing hierarchical 

complexity. Therefore, we aimed to test whether pro-
cessing nested coding structures compared to sequential 
structures  would result in greater cognitive load due to 
the different demands on the working memory system 
(Prediction 1). Meanwhile, as there are great individual 
variations in working memory capacity (Baddeley, 1992; 
Barrett et al., 2004), we also predicted that the amount of 
extra cognitive load generated by processing nested ver-
sus sequential coding structures was significantly related 
to individual working memory capacity (Prediction 2).

In addition, we further examined the extra cognitive 
load induced by greater horizontal complexity in both 
nested and sequential conditions. A different number of 
code commands were inserted in these two conditions 
to manipulate horizontal complexity. Unlike hierarchi-
cal complexity, processing horizontal complexity mainly 
poses cognitive demands on rapid encoding. Therefore, 
we predicted that increasing the number of inserted 
commands would lead to extra cognitive load (Prediction 
3). However, such cognitive load would not be associated 
with working memory capacity, as measured by tasks 
emphasizing the maintenance and selective updating of 
stimuli information (Prediction 4). Moreover, the rapid 
encoding of more inserted commands may interfere with 
information maintenance and updating, especially for 
nested conditions. Accordingly, we predicted that the 
difference in cognitive load between nested and sequen-
tial conditions would be modulated by the number of 
inserted commands (Prediction 5).

In summary, testing the aforementioned predictions 
would enhance our understanding of how individuals 
process nested structures and provide valuable insights 
to guide the teaching and learning of coding. Novice 
learners often face challenges in learning nested cod-
ing structures due to the complex hierarchical informa-
tion involved. Processing such hierarchical complexity 
is thought to impose significant demands on the work-
ing memory system for information maintenance and 
manipulation, thus leading to increased cognitive load. 
Hence, effective teaching or learning strategies should be 
incorporated into educational practices to support nov-
ice learners in processing the hierarchical information 
involved in nested coding structures.

Literature review
Nested structures exist not only in coding, but also in 
many other domains, including natural language, artifi-
cial grammar, and music (Hochmann et al., 2008; Koelsch 
et al., 2013; Lakretz et al., 2020). Studies in these domains 
have widely investigated the cognitive and neural mecha-
nisms involved in the processing of nested structures. 
The current study mainly drew on the findings in these 
fields to investigate the cognitive mechanism underlying 
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novices’ comprehension of block-based codes within 
nested structures. To be consistent with the research in 
other domains, the term “nested structures” is replaced 
by the term “embedded structures” below.

Embedded structures in the domain of natural language
In the domain of natural language, many studies have 
focused on the difficulty in processing embedded sen-
tences. Behavioral studies have consistently found that 
processing sentences in embedded structures (e.g., [The 
boy [the girl chased] kicked the ball]) is more difficult 
than processing nonembedded sentences (e.g., The boy 
kicked the ball on the grass), as evidenced by slower 
responses (Holmes et  al., 1987) and lower accuracy 
(Opitz & Friederici, 2007). Additionally, neurological 
studies indicated that the processing of embedded sen-
tences, compared to nonembedded sentences, activated 
the left inferior frontal gyrus to a greater extent, suggest-
ing increased cognitive demands (Meyer & Friederici, 
2016; Shetreet et al., 2009). Furthermore, cognitive efforts 
induced by other factors involved in embedded sentences 
have been examined. For example, a neuroimaging study 
compared the processing of embedded sentences with 
varying dependency distance, which signifies the dis-
tance between the subject noun and its verb in the main 
sentence. The results showed that processing embedded 
sentences with a long dependency distance (e.g., “Maria 
who loved Hans who was good looking kissed Johann”) 
enhanced the functional coupling between the left infe-
rior frontal gyrus and other brain regions compared to 
embedded sentences with a short dependency distance 
(e.g., “Maria who cried kissed Johann and that was yes-
terday night”). This finding suggests that processing long 
embedded sentences is so demanding that greater inter-
action is required between different brain regions (Maku-
uchi et al., 2009).

Embedded structures in the domain of grammar learning
In the domain of artificial grammar, the neural mecha-
nism underlying the processing of embedded structures 
has been widely explored using two types of symbolic 
sequences: nonembedded sequences following the 
adjacent dependency rule (AB)n (e.g., A1B1A2B2) and 
embedded sequences following the hierarchical depend-
ency rule AnBn (e.g., A1A2B2B1) (Fitch & Hauser, 2004; 
Levelt, 2020; Perruchet & Rey, 2005; Poletiek et al., 2021). 
For example, an electrophysiology study used auditory 
sequences organized according to the AnBn rule to meas-
ure infants’ ability to process embedded structures with 
different levels of complexity: 5 versus 7 tones. Each level 
included standard sequences conforming to the embed-
ded rule (e.g., A1A2CB2B1) and deviant sequences vio-
lating the embedded rule (e.g., A1A2CB1B2). The results 

showed that mismatch responses to deviant tones within 
the 7-tone embedded sequences occurred approximately 
90  ms later than those within the 5-tone embedded 
sequences, indicating that processing embedded struc-
tures with greater complexity recruited more cognitive 
resources compared to those with less complexity (Win-
kler et al., 2018).

Embedded structures in the music domain
In the music domain, previous studies have also explored 
the cognitive complexity of embedded transposition 
chords (Koelsch et al., 2013; Ma et al., 2018). For exam-
ple, an electrophysiology study separately compared the 
difference in neural responses of music experts and non-
experts when processing musical chords with and with-
out embedded transposition (Ma et al., 2018). The results 
indicated that nonexperts exhibited larger amplitudes of 
the early right anterior negativity (ERAN) and the late N5 
components when processing embedded chords com-
pared to nonembedded chords, suggesting that the dif-
ficulty in interpreting embedded structures appeared at 
both early (i.e., a larger ERAN) and late (i.e., a larger N5) 
processing stages. In contrast, experts showed significant 
differences between embedded and nonembedded con-
ditions in beta activity, which have been regarded as an 
indicator of top-down cognitive effort (Bressler & Rich-
ter, 2015; Wang et al., 2012). These findings suggest dif-
ferences in the processing of embedded musical chords 
between experts and nonexperts.

Embedded structures in the programming domain
In the programming domain, the difficulty in process-
ing embedded coding structures has been repeatedly 
observed (Asenov et  al., 2016; Cetin, 2015; Ginat, 2004; 
Kelleher & Hnin, 2019). For example, when process-
ing embedded structures, one common mistake made 
by students was that they ignored the embedded rela-
tions between inner and outer repeats but just executed 
them separately (Izu et  al., 2016; Mladenović et  al., 
2018). Another study analyzed the code scripts gener-
ated by novice learners to solve computational problems 
(Chao, 2016). The results indicated that novices preferred 
sequential over embedded control structures. Once 
embedded structures were involved, they debugged the 
code scripts more frequently, suggesting more errors and 
greater difficulty.

In addition, a study conducted by Cetin (2015) indi-
cated that novice learners experienced different stages 
when learning nested loops. In the early stage, students 
tend to  execute each command within a loop explicitly. 
As they advanced to the late stage, students can concep-
tualize all commands within a loop as a single function or 
procedure, thereby eliminating the need for step-by-step 
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execution to obtain an output. Furthermore, given the 
difficulty in learning embedded coding structures, teach-
ing or learning strategies have been proposed to help 
novice learners (Cetin, 2020; Yamashita et  al., 2016). 
However, these strategies are not yet well grounded in 
theory due to the limited understanding of the cogni-
tive mechanism underlying embedded coding structures 
processing.

The current study
Based on hierarchical complexity theory (Commons, 
2007; Commons et  al., 1998) and previous studies in 
other domains (e.g., Makuuchi et al., 2009; Winkler et al., 
2018), this study aimed to investigate the cognitive mech-
anism underlying the comprehension of embedded cod-
ing structures among novice learners. Two experiments 
were conducted in which participants were required to 
perform a code comprehension task that incorporated 
both embedded and sequential conditions, each with a 
different number of commands inserted. Consistent with 
previous studies (Brünken et al., 2010; Paas et al., 2003), 
the cognitive load generated in each condition was meas-
ured based on task performance, as indexed by accuracy 
and response times. Furthermore, we measured indi-
vidual working memory capacity using a behavioral task 
that targets the components of maintenance and updat-
ing. In each experiment, we used these measures to test 
the three hypotheses derived from the predictions in the 
Theoretical Framework.

H1  Novice learners would exhibit slower responses and 
lower accuracy in embedded versus sequential condi-
tions, as well as in the conditions with more versus fewer 
inserted commands.

H2  Working memory capacity would be negatively 
related to the differences in response times and accuracy 
between embedded and sequential conditions, but unre-
lated to the differences in response times and accuracy 
caused by the  increasing inserted commands.

H3  The differences in response times and accuracy 
between embedded and sequential conditions would 
be more significant when there were more inserted 
commands.

Experiment 1
Method
Participants
Experiment 1 involved a total of 73 participants 
(mean age = 21.570  years, SD = 1.930, 49 females) who 
were recruited from Zhejiang University, which is a 

top-ranked comprehensive university in China (https://​
www.​topun​ivers​ities.​com/​unive​rsity-​ranki​ngs/​world-​
unive​rsity-​ranki​ngs/​2023). Among 71 participants who 
reported their coding experience, 31 students had never 
learned coding, and the others had more or less cod-
ing learning experience (two students: < 1  month, ten: 
1–3  months, eleven: 3–6  months, four: 6–12  months, 
ten: > 12  months). Finally, 58 participants were included 
in statistical analyses after excluding 15 participants (i.e., 
two students did not report coding experience, ten stu-
dents learned coding longer than 12  months, and three 
students failed to pass the practice). The effect  of prior 
coding experience has been examined  in Additional 
file 1. All participants signed the informed consent form 
before participating in the experiment and were reim-
bursed for their time and travel. This study was approved 
by the Research Ethics Committee of Zhejiang University.

Code comprehension task
In this task, we created two experimental conditions 
by organizing two repeat blocks in an embedded or 
sequential form. Except for this difference, the two con-
ditions were exactly matched in other dimensions (e.g., 
the number of inserted commands and repeat blocks). 
As shown in Fig. 2, the sequential structures were com-
posed of two adjacent repeat blocks, with one or two 
inserted commands placed outside the repeat blocks. 
In contrast, the embedded structures were designed 
to nest one repeat block within another, with one or 
two commands inserted between the outer and inner 
repeats (Fig.  2). Each command (i.e., “Transform color”, 
“Transform shape”, or “Number ± 1, 2, 3”) with a size of 
2.8 cm × 0.5 cm was displayed to instruct the transforma-
tion in the color (i.e., red, blue, yellow, green, and purple), 
shape (i.e., alternation of color parts), or number (i.e., 
1–15) dimension.

Corresponding to the commands within each code 
snippet displayed on the left side of a 14-in. screen with 
a resolution of 1920 × 1080 pixels, an initial circle and 
14–16 transformed circles, each with an area of 4 cm2, 
were displayed on the right side of the screen (Fig.  2). 
These transformed circles were arranged into 4 rows. 
Among them, there were 3 or 4 probing errors, sug-
gesting that the changed dimension (i.e., color, shape 
or number) in the new circle was inconsistent with that 
instructed by the command. For example, when the com-
mand was “Transform color”, the transformation applied 
to the new circle occurred in the number dimension. 
The adjacent circles were designed to differ only in one 
dimension to avoid obvious errors that could be detected 
without processing commands. Additionally, probing 
errors were not presented consecutively. Participants 

https://www.topuniversities.com/university-rankings/world-university-rankings/2023
https://www.topuniversities.com/university-rankings/world-university-rankings/2023
https://www.topuniversities.com/university-rankings/world-university-rankings/2023
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were instructed to identify all probe errors by checking 
the boxes underneath the circles.

The task was programmed using E-prime 3.0 software 
(https://​www.​eprime.​info/). Overall, the task used a 2 
(Structure: sequential versus embedded) × 2 (Inserted 
Command: 1 versus 2) experimental design that yielded 
4 types of blocks. Each block included 8 trials. The code 
snippet in each trial was randomly selected from 16 
predesigned code snippets. Participants were asked to 
respond as fast and accurately as possible within 50  s. 
After executing all commands in a trial, participants just 

clicked the “Next” button to proceed to the next trial. The 
cognitive load in each condition was quantified by the 
average accuracy of all trials and the average response 
times of trials with no error.

The experimental procedure for the code comprehen-
sion task consisted of three phases. During the learning 
phase, participants watched an instructional video where 
the instructor illustrated the execution order of code 
commands within different structures and provided an 
example to explain the task. Then, participants practiced 
the code comprehension task. In total, they practiced 

Fig. 2  Code comprehension task in Experiment 1

https://www.eprime.info/
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8 trials with 2 in each condition. Only when the prac-
tice accuracy was greater than 80% would participants 
enter the formal testing. Finally, participants performed 
the formal test with short breaks between different 
conditions.

Working memory task
We used the n-back task to measure working memory 
because this task specifically measures the maintenance 
and selective updating of information in mind (Gajew-
ski et al., 2018; Rac-Lubashevsky & Kessler, 2016). In this 
task, a series of letters (i.e., A, B, C, D, E, F, G, and H) 
were presented one by one on the screen (Braver et  al., 
1997). Participants were asked to memorize the letters 
and press the space bar when the current letter was the 
same as the first one (i.e., n = 0) or the one presented n 
trials ago (e.g., n = 3), as shown in Fig.  3. After learning 
these rules, participants performed the practice test. 
Only when they correctly identified more than 3 out of 6 
target letters with no more than 2 nontarget letters inac-
curately responded at each level would they enter the for-
mal test. In the formal test, the 0-back level contained 10 
blocks with 11 trials in each block, whereas the 3-back 
level contained 10 blocks with 12 trials in each block. The 
percentage of targets that needed responses in each block 
was 27.2% for the 0-back level and 25% for the 3-back 
level. Each trial lasted 2000 ms with a stimulus duration 
of 500 ms and an interval between stimuli of 1500 ms.

Individuals’ working memory capacity was indexed by 
the difference in discriminability (d-prime) and response 
times between 0- and 3-back conditions. For each condi-
tion, d-prime was calculated using the following formula 

(Haatveit et al., 2010): d-prime = Z (HIT) − Z (FA). The 
HIT refers to the proportion of targets that are correctly 
identified, whereas the false alarm (FA) is the proportion 
of nontargets that are incorrectly identified as targets. 
Additionally, the mean response times of correctly iden-
tified targets were calculated for each condition. Finally, 
working memory performance was calculated using the 
difference in d-prime (3-back minus 0-back) and mean 
response times (0-back minus 3-back), which was sepa-
rately represented as WMdprime and WMrt below. In this 
study, greater WMdprime and WMrt indicated better work-
ing memory capacity.

Statistical analyses
To compare the difference in cognitive load between 
conditions, a series of linear mixed-effects models were 
built with performance in the code comprehension task 
(i.e., accuracy or response times) as the dependent vari-
able and with Structure (sequential versus embedded) 
and Inserted Command (1 versus 2) as independent vari-
ables. The basic models only contained the main effects 
of Structure and Inserted Command. Such basic mod-
els were further compared with the new ones that con-
tained both the main effects and the Structure × Inserted 
Command interaction. The new models could be chosen 
only if the Akaike’s Information Criterion (AIC) value 
decreased more than 2 compared to the basic models. For 
all models, the Satterthwaite approximation was adopted 
to estimate the degrees of freedom. If there was a signifi-
cant Structure × Inserted Command interaction, further 
analyses were conducted to interpret this interaction.

Fig. 3  Illustration of the working memory task
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Additionally, to test the relations between working 
memory and cognitive load, we constructed separate 
models for working memory as indexed by discrimina-
bility (WMdprime) and response times (WMrt) (see the 
details about these models in  Additional  file  5). Spe-
cifically, the basic models contained the main effects of 
Structure, Inserted Command, and Working Memory 
and the Structure × Inserted Command interaction. 
In addition to these variables, the new models further 
included the Structure × Working Memory and Inserted 
Command × Working Memory interactions. We selected 
the basic or new models based on the AIC value men-
tioned above. Further analyses were conducted if there 
was any significant interaction involving working mem-
ory. The significance level for results involving working 
memory was adjusted to 0.025 to reduce the Type I error 
rates.

In the above analyses, the subject factor was included 
in all models to test the random intercept effect. If this 
effect was not significant, the subject factor was removed, 
and the analyses were continued using fixed-effects 
models.

Results
Cognitive load in the code comprehension task
For accuracy, we selected the basic model that contained 
only the main effects of Structure and Inserted Com-
mand. However, there was no significant difference in 
accuracy between embedded and sequential conditions 
as well as between conditions with 1- versus 2-inserted 
commands (ps > 0.379). For response times, the selected 
model included the main effects of Structure and 
Inserted Command as well as the Structure × Inserted 

Command interaction. The results indicated that both 
the main effects and the interaction were significant 
(Structure: β = −  2.271, SE = 0.733, t (169) = −  3.100, 
p < 0.01; Inserted Command: β = −  3.308, SE = 0.733, 
t (169) = −  4.515, p < 0.001; Interaction: β = 3.680, 
SE = 1.033, t (169) = 3.561, p < 0.001). Such main effects 
suggested that responses were faster in sequential ver-
sus embedded conditions, as well as in conditions with 
1- versus 2-inserted commands. Then, we conducted 
further analyses to interpret the significant interac-
tion. The results indicated that when there were two 
inserted commands, responses were faster in sequential 
versus embedded conditions (β = −  2.214, SE = 0.642, t 
(56) = − 3.447, p < 0.01), but this difference was reversed 
when there was one inserted command (β = 1.421, 
SE = 0.711, t (57) = 2.000, p = 0.05). Additionally, when 
there were embedded relations between control struc-
tures, the responses were slower in the conditions with 
2- versus 1-inserted command (β = − 3.277, SE = 0.920, t 
(112) = − 3.562, p < 0.01). In contrast, such condition dif-
ference was not significant when control structures were 
organized sequentially (Fig. 4).

Relations between cognitive load and working memory
Since the main effects of Structure and Inserted Com-
mand on accuracy were not significant, response times 
were selected to test the relations between cognitive load 
and working memory. In addition, the results indicated 
that when there was one inserted command, responses 
were faster in embedded versus sequential conditions, 
which was inconsistent with our hypothesis. Therefore, 
we only examined the relations of working memory to 
the difference in cognitive load between embedded and 

Fig. 4  Behavioral performance in Experiment 1. S1: Sequential/1-Inserted Command; S2: Sequential/2-Inserted Command; E1: 
Embedded/1-Inserted Command; E2: Embedded/2-Inserted Command. Error bars represent standard deviation
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sequential conditions when there were two inserted com-
mands. Accordingly, we compared the basic model that 
only included the main effects of Structure and Working 
Memory to the new model that included both the main 
effects and the Structure × Working Memory interaction. 
The new model was then selected, but there were no sig-
nificant results involving working memory (ps > 0.401).

Similarity, only in embedded condition, the differ-
ence in response times between conditions with 1- ver-
sus 2-inserted commands was significant. Therefore, we 
examined the relations of working memory to the differ-
ence in cognitive load induced by different numbers of 
inserted commands in embedded condition. We com-
pared the basic model that included the main effects of 
Inserted Command and Working Memory to the new 
model that also included the Inserted Command × Work-
ing Memory interaction. With the new model selected, 
we did not find significant results involving working 
memory (ps > 0.144).

Interim discussion
Consistent with our hypotheses, the findings indicated 
that when there were two commands inserted between 
repeat control structures, participants responded slower 
in embedded versus sequential conditions, suggesting 
greater cognitive load. However, when there was one 
inserted command, responses were slower in sequen-
tial versus embedded conditions. The findings might be 
associated with the use of cognitive strategies. Specifi-
cally, as reported by participants, when there was only 
one inserted command within embedded structure, all 
commands in the repeat control block could be easily 
memorized as a chunk containing information about the 
transformed dimensions and their execution orders. For 
example, in embedded condition with 1-inserted com-
mand (Fig. 2), after executing the commands (i.e., “Trans-
form shape”, “Transform color”, and “Number-3”) within 
the inner control structure for the first time, the three 
commands and related information were memorized, 
and their subsequent execution did not require a shift in 
attention to the code snippet on the left side of the screen. 
In contrast, in sequential condition, the commands con-
tained in the upper and lower repeat blocks were differ-
ent. Therefore, if the chunking strategy was ever used, 
participants had to chunk the two repeat blocks sepa-
rately, which might contribute to the  longer response 
times in sequential than in embedded conditions.

In addition, the using of chunking strategy may be 
affected by the number of inserted commands. With 
more commands inserted into embedded condition, 
greater challenge might be imposed on the working 
memory system. Previous studies have indicated that 
such a challenge may prevent the use of chunking strategy 

or reduce the benefit of using this strategy (Janssen & 
Brumby, 2010; Schorr et al., 2003). Accordingly, we spec-
ulated that the effect of the chunking strategy might be 
compromised when there were two commands inserted 
between control structures in embedded condition. Such 
speculation was supported by the results of this study, 
which indicated that when there were two inserted com-
mands, the comprehension of embedded structures led 
to slower responses than sequential structures.

Furthermore, there was no significant relation between 
working memory and the difference in response times 
between embedded and sequential conditions. One pos-
sible reason may be that listing all  transformed circles 
corresponding to the commands on the screen reduced 
the cognitive load associated with the mental represen-
tation of embedded relations. For example, in embedded 
condition with  2-inserted commands (Fig. 2), the execu-
tion of each external repeat included eight commands 
that were exactly represented by two rows of circles. 
According to the number of circles that had been pro-
cessed, participants could easily count the times the inner 
and outer loops had been repeated. Therefore, we con-
jectured that the organization of circles concretized the 
hierarchical representation of embedded relations and 
reduced the cognitive cost induced by switching between 
inner and outer repeats. Another possible reason for the 
absence of a relation between working memory and cog-
nitive load might be related to the use of different colors 
to distinguish inner and outer repeat control structures 
only in embedded condition. This color difference may 
help participants build the representation of hierarchi-
cal relations, which may reduce the cognitive load gener-
ated from processing the code commands in embedded 
condition.

To summarize, the design of the code comprehension 
task in Experiment 1 might lead to the unexpected use 
of cognitive strategies and the decrease in cognitive load 
associated with the processing of hierarchical relations in 
embedded condition. Therefore, we further conducted 
Experiment 2, in which the code comprehension task was 
redesigned to exclude the possible impacts of strategy 
use and stimuli presentation on cognitive processing (see 
details below).

Experiment 2
Method
Participants
A total of 79 college students (mean age = 21.67, 
SD = 1.97, 55 female) participated in Experiment 2, 
including 29 participants from Experiment 1 and 50 
newly recruited participants.The influence  of partici-
pant resue  have been examined  in Additional file  2. All 
participants performed the n-back task in Experiment 1 
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or 2. Additionally, among 75 participants with reported 
coding experience, 38 students had never learned coding, 
and the others had learning experience shorter than one 
year (three students: < 1 month, ten: 1–3 months, eleven: 
3–6  months, four: 6–12  months, nine: > 12  months). 
Finally, 66 participants were included in the analyses, 
with 13 excluded (i.e., four students did not report coding 
experience, and nine students learned coding for longer 
than 12 months).

Code comprehension task
As discussed above, the design of the code comprehen-
sion task in Experiment 1 might induce confusions that 
we did not expect. Therefore, we redesigned the task in 
Experiment 2. Consistent with the task in Experiment 
1, the code snippet in the new task also assembled two 
repeat control blocks in an embedded or sequential man-
ner. We also inserted one or two commands outside the 
repeat block in sequential condition and between the 
inner and outer repeat blocks in embedded condition 
(Fig. 5). Overall, 4 types of code snippets were classified 

Fig. 5  Code comprehension task in Experiment 2
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based on the Structure (sequential versus embedded) 
and Inserted Command (1 versus 2). Contrary to the 
task in Experiment 1, the new task required participants 
to imagine the moving route of a bee on a map based 
on their comprehension of code commands. There-
fore, participants need to maintain and update the loca-
tion and direction of the bee in their minds all the time. 
Additionally, the embedded and sequential conditions 
were matched in the use of colors. These changes in task 
design were expected to exclude the possible influence 
of strategy use and stimuli presentation, as mentioned in 
the “Discussion” section of Experiment 1.

The new code comprehension task was programmed 
using Opensesame software (https://​osdoc.​cogsci.​nl/) 
with a 2 (Structure: sequential versus embedded) × 2 
(Inserted Command: 1 versus 2) experimental design. 
Each condition contained 8 trials involving different code 
snippets that were randomly selected from 16 prede-
signed code snippets.

The experimental procedure was the same as that in 
Experiment 1. On the left side of the screen, a code snip-
pet containing 14 to 16 commands was presented, each 
command had a height of 0.5  cm and a width between 
1.4 and 1.8  cm. The commands “Move forward”, “Turn 
left”, “Turn right”, and “Get nectar” were designed with 
reference to the code.org platform (https://​code.​org/) 
(Fig. 5). The number of different types of commands was 
well-matched  (see Additional file  6) across experimen-
tal conditions, and the order of commands was different 
between conditions to prevent the learning effect.

The actions instructed by code commands were exe-
cuted on a grid map presented on the right side of the 
screen (Fig.  5). The map had 6 × 6 grids, each of which 
was 1.6 cm × 1.6 cm in size. A bee and some nectars were 
presented on the map. The forward direction of the bee 
was always in line with the orientation of its head. In 
addition to the nectars in the moving route of the bee, 
three or four nectars were placed in the grids outside the 
moving route to prevent guessing.

As participants performed the task, the bee stayed in 
its initial grid all the time. Participants had to imagine the 
moving route of the bee and click on each grid to per-
form the actions as instructed by commands. Specifically, 
when the command was “Move forward”, participants 
had to click on the grid that the bee would move to; when 
the command was “Turn left”, “Turn right”, or “Get nec-
tar”, participants had to click on the current grid again. 
The position and time of each click made by participants 
were recorded. In each trial, participants were asked to 
respond as quickly and accurately as possible within 50 s.

These recordings of clicks were used to calculate accu-
racy. First, we created MATLAB scripts to reconstruct 
the moving routes of the bee based on these clicks. Then, 

we manually counted the proportion of correct grids that 
the bee passed on each route to represent the accuracy of 
each trial (see Additional file 4 for examples). Finally, for 
each condition, the accuracy was computed as the mean 
accuracy of all trials, and the response times were aver-
aged across all trials in which the bee had finally reached 
the correct destination. Two raters were trained by an 
expert in a group meeting to determine whether cor-
rect destinations had been reached based on the recon-
structed routes. After reaching good reliability for 160 
trials (alpha coefficient = 0.972), each rater independently 
evaluated the data from half of the participants. Approxi-
mately two weeks later, the raters re-evaluated 480 trials 
to calculate the intrarater reliability. The two raters were 
consistent with their own ratings according to Cohen’s 
kappa: rater 1 = 0.991; rater 2 = 0.997.

Working memory task
Working memory was measured using the same n-back 
task as described in Experiment 1.

Statistical analyses
The data analysis approaches were the same as those 
used in Experiment 1.  In addition, to exlcude the possi-
ble influence of different number of commands between 
conditions, we further re-analyzed the data from embed-
ded and sequential conditions with only 1-inserted com-
mand (see Additional file 3).

Results
Cognitive load in the code comprehension task
When accuracy as a measure of cognitive load was 
included as the dependent variable, the model that 
contained the main effects of Structure and Inserted 
Command had the best fit. The results indicated that 
the main effect of Inserted Command was significant 
(β = 0.056, SE = 0.010, t (188) = 5.442, p < 0.001), suggest-
ing that accuracy was greater in conditions with 1- ver-
sus 2-inserted commands. However, the main effect of 
Structure was not significant (β = 0.003, SE = 0.010, t 
(186) = 0.316, p = 0.753). For response times, the selected 
model included the main effects of Structure and Inserted 
Command as well as the Structure × Inserted Command 
interaction. The results indicated that the main effects 
of both Structure and Inserted Command were signifi-
cant (Structure: β = − 3.735, SE = 0.623, t (181) = − 5.991, 
p < 0.001; Inserted Command: β = −  3.379, SE = 0.619, t 
(181) = − 5.460, p < 0.001), suggesting that the responses 
were faster in sequential versus embedded conditions 
as well as in 1- versus 2- inserted commands conditions 
(Fig.  6). However, the interaction between Structure 
and Inserted Command was not significant (β = 1.081, 
SE = 0.867, t (181) = 1.248, p > 0.05), suggesting that 

https://osdoc.cogsci.nl/
https://code.org/


Page 12 of 16Hao et al. International Journal of STEM Education           (2023) 10:42 

the extra cognitive load induced by embedded coding 
structures was not affected by the number of inserted 
commands.

Relations between cognitive load and working memory
To further examine the relations between cognitive load 
and working memory, we selected the response times in 
code comprehension task as the dependent variable since 
there was no significant difference in accuracy between 
embedded and sequential conditions. The best-fitting 
models included the main effects of Structure, Inserted 
Command, and Working Memory as well as the Struc-
ture × Inserted Command, Working Memory × Structure 
and Working Memory × Inserted Command interac-
tions. The results indicated that there were significant 
interactions between Structure and Working Memory 
(WMdprime: β = −  1.523, SE = 0.444, t (172) = −  3.434, 
p < 0.01; WMrt: β = − 1.229, SE = 0.421, t (172) = − 2.916, 
p < 0.01).

To interpret these interactions, we tested the relations 
between working memory and the difference in response 
times between embedded and sequential conditions. 
The results indicated that for participants with greater 
working memory, responses slowed down less in embed-
ded  versus sequential conditions (Fig.  7). In contrast, 
there was no significant interaction between Inserted 
Command and Working Memory (ps > 0.401), suggest-
ing that working memory was not significantly related to 
the change in response times caused by the increase in 
inserted commands (Fig. 7).

Interim discussion
Consistent with our hypotheses, the results indicated that 
responses were slower in embedded versus sequential 

conditions, suggesting that the cognitive load was greater 
in the former than the latter when these two conditions 
were well-matched in other dimensions. Such condi-
tion difference in cognitive load may be caused by the 
greater hierarchical complexity involved in embedded 
structures compared to sequential structures. Addition-
ally, as we expected, the extra cognitive load generated by 
processing embedded structures was negatively related 
to individual working memory capacity, indicating that 
the amount of cognitive load induced by embedded cod-
ing structures varies significantly across individuals with 
different working memory capacities. In contrast, there 
was no significant relation between working memory and 
cognitive load induced by more inserted commands.

Therefore, although both embedded structures and 
the increase in inserted commands induced extra cogni-
tive load, there are differences in the cognitive mecha-
nisms underlying the processing of these two types of 
information. As the maintenance and manipulation of 
information within hierarchical structures relies upon 
the working memory system (Glahn et  al., 2000; Stuk-
ken et  al., 2016), we infer that processing embedded 
structures involves greater participation of the working 
memory system to maintain and update the hierarchical 
information in mind.

Additionally, inconsistent with our prediction, the 
results suggested that the difference in cognitive load 
between embedded and sequential conditions was not 
affected by the number of inserted commands. One pos-
sible reason might be that the change in inserted com-
mands from one to two was too small to influence the 
processing of hierarchical relations in embedded condi-
tion. This speculation needs to be further tested by creat-
ing conditions with more commands inserted.

Fig. 6  Behavioral performance in Experiment 2. S1: Sequential/1-Inserted Command; S2: Sequential/2-Inserted Command; E1: 
Embedded/1-Inserted Command; E2: Embedded/2-Inserted Command. Error bars represent standard deviation
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General discussion
The difficulty in processing embedded coding structures 
has been repeatedly observed in the coding learning of 
novice learners. Based on hierarchical complexity theory, 
we predicted that such difficulty is related to the complex 
hierarchies involved in embedded coding structures. To 
test such hypotheses, we developed a well-controlled 
experimental paradigm to measure and compare the dif-
ference in cognitive load generated from processing the 
codes within embedded and sequential structures. As 
these two conditions were well-matched in all dimen-
sions except hierarchical complexity, the greater cogni-
tive load in embedded versus sequential conditions can 
be attributed to the difficulty in processing complex hier-
archical information.

In addition, the extra cognitive load induced by embed-
ded structures was significantly related to working mem-
ory capacity, supporting the hypotheses that processing 
embedded structures may exert great demands on the 
working memory system. In other words, individuals 
with different working memory capacities vary in the 
ability to process embedded coding structures. These 
findings suggest that the difficulty in processing embed-
ded coding structures for novice learners may arise 
from the maintenance and manipulation of complex 

hierarchical information, which imposes a great burden 
on the working memory system. Understanding such 
cognitive mechanisms provides important educational 
implications for helping novices learn and use embedded 
coding structures.

First, to reduce the cognitive load induced by complex 
hierarchies involved in embedded coding structures, 
well-designed cognitive strategies or scaffolds should 
be used to support the processing of embedded coding 
structures. For example, providing reminders during the 
transition between inner and outer control structures 
can reduce the cognitive demands on maintaining and 
manipulating hierarchical information in mind. In addi-
tion, as discussed in Experiment 1, using chunking strate-
gies in certain situations can reduce the cognitive efforts 
required to process complex hierarchical structures.

Second, it is important to integrate strategies in appro-
priate ways at different learning stages. For example, 
teaching strategies can be incorporated to help novice 
learners with the hierarchical processing of embedded 
structures. Specifically, teachers can use a visual display, 
such as Fig.  1, to show novice learners the hierarchical 
relations involved in embedded coding structures and 
help students track the execution of code commands. 
However, visualization strategies should also be gradually 

Fig. 7  Relations of working memory to the difference in cognitive load across different conditions. WMdprime and WMrt separately refer to working 
memory capacity as indexed by d-prime and response times
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reduced or cancelled to foster the development of stu-
dents’ ability to process hierarchical information. In addi-
tion, this study found that the cognitive load induced by 
embedded structures was significantly related to individ-
ual working memory capacity, which varied substantially 
across individuals (e.g., Jarrold & Towse, 2006; Luck & 
Vogel, 2013). Therefore, it is important to consider indi-
vidual differences when teaching novices to learn embed-
ded coding structures.

Third, hierarchical decomposition and organization 
can be used to help students create embedded coding 
structures. CT emphasizes developing students’ ability 
to use coding concepts (e.g., embedded structures) and 
skills to solve problems. However, students often strug-
gle with identifying which code commands should be 
placed within the inner or outer control structures when 
creating embedded structures to solve problems (e.g., 
Mladenović et  al., 2018). To address this challenge, it is 
essential to educate students on breaking down complex 
problems into smaller subproblems and organizing them 
hierarchically. This approach enables the effective repre-
sentation of code commands at different hierarchical lev-
els within embedded coding structures.

Strengths and limitations
This study has limitations. First, the differences in some 
visual properties, such as visual length and color use, 
between embedded and sequential conditions as well as 
between different types of code commands may inter-
fere with the findings of this study. Future studies can use 
other techniques or control experiments to test whether 
or how these properties influence the findings. Addition-
ally, the code comprehension task used in Experiment 2 
was designed to have good ecological validity, but such a 
design may prevent us from carrying out command-level 
analyses to explore whether processing embedded cod-
ing structures is generally more challenging compared 
to sequential structures or if the challenge is specific to 
certain commands. Future studies can use alternative 
research techniques (e.g., neuroimaging methods) to 
explore the cognitive load associated with each command 
within embedded structures. Moreover, this study only 
included adults with few coding experience. Recently, 
wide attention has been given to coding education for 
children and adolescents (e.g., Angeli & Giannakos, 2020; 
Lye & Koh, 2014), whose ability to maintain and update 
information in working memory was significantly lower 
than that of adults (Jarrold & Towse, 2006; Kharitonova 
et  al., 2015). Therefore, future studies should examine 
whether there are age differences in the processing of 
embedded coding structures. Despite these limitations, 
this study also has strengths. Specifically, to our knowl-
edge, this is the first study to quantify the difficulty in 

processing embedded coding structures through the 
measurement of cognitive load induced by hierarchical 
complexity and to examine its relation with individual 
working memory capacity.

Conclusion
To conclude, this study designed a well-controlled exper-
imental paradigm to measure the cognitive load induced 
by the comprehension of block-based codes within 
embedded versus sequential structures. The results 
showed that novice learners generated greater cognitive 
load when processing embedded structures compared to 
sequential structures. In addition, although the increase 
in inserted commands also induced additional cognitive 
load, only the extra cognitive load induced by embed-
ded coding structures was significantly related to indi-
vidual working memory capacity. These findings suggest 
that processing codes within embedded structures exerts 
great demands on the working memory system to main-
tain and manipulate hierarchical information. This cog-
nitive mechanism can be applied to guide the design of 
instructional strategies in coding education and inspire 
its integration with educational practices in other STEM 
fields.
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