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Abstract 

Background  The growing necessity of providing better education, notably through the development of Adaptive 
Learning Systems (ALSs), leveraged the study of several psychological constructs to accurately characterize learners. 
A concept extensively studied in education is engagement, a multidimensional construct encompassing behavioral 
expression and motivational backgrounds. This metric can be used to not only guide certain pedagogic methodolo-
gies, but also to endow systems with the right tutoring techniques. As such, this article aims to inspire improved 
teaching styles and automatic learning systems, by experimentally verifying the influence of in-class behaviors in 
students’ engagement.

Results  Over 16 math lessons, the occurrence of students’ and instructors’ behaviors, alongside students’ engage-
ment estimates, were recorded using the COPUS observation protocol. After behavior-profiling the classes deploying 
such lessons, significant linear models were computed to relate the frequency of the students’ or instructors’ behav-
iors with the students’ engagement at different in-class periods. The models revealed a positive relation of students’ 
initial individual thinking and later group activity participation with their collective engagement, as well as a positive 
engagement relation with the later application of instructor’s strategies such as giving feedback and moving through 
class, guiding on-going work.

Conclusions  The results suggest the benefit of applying a workshop-like learning process, providing more individual 
explanations and feedback at the beginning of an interaction, leaving collective feedback and students’ guidance of 
on-going work for later on. Based on the relations suggested by our models, several guidelines for developing ALSs 
are proposed, and a practical illustrative example is formulated.
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Introduction
During the last years, research has identified the neces-
sity of developing systems that are able to automati-
cally assign or adapt learning content to the students’ 
needs and style of learning  (Bagheri, 2015; Hwang 
et al., 2013). Systems like these are particularly impor-
tant given that students may not autonomously choose 
content based on their optimal way of learning, relying 
instead on external factors such as how their interac-
tion was “interesting,” “relaxing,” “easy to use,” and 
“conforming to previous experiences” (Hwang et  al., 
2013). As a response to this demand, the field of Intel-
ligent Tutoring Systems, or ITSs (Bagheri 2015), con-
tributed to the development of Adaptive Learning 
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Systems (ALSs). ALSs can be defined as an evolution 
from traditional ITSs that, instead of acknowledging 
learners as passive receivers of information, attempt to 
tailor learning material and goals based on the learners’ 
preference and knowledge. The adaptive learning and 
training field is ever-growing, notably when leveraged 
by the interactivity of serious games, now extremely 
widespread and researched in institutions around the 
globe (Susi et al., 2007). ALSs were inspired by the pro-
liferation of online and digital platforms, which allow 
more detailed learner modeling and integration, e.g. by 
endowing learners with an easy and personalized access 
to learning content. For instance, while some learning 
systems may integrate learners by giving them customi-
zation choices, others may automatically build learner 
models by silently monitoring subjects’ task completion 
or problem solving strategies. In fact, although research 
has defended that collective instruction may bring 
more challenges than one-to-one tutoring (Bloom 
1984), recent work regarding the use of technology in 
education is considering to model learners at a group/
team level as a path to aid collective learning (Bonner 
et al., 2016; Gomes et al., 2019), which reflects the con-
tinuous growth of research in learner modeling and 
integration.

As Murphy et  al. review, there is value in further 
exploring how different teacher characteristics and 
teaching styles may support learner motivation, one of 
the constructs of engagement (Murphy et al., 2019). This 
type of exploration is particularly relevant for automatic 
adaptive systems, in the sense that they may be informed 
by such constructs in order to make decisions. Various 
possibilities have been considered for measuring engage-
ment, from more objective metrics such as re-playability 
(Catarino & Martinho 2019; Sarkar et al., 2017), dialogue 
patterns (Novielli 2010), or as an individual’s involve-
ment in a task via the time spent on-task (Järvelä et al., 
2008; Määttä et al., 2012; Seifert & Beck 1984), to more 
psychology-driven metrics such as the students’ motiva-
tions for achieving, and how positive learners feel while 
working on tasks. Overall, engagement can be embraced 
as a complex, multidimensional concept, encompassing 
behavioral, emotional, cognitive, and social connotations 
(Fredricks et al., 2016), thus advances in the study of this 
human trait and how it influences education are crucial. 
In particular, we believe that the assessment of the more 
objective, behavioral facets of engagement, notably the 
observation of how the emergence of several instructors’ 
and students’ in-class behaviors can influence the engage-
ment of students, may help to improve existent teaching 
styles and guide the development of more advanced ALSs 
capable of enhancing learning through the promotion of 
the right behavior and feedback at the right moments.

Keeping these thoughts in mind, we aim to approach 
the following research questions in the current paper:

RQ1: How is students’ engagement influenced by the 
emergence of different styles of behavior during a lesson?

RQ2: What are the practical implications of this influ-
ence for improving education methodologies and ALSs?

In order to explore these questions, we observed stu-
dents’ behavioral engagement in two math subjects that 
take part in the first year of a computer science STEM 
(Science, Technology, Engineering, and Math) degree of 
one of our institutions. We selected these subjects and 
the STEM domain, given the relevance of mathematics 
for the development of students’ competences in first 
engineering degrees (Flegg et  al., 2012), and because 
STEM has extensively been the target of analysis of 
research approaching the use of students’ and instruc-
tors’ behaviors to profile learning (Lund et  al., 2015; 
Smith et al., 2013, 2014; Stains et al., 2018; Tomkin et al., 
2019). In specific, we measured the behavior of both stu-
dents and instructors resorting to a protocol known as 
COPUS, the Classroom Observation Protocol for Under-
graduate STEM (Smith et al., 2013). This protocol allows 
an observer to reliably characterize how faculty and stu-
dents are spending their time in the classroom by encom-
passing a list of representative students’ and instructors’ 
in-class behaviors. After gathering data from multiple in-
class behaviors, during a whole semester, we managed to 
construct significant linear models relating the frequency 
of some students’ and instructors’ behaviors with the stu-
dents’ average engagement at different periods, thus pro-
viding some answers to our research questions.

Background
This work draws on two major concepts, explored in the 
background. Firstly, we look into how research defines 
and studies engagement, notably academic engagement, 
as well as the constructs associated to this complex psy-
chological concept. Secondly, we investigate COPUS, in 
particular its premises and how it was applied to pro-
file classes and evaluate the suitability of pedagogic 
methodologies.

Correlates of engagement
Although there is a lack of understanding to what con-
stitutes engagement, this human characteristic has 
been associated with positive changes in skills and abili-
ties, and greater psychological adjustment during col-
lege years (Wilson et  al., 2015). As commented while 
introducing this work, various possibilities have been 
considered for measuring engagement, e.g. consider-
ing re-playability, dialogue patterns, or on-task time. 
However, engagement can also be connected to the stu-
dents’ motivations for achieving, and how positive they 
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felt while working on tasks. In fact, holistically speaking, 
psychology-driven research characterizes engagement as 
a multidimensional construct encompassing both behav-
ioral and subjective definitions. Notably, research on 
academic engagement distinguishes between behavio-
ral engagement—the positive conduct of students, their 
adhesion to academic tasks and school-related activities; 
emotional engagement—the students’ affective reactions 
to academic experiences, measured in terms of positive 
or negative emotions; and cognitive engagement—con-
nected to the investment in learning, self-regulation, 
being strategic, desiring to go beyond the requirements, 
and valuing challenge (Fredricks et  al., 2004). More so, 
each dimension of engagement can vary qualitatively, for 
instance behavioral engagement may encompass doing 
an assigned task, or joining a student council; or moti-
vation can have intrinsic and extrinsic motives, depend-
ing if it is influenced from internal constructs, such as 
a search for autonomy and competence through play, 
exploration, and curiosity, or external constructs such 
as incentives or pressure (Furrer & Skinner 2003; Ryan 
& Deci 2020). Other engagement classifications further 
expand engagement theory (Fredricks et al., 2016), nota-
bly social-behavioral engagement as a style of engage-
ment accounting for the key role of social interaction in 
supporting learning in small groups, and that associates 
with affect (Linnenbrink-Garcia et  al., 2011), agentic 
engagement relating to the students’ constructive con-
tribution into the flow of the instruction they receive, 
e.g. by offering input, expressing a preference, or asking 
a question (Reeve & Tseng 2011), and volitional engage-
ment connected to the enactment of intentions, sepa-
rated from motivation, which relates to the building of 
intentions (Filsecker & Kerres 2014).

Despite harder to measure, intrinsic factors are usually 
considered as better predictors of positive engagement 
and learning performance than external factors. Thus, 
one limitation of this work is that it confines itself to the 
extrinsic nature of in-class behaviors, and how they are 
observed, not going deeper into the students’ subjective 
minds. Even so, in our opinion, the positive engagement 
relations observed along the emergence of some in-class 
behaviors may, at the same time, connect to the existence 
of intrinsic benefits, for instance, more active students’ 
behavioral engagement may be linked to a higher emo-
tional predisposition to actually learn more about that 
subject. Extrinsic motivation in the form of introjected 
regulation, in which behavior is regulated by internal 
rewards of self-esteem for success and through avoidance 
of anxiety, shame, or guilt for failure (Ryan & Deci 2020), 
can help to justify this interpretation.

In the present work, we measured engagement through 
the appraisal of an observer who verified and recorded 

the overall behavioral in-class engagement at specific 
periods (see Fig.  1). Indeed, the use of externally filled 
reports as indicators of learners’ engagement is not 
new (Rudolph et  al., 2001). Even though self-reported 
assessments would allow the appraisal of intrinsic (e.g. 
emotional or cognitive) aspects of engagement, this 
evaluation method could easily disrupt the normal les-
son flow, and would render difficult the appraisal of col-
lective engagement due to the nonexistence of a criterion 
baseline. Besides, although one’s confidence about their 
ability in a domain (self-concept) or a given task (self-effi-
cacy), and one’s attributed task value (the utility attrib-
uted as a justification of doing a task), seem to be needed 
for students to engage in STEM content and have career 
aspirations on these fields, they are not stable assessment 
traits, possibly influenced by demographic attributes 
such as gender (Murphy et al., 2019).

In addition, several works showed that it is crucial for 
faculty and administrators to promote a sense of relat-
edness in students, i.e., their need to feel that they are 
connected to their community (e.g. peers, teachers), feel-
ing loved, cared for, and important, in order to develop 
their academic engagement, personal well-being, and 
self-determination (Deci & Ryan 2013; Murphy et  al., 
2019; Wang & Holcombe 2010; Wilson et  al., 2015). 
For instance, it is recognized that the sense of related-
ness between students and instructors may influence 
academic engagement, achievement, school liking, and 
school belonging (Furrer and Skinner 2003; King 2015; 

Fig. 1  Schematic representation of our data collection procedure. 
An observer sat discretely behind the class so that the data collection 
process was not disruptive, and at the same time all of the students 
were assessed while performing the observations. At each 2 min of 
the lesson, the observer estimated, via an observation form, which 
COPUS behaviors were present, as well as what level of engagement 
the class presented
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O’Connor & McCartney 2007; Wang et  al., 2018). In 
fact, the theory of self-determination defends the exist-
ence of three fundamental, interconnected, needs that 
are required to achieve psychological well-being—auton-
omy, competence, and relatedness; thus inciting exten-
sive research on how these needs are met from the point 
of view of students and instructors (Ryan & Deci 2020). 
In our opinion, a sense of relatedness can be generally 
fulfilled by some instructors’ in-class conduct, such as 
kindly clarifying doubts by answering a question to the 
whole class, or even more by discussing a certain topic 
with an individual student or a small group. Autonomy 
is usually enforced at the same time, while instructors 
attempt to understand, acknowledge, and be responsive 
to students’ perspectives and unique challenges; and 
competence may work together with the other two char-
acteristics whenever a good academic environment is 
met, i.e. that renders adequate challenges and feedback, 
and opportunities for growth (Ryan & Deci 2020).

In fact, the relations between the belonging to either 
class, academic major, or university communities, and 
engagement were already tested across STEM classes in 
five education institutions (Wilson et al., 2015), revealing 
that class belonging most consistently linked to positive 
engagement, contrasting to major belonging that only 
linked to engagement for some of the schools, and uni-
versity belonging, which was the least consistently linked 
trait. Specifically, greater class belonging was linked to 
higher levels of reported student attendance across all 
five schools, and less negative emotional engagement 
at four of the five schools. In our opinion, the fact that 
the perceived sense of belonging to a class community 
more consistently related to positive engagement than 
the sense of belonging to the community of a particular 
academic major or university, renders valuable the obser-
vation of the students’ engagement and behavior via an 
in-class setting.

COPUS as a behavior profiling tool
This work aims to relate the emergence of several in-class 
behaviors with observable students’ engagement changes, 
particularly in STEM (math) classes. As such, we applied 
the COPUS methodology (Smith et  al., 2013), which 
encompasses a set of attributes to characterize the behav-
ior of both students and instructors during undergradu-
ate STEM classes (see Table  1). Because of its discrete 
and extensive behavior categorization, we valued COPUS 
in relation to broader teaching practices indicators (Wie-
man & Gilbert 2014). From now on, we will treat COPUS 
students’ and instructors’ categories of behavior as SB 
and IB.

The protocol was developed with several objectives 
in mind: (i) to characterize the general state of teaching 

and learning; (ii) to provide feedback to instructors who 
desire information about how they and their students are 
spending class time; and (iii) to identify faculty profes-
sional development needs. Over the years, it has proved 
itself as a tool to reliably obtain behavioral data from 
classroom observations (Lund et  al., 2015; Stains et  al., 
2018; Tomkin et  al., 2019), by which we deemed this 
protocol as suitable for the goals of the present study. A 
benefit that differentiates this observation protocol from 
others is that it is easy to learn and requires little observer 
training (2 h or less). Using this protocol, an observer col-
lects data by evaluating, for each two minutes of a lesson, 
which students’ and/or instructors’ behaviors are present 
(see Fig. 1). This iterative data collection allows the analy-
sis of in-class behaviors not only at the global level, but 
also to observe their evolution during a lesson.

Some recent research by Lund et  al. and Stains et  al. 
used the data collected from multiple class observations 
(Lund et al.: 73 faculty members and 269 individual class 
periods; Stains et  al.: 548 faculty members and 2008 
classes) to further cluster the complex array of COPUS 
behaviors into more simple categories, for an easier pro-
filing of students’ and instructors’ behavior and ease of 
analysis (Lund et al., 2015; Stains et al., 2018). In specific, 
Lund et al. clustered the COPUS behaviors into four cat-
egories, reflecting different teaching styles—Lecturing, 
Socratic, Peer Instruction, and Collaborative Learning; 
and Stains et al. clustered the COPUS variables into three 
teaching style categories—Didactic, Interactive Lecture, 
and Student-Centered. As acknowledged by  Tomkin 
et  al., (2019), these categories have remarkably similar 
traits. Firstly, lecturing, socratic, and didactic lecturing 
styles involve large portions of instructor lecturing (at 
least 80%) and student work is negligible, averaging 10% 
or less. Secondly, peer instruction and interactive lecture 
display concordant instructor behaviors, i.e. lecturing, on 
average, between 55% and 76% of the periods in the for-
mer case and in roughly 75% of the periods in the latter, 
and students’ group work (with student response systems 
or without) averaging between a quarter to a half of the 
observed periods. Finally, both the collaborative learning 
and the student-centered learning categories share low 
levels of lecturing (50% of periods or less) and high lev-
els of student work (around 50%). In fact, Tomkin et al. 
managed to relate the application of active learning with 
instructors’ participation in communities of practice 
(Scaled Agile Framework 2021), by using a collapsed cat-
egorization of the COPUS behaviors (Smith et al., 2014) 
to discriminate between active and passive learning prac-
tices. In summary, the COPUS SB code L was labeled as 
passive, and CG, WG, Prd, WC, and SP were labeled as 
active; and IB codes Lec, D/V were labeled as passive, and 
FUp, PQ, and CQ were labeled as active. We believe that 
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this active/passive categorization (included in Table  1) 
can help us to more easily describe the origin of our data, 
notably the different education strategies employed in 
our observed classes.

Although much research was dedicated to the inter-
pretation and validation of the COPUS protocol, we still 
have to consider that its present version captures some 
general actions of both instructors and students, and 
therefore it is not specific enough to judge per se the 
quality of those actions for enhancing learning, by which 
those assumptions have to be built upon the context 
where the observations were performed. For example, 
COPUS detects that an activity of clarifying nature was 
triggered, but it fails to make any further evaluation on 

the formative quality of the behavior, that is, if the clarify-
ing feedback was complete enough to clarify the doubts. 
In fact, McConnell and colleagues were unable to detect 
differences in the formative assessment practices enacted 
in class sessions that were categorized to be in the three 
different styles defined by Stains et  al.—Didactic, Inter-
active Lecture, and Student-Centered (McConnell et al., 
2021). We believe that this contextual need imposed 
while analyzing the COPUS variables may be crucial to 
understand if learning gains are achieved after applying 
certain in-class practices. Even so, as a first approach, 
we will try to maintain the descriptive nature of COPUS, 
generally interpreting the relation between engage-
ment and the observation of in-class behaviors without 

Table 1  A list of all COPUS attributes. Adapted from: (Smith et al., (2013); Tomkin et al., (2019))

Code Description Collapsed categories Active(A)/
Passive(P)

Students are doing... L Listening to instructor/taking notes, etc. Receiving (R) P

AnQ Student answering a question posed by the instructor with the rest of class listen-
ing

Talking to class (STC) -

SQ Student asks question –

WC Engaged in whole class discussion by offering explanations, opinion, judgment, 
etc. to whole class, often facilitated by instructor

A

SP Presentation by student(s) A

Ind Individual thinking/problem solving. Only mark when an instructor explicitly asks 
students to think about a clicker question or another question/problem on their 
own

Working (SW) –

CG Discuss clicker question in groups of 2 or more students A

WG Working in groups on worksheet activity A

OG Other assigned group activity, such as responding to instructor question –

Prd Making a prediction about the outcome of a demo or experiment A

TQ Test or quiz –

W Waiting (instructor late, working on fixing AV problems, instructor otherwise 
occupied)

Other (OS) –

O Other-explain in comments –

Instructors are doing... Lec Lecturing (presenting content, deriving mathematical results, presenting a prob-
lem solution, etc.)

Presenting (P) P

RtW Real-time writing on board, doc. projector, etc. (often checked along with Lec) –

D/V Showing or conducting a demo, experiment, simulation, video, or animation P

FUp Follow-up/feedback on clicker question or activity to entire class Guiding (G) A

PQ Posing a non-clicker question to students (non-rhetorical) A

CQ Asking a clicker question (mark the entire time the instructor is using a clicker 
question, not just when first asked)

A

AnQ Listening to and answering student questions with entire class listening –

MG Moving through class guiding ongoing student work during active learning task –

1o1 One-on-one extended discussion with one or a few individuals, not paying atten-
tion to the rest of the class (can occur with AnQ, but should not occur with MG)

–

Adm Administration (assign homework, return tests, etc.) Administration (A) –

W Waiting when there is an opportunity for an instructor to be interacting with or 
observing/listening to student or group activities and the instructor is not doing 
so

Other (OI) –

O Other-explain in comments –
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making any specific formative assessment about the con-
tent at hand. Nevertheless, future follow-ups of this work 
may apply a more granular criteria assessing formative 
constructs.

Measuring behavioral engagement
Alongside the behaviors being triggered, Smith et  al. 
also proposes the measurement of engagement from a 
behavioral perspective, which can be applied in order to 
judge the effectiveness of different instructional activi-
ties (Smith et  al., 2013). However, as reviewed before, 
engagement encompasses a wide range of constructs 
and its emergence is heavily context-related, thus its reli-
able annotation alongside in-class behaviors is difficult 
and must be approached systematically. Given this, prior 
to the in-class observations, several discussions were 
conducted between our observer and the instructors in 
order to classify students’ actions as indicative of behav-
ioral engagement. We found it relevant to conduct these 
discussions as both our observer and the target instruc-
tors of this study have more than fifteen years of expe-
rience in the field of STEM education. Concordant with 
research on behavioral engagement measurement ((Lane 
& Harris 2015), see Table  2), we concluded that, in our 
case, examples of actions that reflected the presence of 
engagement were looking at notes, doing exercises, and 
listening (relates to “Listening” and “Writing”), brief 
interaction with colleagues/instructor after an in-class 
question (relates to “Engaged student interaction” and 
“Engaged interaction with instructor”), or even looking 

at the phone for a few minutes after the teacher recom-
mended a website or app (relates to “Engaged computer 
use”); and that, conversely, a lack of students’ engagement 
was reflected by irrelevant distractions such as frequent 
laughs, and music or game sounds (relates to all disen-
gaged states except “Settling in/packing up”).

Considering such a classification, we then followed the 
proposed way to measure this attribute (Smith et al., 2013), 
notably by using a scale endowed with three levels—low, 
medium, and high; while assuming that there was low 
collective engagement whenever a small fraction of stu-
dents (0–20%) was engaged; there was medium collective 
engagement whenever substantial fractions of students 
were engaged and substantial fractions of students were 
not engaged; and that there was high collective engagement 
whenever a large fraction of students ( ≥ 80%) was engaged.

Method
Our experiments encompassed observational data from 
16 lessons—13 lessons of the Linear Algebra: LA (Insti-
tuto Superior  Técnico, 2019b), and 3 lessons of the 
Differential and Integral Calculus: DIC (Instituto Supe-
rior  Técnico, 2019a) courses, conducted in  Instituto 
Superior  Técnico (2017). In fact, the STEM content of 
first-year LA has been considered to generalize well 
before, i.e. more likely to show greater similarities of 
learner objectives among schools than other disciplines 
(Seifert & Beck 1984). We assumed the same for DIC due 
to its structure and covered materials.

Table 2  Descriptions of students’ in-class behaviors that indicate they are engaged or disengaged. Adapted from:  Lane and Harris 
(2015)

Engaged Disengaged

Listening: Student is listening to the lecture. Eye contact is focused on the 
instructor or activity and the student makes appropriate facial expres-
sions, gestures, and posture shifts (i.e. smiling, nodding in agreement, 
leaning forward)

Settling in/packing up: Student is unpacking, downloading class material, 
organizing notes, finding a seat, or packing up and leaving classroom

Writing: Student is taking notes on in-class material, the timing of which 
relates to the instructor’s presentation or statements

Unresponsive: Student is not responsive to the lecture. Eyes are closed or 
not focused on instructor or lecture material. Student is slouched or sleep-
ing, and student’s facial expressions are unresponsive to instructor’s cues

Reading: Student is reading material related to the class. Eye contact is 
focused on and following the material presented in lecture or pre-printed 
notes. When a question is posed in-class, the student flips through their 
notes or textbook

Off-task: Student is working on homework or studying for another course, 
playing with phone, listening to music, or reading non-class-related mate-
rial

Engaged computer use: Student is following along with the lecture on 
computer or taking class notes in a word processor or on the presenta-
tion. Screen content matches lecture content

Disengaged computer use: Student is surfing web, playing a game, chat-
ting online, or checking the e-mail.

Engaged student interaction: Student discussion relates to class material. 
Student verbal and nonverbal behavior indicates he or she is listening or 
explaining lecture content. Student is using hand gestures or pointing at 
notes or the screen

Disengaged student interaction: Student discussion does not relate to class 
material

Engaged interaction with instructor: Student is asking or answering a 
question or participating in an in-class discussion

Distracted by another student: Student is observing other student(s) and is 
distracted by an off-task conversation or by another student’s computer or 
phone
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At the time of the data collection, the LA program at 
Instituto Superior Técnico included mastery of matrix 
operations and factorization, methods for solving sys-
tems of linear equations, knowledge of vector spaces and 
linear transformations, eigenvectors and eigenvalues, 
and diagonalization techniques; and the DIC program 
included mastery of concepts of limits, derivatives, inte-
gral operations, and applications such as the convergence 
of sequences and series.

The data captured in our observations refers to 13 les-
sons from the same professor and 3 other lessons from 
two other professors. It is worth to note that the profes-
sor from which we observed 13 lessons co-authors this 
work. The monitored classes encompassed 5 theoretical 
classes (4 from LA and 1 from DIC) and 11 problem-
solving classes (9 from LA and 2 from DIC).

Given that we considered the LA and DIC courses as 
our target of analysis, our sample included students from 
the first university year, who were aged around 18 years 
old. The same students attended both the LA and DIC 
classes, excluding a few students who were repeating one 
of the courses. As such, the sample covered roughly 100 
students, where approximately 89% of the participants 
were male, and 11% were female. In addition, because 
there were multiple problem-solving shifts each week, 
the student attendance in theoretical classes (around 
100 students) was higher than in problem-solving classes 
(around 30 students). Another difference is that the the-
oretical classes were by definition 50  min long and the 
problem-solving classes were 80 min long. At the start of 
the course, the students were informed about the experi-
ment, and invited to sign a compulsory consent form, 
confirming their predisposition to participate in our data 
collection. Even so, since the analysis was made at a col-
lective behavioral level, no personal or confidential infor-
mation was extracted from the individual participants, 
and there were no potential risks and no anticipated ben-
efits to each of them.

The students who participated in our experiment were 
monitored for each 2 min of each lesson, during 50 min, 
by an expert in the computer science field familiarized 
with the COPUS protocol (the first 50  min were con-
sidered for the case of the problem-solving classes). It is 
worth to note that the expert co-authors this work. This 
observer sat behind the students in a discrete way, so that 
data collection did not disrupt the normal lesson flow. As 
explained earlier, we relied on the observer’s perception 
of different students’ conduct considered to demonstrate 
the presence or lack of engagement, and used an engage-
ment scale endowed with three levels—low, medium, and 
high, following the COPUS guidelines.

In total, over the 16 lessons, we collected 400 engage-
ment datapoints and 1816 behavior datapoints (some 

timesteps encompassed more than one behavior, but only 
one engagement datapoint), from which 922 were SB and 
894 were IB. 443: 210 (SB) + 233 (IB) of the behavior data 
were extracted from theoretical classes, and 1373: 712 
(SB) + 661 (IB) were extracted from problem-solving 
classes. Even so, 15 of the 400 datapoints were left blank 
due to external factors such as the class starting late, and 
therefore were discarded from our analysis.

Figures  2 and  3 plot the distribution of the behavior 
datapoints collected over the theoretical and problem-
solving classes. After analyzing the distributions, we 
can verify that a big part of the COPUS behaviors were 
recorded during our data collection. From all of the 
recorded behaviors, individual thinking and listening 
(Ind and L) were by far the most frequent SB in both class 
types, and conversely, CG, T/Q, and WC had few col-
lected datapoints. Lecturing, real-time writing on board, 
and guidance while moving through class (Lec, RtW, and 
MG) were among the most frequent IB across the two 
class styles, and conversely, CQ had few collected data-
points. On top of that, we can also verify the nonexist-
ence of data for WG, Prd, SP, O, PQ, D/V, and Adm in 
our observations. By analyzing the origin of our behavior 
data, we can verify that, as expected due to their nature, 

Fig. 2  Pie charts demonstrating the distribution of the COPUS 
behaviors over the observed theoretical classes

Fig. 3  Pie charts demonstrating the distribution of the COPUS 
behaviors over the observed problem-solving classes
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a wider range of students’ active behaviors was observed 
in the problem-solving classes (i.e. CG and WC) (Lund 
et al., 2015; Stains et al., 2018), although L and Ind domi-
nated the students’ behaviors in both class styles. Even 
more, relating the IB footprints with existing categoriza-
tions (Tomkin et  al., 2019), the theoretical classes were 
lecture-based, but still slightly interactive and promoted 
some peer instruction (Lec and RtW constituted 74.6% of 
the observations, although FUp, MG, and 1o1 were pre-
sent and occupied a considerable portion—11.1%), and 
the problem-solving classes were interactive and pro-
moted peer instruction, leaning toward the collaborative 
and student-centered methodology (Lec and RtW consti-
tuted only 55.8% of the observations, and FUp and CQ 
were present and occupied 13.3%).

To ensure the likelihood of the collected data, we held 
a discussion about the COPUS data collected and our 
behavior profiling choices at a national mathematics 
congress. The participants present at this session, mostly 
statisticians, did not refute the coherence of our profiles 
in respect to the ones currently assumed for similar types 
of STEM classes.

Data cleaning and synthesis
After profiling our data, we prepared it for our main tests. 
Our final database grouped the data by each lesson, thus 
presenting 16 entries. Each entry encompassed the fre-
quencies of each measured behavior in three class peri-
ods (an Initial period—from the start of the class until 
minute 16; a Medium period—from minute 18 to minute 
32; and a Later period—from minute 34 to minute 50), 
by which these dimensions were named, for example, as 
LInit , OGMed , or AnQLater . For each lesson, the final data-
base also registered the average engagement experienced 
by the students for each period: engInit , engMed , engLater , 
computed after attributing the values 1, 2, or 3 in case the 
engagement was coded as low, medium, or high by our 
observer at each 2 min time step, and averaging those val-
ues for that period. While grouping the data, we consid-
ered that no behaviors were observed in the 15 missing 

datapoints, and that those cases did not contribute to the 
average engagement of the students. The histograms dis-
played in Figs. 4, 5, and 6 plot the absolute frequencies of 
the COPUS behaviors for each of the considered in-class 
periods. As previously suggested, Ind and L were by far 
the most frequent SBs, and more predominant towards 
the later period. The students and instructors waited (W) 
frequently at the initial period, yet the same did not hap-
pen during the other time frames. Besides, AnQ and OG 
had a considerable frequency, similar among the three 
periods, although AnQ was slightly more frequent at the 
medium period, and OG was slightly more frequent at 
the later period. As for the IBs, both RtW and Lec pre-
sented high frequency, yet they were less frequent at the 
beginning. MG and FUp were present over all periods 
with considerable frequency, yet MG prevailed in the 
initial and later periods, and FUp prevailed at the begin-
ning. The non-mentioned behaviors presented low fre-
quency overall.

All of the COPUS variables were assumed to be quan-
titative scales, which allowed us to compute linear 
regressions considering either the different behaviors 
of students or instructors as predictors of the students’ 
average engagement at each of the three class periods. 
Instead, we could try to build models relating all behav-
iors simultaneously, but we chose not to follow that 
direction of analysis due to some conceptual correlations 
between students’ and instructors’ variables that could 

Fig. 4  Histograms of the COPUS behaviors over the Init period

Fig. 5  Histograms of the COPUS behaviors over the Med period

Fig. 6  Histograms of the COPUS behaviors over the Later period
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ambiguate the statistical analysis and interpretation of 
the data. Further, although we could attempt to build 
separate models for theoretical and problem-solving 
classes, we assumed that said approach would render sta-
tistically weak models, given that the theoretical classes 
provided a more limited sample and behavior set (see 
Figs. 2 and 3). Consequently, six linear regressions were 
obtained resorting to a stepwise variable selection, which 
was examined and compared with forward and backward 
variable selection methods, meaning that after different 
combinations of behaviors were evaluated as predictors, 
only the most significant and scientifically explainable 
ones were selected for further scrutiny. All of the analyses 
resorted to the IBM SPSS Statistics, v. 26 software (IBM 
2021), from which we used the default critical entry and 
removal F probabilities for variables selection of 0.05 and 
0.1, respectively.

All linear model assumptions were assessed, nota-
bly the overall distribution of the data, and the normal-
ity, homogeneity, and independence of the errors. The 
first three assumptions were graphically validated, and 
the assumption of the independence of the errors was 
validated resorting to the Durbin–Watson statistic, as 
described by Marôco (Marôco 2021). With only one SB 
regressor per model (see next), the Durbin-Watson tests 
indicated non-autocorrelated errors for the SB regres-
sions ( d = 1.968 , 1.768, and 1.562, respectively). With 
one IB regressor in the first and last models, and two 
regressors in the second model (see next), the Durbin-
Watson tests also indicated non-autocorrelated errors for 
the IB regressions ( d = 1.992 , 1.822, and 1.658, respec-
tively). Additionally, because the R2 measure of a model is 
interpreted as the proportion of variance in the depend-
ent variable that can be explained by the independent 
variables, we considered that 0 ≥ R2 > 0.33 to be asso-
ciated with low explanatory power, 0.33 ≥ R2 > 0.66 
to be associated with medium explanatory power, and 
0.66 ≥ R2

≥ 1.0 to be associated with high explanatory 
power.

Results
A first set of linear regressions was conducted to relate 
the students’ behaviors with the average engagement 
values. The multiple linear regression regarding the Init 
period allowed us to identify initial individual think-
ing IndInit ( β = 0.838; t(14) = 5.749; p < 0.001) as a sig-
nificant predictor of engInit , defining the adjusted model: 
êngInit = 1.082+ 0.175× IndInit . This model presents 
high explanatory power (F(1,14)=33.050; p < 0.001; R2

a

=0.681); the multiple linear regression regarding the Med 
period allowed us to identify other assigned group activi-
ties OGMed ( β = 0.798; t(14) = 4.953; p < 0.001) as a sig-
nificant predictor of engMed , defining the adjusted model: 

êngMed = 1.701+ 0.149×OGMed . This model presents 
medium explanatory power (F(1,14)=24.536; p < 0.001; 
R2
a=0.611); the multiple linear regression regarding the 

Later period allowed us to identify other assigned group 
activities OGLater ( β = 0.747; t(14) = 4.207; p < 0.01) as 
a significant predictor of engLater , defining the adjusted 
model: ̂engLater = 1.412+ 0.126×OGLater . This model 
presents medium explanatory power (F(1,14)=17.695; p 
< 0.01; R2

a=0.527).
A second set of linear regressions was conducted to 

relate the instructors’ behaviors with the average engage-
ment values. The multiple linear regression regarding 
the Init period allowed us to identify instructor wait-
ing WInit ( β = −0.746; t(14) = −4.189; p < 0.01) as a 
significant predictor of engInit , defining the adjusted 
model: êngInit = 2.389− 0.247×WInit . This model pre-
sents medium explanatory power (F(1,14)=17.546; p < 
0.01; R2

a=0.525); the multiple linear regression regard-
ing the Med period allowed us to identify instruc-
tor follow-up/feedback FUpMed ( β = 0.516; t(13) = 
2.896; p < 0.05) and guidance by moving through class 
MGMed ( β = 0.472; t(13) = 2.647; p < 0.05) as signifi-
cant predictors of engMed , defining the adjusted model: 
êngMed = 1.559+ 0.130× FUpMed + 0.150×MGMed   . 
This model presents medium explanatory power 
(F(2,13)=10.333; p < 0.01; R2

a=0.554); the multiple lin-
ear regression regarding the Later period allowed us to 
identify instructor guidance by moving through class 
MGLater ( β = 0.770; t(14) = 4.510; p < 0.001) as a signifi-
cant predictor of engLater , defining the adjusted model: 
̂engLater = 1.333+ 0.187×MGLater . This model presents 

medium explanatory power (F(1,14)=20.337; p < 0.001; 
R2
a=0.563).

Discussion and practical considerations
To experimentally verify the influence of different in-
class behaviors in the overall collective engagement of the 
students in a class, we observed 16 STEM (in particular 
math) lessons using the COPUS protocol, and selected 
linear models significantly relating the frequency of the 
students’ or the instructors’ behaviors with the students’ 
average engagement at three class periods: Init, Med, 
and Later. The models highlighted five variables of inter-
est (two SBs: Ind and OG; and three IBs: W, FUp, and 
MG). As previously analyzed, although these behaviors 
were observed across all styles of classes, FUp data was 
more frequent at the beginning, and Ind and OG were 
more frequent towards the final period. W prevailed at 
the beginning of the class, and MG data was frequent 
overall, with slightly lower values during the medium 
period. Nonetheless, all models encompassed frequently 
observed variables (Figs. 4, 5, and 6), and therefore were 
considered statistically relevant.
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The obtained models allow us to better understand 
how student engagement can be influenced and/or pre-
dicted by the instructors’ and students’ behavior across 
different lesson periods. In the beginning of a lesson, 
the existence of individual thinking (Ind), in which a 
student individually responds to an instructor question, 
is positively correlated with engagement, and making 
students wait instead of interacting with them (W) is 
negatively correlated. During the medium stage of a les-
son, students’ collective-driven participation, e.g. when 
answering shared questions (OG), and the instructors’ 
movement through the class guiding on-going student 
work (MG) together with follow-up discussion to stu-
dents’ questions and answers (FUp) are positively cor-
related with engagement. Finally, at the later period, 
student’s shared participation (OG) and instructors’ 
movement trough class (MG) are each positively corre-
lated with engagement, but there is no longer the need 
for follow-up discussions (FUp) to achieve engagement. 
In our opinion, these relations suggest that an ideal 
learning scenario may combine the benefits of theoreti-
cal and problem-solving activities, and assume the form 
of a workshop which stimulates more individual think-
ing at the start, and later makes use of group questions 
and feedback. Extrapolating this thought, students may 
be more self-centered and reflective at the beginning of 
an interaction extending beyond a single lesson (a long-
term project, or a subject as a whole), while at the end 
they may value more the instructor’s attention, guid-
ance, and relatedness. However, care is needed to adapt 
this knowledge to broader time frames, as it requires 
validation through longitudinal studies that consider 
broader activities spanning through several classes.

Next, let us further interpret the applicability of our 
models in an ALS, providing some design guidelines 
useful for future reference. The fact that the mod-
els include both behaviors of students and instructors 
is important. Notably, the relations verified between 
behaviors and engagement are relevant because they 
inform designers of an ALS what are the best strategies 
to achieve engagement in tasks deployed across differ-
ent points in time. Yet, some of the students’ variables 
also depend on the instructor’s behavior, for instance 
the existence of individual thinking as annotated by 
COPUS can only occur if the instructor asks individual 
questions to students, and the participation in group 
activities relies on the plural nature of the questions 
posed by the instructor.

Given this, the students’ behavior models determined 
in the previous section suggest that to achieve/main-
tain high engagement at the early stages, the instructor 
should take some opportunities to ask questions and 
provide feedback to individual students, and afterwards 

opt for collective questions and feedback, by which we 
can write the first ALS design guideline.

Design Guideline 1 (DG1)

To maintain engagement, an ALS should deploy individual-directed 
questions and feedback at early stages of the interaction, leaving 
group-directed questions and feedback for later on.

Upon further scrutiny, the models that show cor-
relation between students’ behavior and engagement 
can also be used as direct estimators of engagement. 
If after posing a question to a student (or group) there 
is no answer, this is a signal that engagement has not 
increased, and as such the ALS should try to mitigate 
the lack of engagement, e.g. by finding a new responder, 
or by rephrasing the original question. We can then 
register a second ALS design guideline.

Design Guideline 2 (DG2)

An ALS can use the presented student models to compute a rough 
estimation of engagement. This can be achieved by computing the 
IndInit , OGMed , and OGLater behavior frequencies, obtained by count-
ing how many questions are answered by a single student or by the 
spokesperson of a group of students, respectively, and using those 
frequencies as in the students’ linear models:

êngInit = 1.082+ 0.175× IndInit

êngMed = 1.701+ 0.149× OGMed

êngLater = 1.412+ 0.126× OGLater

Furthermore, the instructor-directed models indi-
cated that high engagement can be maintained by 
(expectedly) minimizing initial delays ( WInit ), and by 
valuing discussions and follow-ups ( FUpMed ) as well as 
students’ guidance ( MGMed and MGLater ) further on. 
In specific, the models suggest that guidance of on-
going work is needed through medium and later stages, 
although later stages disregard follow-ups as a measure 
to maintain engagement. Follow-ups can emerge natu-
rally in discussions which require bi-directional inter-
action between students and the system, and students’ 
guidance may be achieved by triggering automatic feed-
back prompts and/or hints about the students’ perfor-
mance or process (Bonner et  al., 2016; Gabelica et  al., 
2012). This leads to the formulation of a third ALS 
design guideline.

Design Guideline 3 (DG3)

To maintain high engagement, it is important that an ALS is as pro-
active as possible (minimizes students’ inactive periods) at early stages 
of the interaction, and that, after the early period of interaction, it 
stimulates follow-up discussion and students’ guidance. In specific, at 
transitive moments, an ALS should consider both of these strategies, 
and at later stages it can exclusively provide guidance of on-going 
work, e.g. through feedback prompts and/or hints.
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We will now further explore the application of guide-
lines DG1–DG3. Research on feedback provided to 
teams in higher education (Gabelica et  al., 2012) covers 
topics such as the feedback level—whether feedback dis-
plays metrics of individuals (individual-level feedback) 
or the whole team (team-level feedback), and the set-
ting in which the feedback is delivered—if the feedback 
is given to a team or provided to individuals in isolation. 
We consider that both individual-directed and group-
directed feedback interventions can be deployed to guide 
the completion of a task by a collective, independently 
of its style, i.e. we can produce individual-level feedback 
for the participants of a group active task, or a discus-
sion encompassing collective feedback with team metrics 
for the members of a task valuing individual comple-
tion. Based on recent research (Gomes et al., 2020; Alves 
et  al., 2020), we speculate that individual-oriented tasks 
can (even in a group/class context) reward individual 
focus and target self-improvement, contrasting with 
group active tasks such as altruistic tasks rewarding full 
others-driven task completion, mutual-help tasks that 
reward all the task members equally, or even competitive 
tasks in which individual reward is provided to the det-
riment of the others’ reward. In fact, this aspect is fur-
ther approached by some serious game research, which 
considers gameplay-shaping elements, such as rewards 
and scores, as separate from interactivity-shaping game 
constructs such as feedback (Zea et al., 2009). We believe 
that, by applying DG1–DG3 to construct feedback inter-
ventions (which can be deployed as questions, discus-
sions, and follow-ups), we can use an ALS to deploy tasks 
with different aims (e.g. an individual task targeting self-
improvement, or a group task targeting cooperation), 
while at the same time taking into account the general 
knowledge extracted from our models to keep students 
engaged along the completion of those tasks. This leads 
us to propose a fourth design guideline.

Design Guideline 4 (DG4)

DG1–DG3 may be applied to construct ALS feedback interventions that 
can in turn be deployed to inform students during the completion of 
a task, independently of its style, for instance, individual-directed ques-
tions and feedback can be provided in tasks valuing group completion, 
and group-directed questions, discussions, and follow-ups can be 
prompted in tasks valuing individual completion.

Further, Gabelica et al. align their practical implications 
of feedback with our time-based analysis and premises, 
arguing that in educative contexts, teachers should con-
tinuously observe their students when engaged in a team 
task, allowing themselves to provide suited and timely 
feedback. One of the main benefits of applying our guide-
lines to an ALS is that it can be used to automatically inter-
vene and deploy engagement-inducing feedback through 

the course of a whole interaction, instead of the feedback 
being singularly given at the end of the interaction (as what 
usually happens in education for harder-to-respond in-
class doubts or when an assignment only provides a final 
grade). Figure  7 illustrates the integration of the guide-
lines approached here in the operation of an ALS. From 
the beginning of the interaction until the last stage is fin-
ished, the ALS estimates the students’ learning states, and 
provides them different styles of tasks (area A), to which it 
integrates feedback based on our engagement models (area 
B). More specifically, individual-directed questions are gen-
erated if the current moment is at the early stage of inter-
action (area B.1), group-directed discussions are generated 
if the current moment is at the medium stage (area B.2), 
and group-directed questions are generated if the current 
moment is at the later stage (area B.3). While formulating 
the feedback, the system verifies if engagement increased 
since the last intervention so that it decides to rephrase 
questions or to propose other discussion topics. To better 
materialize the benefits and concepts approached here, we 
will end our discussion by providing an illustrative example 
of applying an ALS endowed with this operation.

Illustrative example
This section presents a hypothetical use-case for our mod-
els—using an ALS to guide a 50-minute LA workshop class. 
Like in our observations, we assume that this ALS observes 
and updates its state every 2 min, and that the early stage of 
our interaction comprehends minutes 1 to 16, the medium 
stage comprehends minutes 18 to 32, and the later stage 
comprehends minutes 34 to 50. We will assume that this 
ALS models students’ learning states and uses such infor-
mation to propose learning materials (tasks), while giving 
students’ feedback about their performance and/or work 
process (following the operation of Fig.  7). Now, let us 
exemplify the operation of our ALS, by considering how, at 
different moments, different levels of feedback can be inte-
grated in the following LA exercise, adapted from Instituto 
Superior  Técnico (2001) (for ease of comprehension, this 
assumes that the same task is chosen by the ALS at differ-
ent periods).

Example of an LA Exercise

Calculate, if possible, A+B, B+C, 2A, AB, BA, and CB:

A =

[

1 4
√
2

−2 1 3

]

B =

1 2 π
√
3 − 1 2

0 1 − 1

C =





3 0 0

0 − 2 0

0 0 5




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Example of an LA Exercise

Solution:
Applying the matrix sum and multiplication rules, we get the following 
possible results (the others are not well defined):

B + C =





4 2 π
√
3 − 3 2

0 1 4





2A =

[

2 8 2
√
2

−4 2 6

]

AB =

[

1+ 4
√
3 − 2+

√
2 π + 8−

√
2

−2+
√
3 − 2 − 1− 2π

]

CB =





3 6 3π

−2
√
3 2 − 4

0 5 − 5





During the early stage of our interaction (minutes 1 to 
16), the ALS will prioritize individual-level questions and 
feedback (DG1), focusing on the frequency of students’ 
individual interventions as an estimator of engagement 
(DG2). For instance, it can ask individual members of 
our simple task what formula they can apply to calculate 
B+C, or provide them with such a formula, even if the 
grade of that particular problem depends on the con-
tribution of all group members. During this phase, it is 

expected that the frequency and timeliness of each task 
is higher, minimizing waiting periods (DG3). Advanc-
ing to the medium stage (minutes 18 to 32), the system 
will use discussions (implying follow-ups) and team-
level feedback (DG1 and DG3), for instance by opening 
a forum for justifying whether and how different matrices 
can be summed/multiplied, and it will estimate, when-
ever possible, the engagement of the class via the fre-
quency of the students’ collective-driven participation 
(DG2), e.g. when a student provides a valid input to the 
discussion such as presenting/explaining a formula, or 
contributes to solving a matrix like CB. For the ALS to 
follow and guide students, these group discussions may 
further be complemented with hints, e.g. the ALS show-
ing how matrix multiplication is applied to obtain some 
elements of the CB matrix. In fact, team-level discussions 
can be used even if each student’s grade for that problem 
depends only on their individual performance, or if the 
discussions are shown in each students’ display instead of 
a shared display. Advancing to the later stage (minutes 34 
to 50), the system will promote more direct group feed-
back and guidance (no need for discussions implying fol-
low-ups), e.g. through group questions such as whether 
A+B can be solved, and activity-completion hints such as 

Fig. 7  Flow chart depicting the operation of an ALS following our guidelines. From the beginning of the interaction until the last stage is finished, 
the ALS measures the students’ learning states, and provides them different styles of tasks (area A), to which it integrates feedback based on our 
engagement models (area B) according to the current adaptation stage (initial: area B.1; medium: area B.2; or later: area B.3). While formulating 
the feedback, the system verifies if engagement increased since the last intervention so that it decides to rephrase questions or to propose other 
discussion topics
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showing some elements of the AB matrix. When the les-
son reaches its end at the 50-minute mark, the ALS fin-
ishes its last stage and stops the adaptation process.

Conclusion
The goal of this study is to experimentally verify the 
influence of different in-class behaviors in students’ 
engagement, hoping to inspire improved education 
methodologies and Adaptive Learning Systems. In order 
to approach such question, we collected students’ and 
instructors’ behavior data, as well as students’ engage-
ment data from 16 different STEM (math) lessons, using 
the COPUS observation protocol.

After analyzing the behavior footprints of our lessons, 
we selected several linear models significantly relating 
the initial, medium, and later in-class frequency of either 
students’ or instructors’ behaviors with students’ aver-
age engagement. The models revealed benefits of initial 
students’ individual thinking, and later group participa-
tion, as well as the guidance of instructors at later peri-
ods, suggesting the benefit of applying a workshop-like 
education methodology deployed with such a structure. 
Given these trends, we provided not only some guide-
lines on how to apply this knowledge in an ALS, but also 
materialized these guidelines through a more objective 
automatic process endowed with the proposed pedagogic 
methodology. In specific, based on our results, we sug-
gested that, at an early stage, an ALS may prioritize the 
deployment of individual questions and feedback, and 
focus on the frequency of students’ individual input as 
an estimator of engagement. Advancing to the medium 
stage, the system can deploy follow-up discussions and 
collective feedback, and estimate, whenever possible, the 
engagement of the class via the frequency of the students’ 
answers in such discussions. At the later stage, the sys-
tem may ask group questions, and use students’ partici-
pation on those questions to estimate class engagement. 
Additionally, we argued how an ALS can consider both 
individual-directed and group-directed feedback inter-
ventions in tasks with different settings, i.e. individual-
directed questions and feedback can be provided in tasks 
valuing group completion, and group-directed questions, 
discussions, and follow-ups can be prompted in tasks val-
uing individual completion.

Limitations and future work
Even with interesting results, some limitations of this 
work have yet to be pointed. Firstly, our models were 
obtained using the observation of math classes, which 
narrows the scope of our results to this STEM area. Thus, 
the generalization of the ideas here expressed to other 
areas requires observations from a more varied subject 

set. Besides, opposed to more general COPUS research 
(Smith et al., 2014), only one observer collected the data, 
which may have somewhat biased data collection. Also, 
the observation of only the first 50 min of each class may 
have inhibited some relations, mainly during problem-
solving classes which were by definition 80 min long. The 
possible existence of the same relations in a more sparse 
number of intervals or a longer-than-a-lesson project 
could probably allow the computation of more accurate 
models. Another aspect which possibly influenced our 
models was the fact that our classes were not endowed 
with the same number of samples, i.e. while our theo-
retical classes presented an attendance of around 100 
students, only around 30 students attended each prob-
lem-solving class. Besides, there were considerably more 
male than female students. Given this, in the future, we 
may re-iterate our tests with longer and more attend-
ance-consistent and gender-consistent observations. The 
fact that the observations relied predominantly on classes 
from one instructor (13 lessons from the same professor 
and 3 other lessons from two other professors) may have 
also impacted the quality of our data collection, although 
this limitation was rendered non-critical due to the fact 
that the data analysis was done at the level of students’ 
and instructors’ behaviors, i.e. even though we only have 
3 lessons from other professors, we still registered the 
emergence of multiple behaviors in those cases, as a con-
sequence of different class circumstances. Overall, as the 
sparsity of the data sample in terms of demography and 
institutions is a recurrent concern in education research 
(Murphy et  al., 2019; Wilson et  al., 2015), longitudinal 
studies encompassing several school years, more sub-
jects and instructors, or more education institutions, may 
be developed to further validate or disprove the models 
presented and discussed here. Ultimately, we hope that 
the application of these models to an ALS may unleash 
the practical value of our proposal, and that our analysis 
opens an exploration path for the deployment of more 
sophisticated learning processes.
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