
Sun et al. IJ STEM Ed (2021) 8:54
https://doi.org/10.1186/s40594-021-00311-1

RESEARCH

Comparing learners’ knowledge, behaviors,
and attitudes between two instructional
modes of computer programming in secondary
education
Dan Sun1, Fan Ouyang1*  , Yan Li1* and Caifeng Zhu2 

Abstract 

Background:  Unplugged programming is proved to be an effective means to foster the learner-centered program-
ming learning. In addition to the final tests, learners’ programming knowledge, skills, and capacities are primarily
demonstrated throughout the programming process, particularly in the situation when they encounter challenges
and problems. However, few studies examine how learners engage in the programming processes and to what extent
unplugged programming fosters learning. This research used a quasi-experimental design to investigate two instruc-
tional modes in China’s secondary education, namely, the instructor-directed lecturing and the learner-centered
unplugged programming. Based on an analytical framework, this research used mixed methods to compare learners’
knowledge, behaviors, and attitudes under these two instructional modes.

Results:  The research results revealed discrepancies between two instructional modes. First, learners in the
unplugged programming class achieved significantly higher scores on the programming knowledge assessment,
compared to learners in the traditional lecturing class. Second, compared to the traditional lecturing class, learners
in the unplugged programming class had higher test scores of the computational thinking skills, particularly on the
cooperativity dimension. Next, discrepancies of in-class behaviors showed that learners in the unplugged program-
ming class had frequent behaviors of listening to the instructor’s instructions and discussing with peers, while learners
in the instructor-directed class had frequent behaviors of listening to instructor, taking notes, and irrelevant activities.
Learners’ self-reported attitudes in the unplugged programming indicated a higher level of confidence than learners
in the traditional lecturing class. Overall, this research revealed that the learner-centered unplugged programming
had potential to improve learners’ programming knowledge, behaviors, and attitudes compared to the traditional
instructor-directed lecturing of programming.

Conclusions:  As a feasible and easy-to-use instructional activity in computer science education, unplugged pro-
gramming is encouraged to be integrated in formal education to increase learners’ programming interests, motiva-
tions, and qualities. This quasi-experimental research compared learners’ programming knowledge, behaviors, and
attitudes under two instructional modes. The results revealed critical discrepancies between two instructional modes
on learners’ knowledge gains, in-class behaviors, and changes of attitudes towards programming. Pedagogical and

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

International Journal of
STEM Education

*Correspondence: fanouyang@zju.edu.cn; yanli@zju.edu.cn
1 College of Education, Zhejiang University, #866, Yuhangtang Rd.,
Hangzhou 310058, Zhejiang, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4382-1381
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40594-021-00311-1&domain=pdf

Page 2 of 15Sun et al. IJ STEM Ed (2021) 8:54

Introduction
As one strand of the science, technology, engineering
and mathematics (STEM) education, computer pro-
gramming has positive influences on advancing learners’
computational thinking (CT) skills (Sun et al., 2021a, b),
fostering their motivation and engagement (Schnittka
et al., 2015), and improving their computer science
career interests (Chittum et al., 2017). In formal educa-
tion, the instructor-directed lecturing is a widely used
instructional mode, through which instructors transmit
computer programming knowledge to learners with oral
presentations (Wu & Wang, 2017). Although this instruc-
tional approach helps learners gain computer program-
ming knowledge, instructors encounter many challenges
during actual programming practices, such as how to
decrease learners’ frustration and failure, how to sus-
tain their programming interests and motivations, and
how to eventually improve their programming skills and
capacities (Falloon, 2016; Looi et al., 2018; Tom, 2015).
To address those challenges, emerging instructional
strategies, e.g., unplugged, game-based, or project-based
programming, have been used in informal learning to
transform the instructor-directed lecturing of program-
ming knowledge to the pragmatic, learner-centered pro-
gramming practices (Brackmann et al., 2017; Hosseini
et al., 2019; Nurbekova et al., 2020).

Among those practical strategies, unplugged program-
ming is a hands-on programming activity without the
supports of computers or other electronic technologies
to contextualize computational concepts and algorithms
through physical or kinesthetic activities (e.g., Alamer
et al., 2015; Gouws et al., 2013; Thies & Vahrenhold,
2013). Research argues that unplugged programming
activities can simplify computational concepts for learn-
ers and, therefore, promote their programming engage-
ment, motivation, and interest (Alamer et al., 2015; Looi
et al., 2018). During the programming process, learners
usually encounter programming challenges and prob-
lems; to solve programming problems, they need to pose
and answer questions, share and construct knowledge,
and create programming solutions or products through
individual learning or peer interaction (Lewis, 2012; Sun
et al., 2021a, b; Wu et al., 2019). However, few studies
actually examine how learners engage in the program-
ming practices from a process-oriented perspective, and
to what extent unplugged programming activities foster

learner learning (del Olmo-Muñoz et al., 2020; Grover
et al., 2019; Huang & Looi, 2020). The process-oriented
perspective focuses on details of how students coordi-
nate their communications, discourses, and behaviors
during actual instruction and learning processes (Pereira
et al., 2020; Sun et al., 2021a, b; Wu et al., 2019). Corre-
spondingly, the process-oriented analysis stresses the
micro-level, fine-grained analysis of students’ behavio-
ral, cognitive, metacognitive activities during the pro-
gramming practice, which is beneficial for researchers to
gain a holistic insight into how programming activities
progress.

In response to this research gap, this research used
a quasi-experimental research supported with mixed
methods to implement and investigate the learner-cen-
tered unplugged programming in China’s secondary
education and compared the effects of the unplugged
programming activities on learner’s learning with the tra-
ditional instructor-directed lecturing mode. Specifically,
mixed methods (i.e., video analysis, lag sequential analy-
sis, statistical analysis, and thematic analysis) were used
to analyze and compare learners’ gains of programming
knowledge, in-class behaviors, and attitudes towards pro-
gramming between two instructional modes. Based on
empirical results, this research proposed a holistic insight
of pedagogical and analytical implications for computer
programming education.

Literature review
Grounded upon the constructivist perspective, learn-
ing is an active, constructive process, through which
learners actively construct their own understandings
through interacting with peers, resources, and tech-
nologies (Papert, 1991). Contextualization of sophisti-
cated computational algorithms is a means to alleviate
the difficulties of learners’ conceptual understandings,
and, therefore, stimulate learners’ active learning and
construction of programming knowledge (Bransford
et al., 2000; Falloon, 2016). A major approach to con-
textualize programming is the unplugged program-
ming that exposes learners to computational concepts
and algorithms without the support of computers
(Bell et al., 2009). In the hands-on, unplugged activi-
ties, learners conceptually engage in understanding
relevant programming knowledge through a series
of contextualized materials (e.g., logic games, cards,

analytical implications were provided for future instructional design and learning analytics of computer programming
education.

Keywords:  STEM education, Unplugged programming, Process-oriented analysis, Behavioral pattern analysis,
Secondary education

Page 3 of 15Sun et al. IJ STEM Ed (2021) 8:54 	

strings, or physical actions). The unplugged program-
ming is mostly used in the informal learning contexts
to engage novice learners in computer programming
(Taub et al., 2012; Thies & Vahrenhold, 2013). Dur-
ing the programming process, learners’ programming
knowledge, skills, and capacities can be demonstrated,
particularly in the situation when they encounter chal-
lenges and problems that require deliberate problem-
solving and meaning-making process (Wu et al., 2019).
In K-12 formal educational context, the main instruc-
tional approach of computer programming is still the
instructor-directed lecturing, sometimes followed
with learners’ programming practices on computers
(Panwong & Kemavuthanon, 2014).

Empirical research has indicated that, compared to the
traditional instructor-directed lecturing, unplugged pro-
gramming has potential to foster learners’ programming
knowledge, active engagement, and positive attitudes.
First, unplugged programming can improve learners’
computational thinking (CT) skills and programming
knowledge acquisitions. For example, Alamer et al.
(2015) reported that unplugged activities succeeded in
simplifying key programming concepts to shape and
deepen learners’ understandings of the programming
knowledge. Ballard and Haroldson (2021) also summa-
rized the effects of using non-programming, unplugged
approaches to teach programming skills and concepts
(e.g., abstraction, generalization, decomposition, algo-
rithmic thinking, debugging). Second, research finds
that unplugged programming has potential to improve
learners’ active engagement. For example, through video
analysis, Looi et al. (2018) found that unplugged activi-
ties helped all group learners engage in the explora-
tions of the sorting algorithms, which resulted in good
programming performances on this algorithm. Tsarava
et al. (2018) designed board games to increase children’s
motivation for programming learning, and found that
unplugged activities helped keep children engaged in
the programming game. Third, a series of studies have
been conducted to examine the benefits of unplugged
programming for promoting learners’ positive attitudes.
For example, Hermans and Avvaloglou (2017) found that,
compared with learning in Scratch, learners who started
with unplugged lessons were more confident of their
capacities to understand the programming concepts.
Mano et al. (2010) designed in-class unplugged program-
ming activities and found an improvement in the interest
levels in computing among learners. Overall, unplugged
programming activities have potential to promote learn-
ers’ programming knowledge, programming engagement,
and positive attitudes towards programming.

Although relevant studies argue that unplugged
programming activities can foster learners’ active

engagement, few studies actually examine how learn-
ers engage in the programming practices from a pro-
cess-oriented perspective and to what extent unplugged
programming activities foster learner’s learning. Most
studies focus on summative assessment of learners’ pro-
gramming knowledge acquisitions, improvements of CT
skills, or self-reported perceptions towards program-
ming. For example, Brackmann et al. (2017) designed a
quasi-experiment research to examine the effectiveness
of unplugged activities on the development of CT skills
in primary schools, and found learners who took part in
the unplugged activities enhanced their CT skills signifi-
cantly, compared to their peers in control groups. Gardeli
and Vosinakis (2017) continuously observed learners’
individual and group behaviors during unplugged visual
programming, and reported that the unplugged activity
was an engaging and collaborative approach to improve
learners’ satisfaction and enjoyment. Torres-Torres et al.
(2019) used instructor’s informal observations and found
the unplugged programming class managed to build
routes of algorithm learning and achieve a high level of
complexity in the codes. Saxena et al. (2020) used field
notes to record learner performances and interactions
as well as instructor’s instructional practices during
unplugged and plugged activities, to provide learners
with concrete guidance and support for subsequent pro-
gramming activity. Taken together, most of those studies
use the summative assessments or informal observations
to examine learners’ programming skills and engagement
levels, but do not examine learners’ engagement dur-
ing the programming practices from a process-oriented
perspective. Since programming requires a deliberate
problem-solving, meaning-making, and knowledge-con-
struction process (Lewis, 2012; Sun et al., 2021a, b; Wu
et al., 2019), it is beneficial to empirically examine how
unplugged programming influences learners’ program-
ming from the process-oriented perspectives, to provide
a holistic picture of learners’ programming behaviors,
communications, and interactions (Sun et al., 2021a, b;
Wu et al., 2019).

Multiple analytical methods have been utilized in pre-
vious empirical research to analyze and demonstrate var-
ied aspects of the programming processes. Berland et al.
(2013) used learning analytics and data mining to exam-
ine details of how learners progressed from exploration,
tinkering, to refinement during the learning processes.
Results showed that learners in the exploration period
produced more low quality programs, while the other
two periods had much higher level of quality program
states. Wu et al. (2019) used a quantitative ethnogra-
phy approach to analyze the collaborative programming
between a high‐performing and a low‐performing
team. Results indicated that the high‐performing team

Page 4 of 15Sun et al. IJ STEM Ed (2021) 8:54

exhibited the systematic CT skills, whereas the low‐per-
forming team’s CT skills were characterized by tinkering
or guessing. Sun et al., (2021a, b) used mixed methods
(e.g., click stream analysis, lag-sequential analysis, quan-
titative content analysis) to analyze three contrasting
pairs’ collaborative programming behaviors, discourses,
and perceptions. Results characterized the high-,
medium-, and low-ranked pairs with different charac-
teristics on the social interactive, cognitive engagement
and final performing dimensions. Those studies indicate
that multiple methods can be used to conduct the pro-
cess-oriented analysis of computer programming, which
is beneficial to demonstrate varied dimensions of the
learning processes. As a complementary, the traditional,
summative assessment (e.g., final tests) can help reveal
learners’ direct performances of computer programming
knowledge or skills. Following the analytical trend, this
research uses a mixed method approach to reveal the
effectiveness of unplugged programming from the sum-
mative and process-oriented perspectives.

To address those research and practice gaps, this quasi-
experimental research applied two instructional modes,
namely, the instructor-directed lecturing of program-
ming and the learner-centered unplugged programming
in China’s secondary education to improve computer
programming education quality. Furthermore, this
research used mixed methods to analyze and compare
the effects of novice learners’ programming in those two
instructional modes to inform instructional design of
computer programming. The effects of learners’ com-
puter programming were examined from the summa-
tive and process-oriented perspectives. Specifically, from
the summative perspective, this research investigated
learners’ programming knowledge gains and changes
of attitudes before and after two instructional modes.
From the process-oriented perspectives, this research
examined learners’ in-class behaviors during instruc-
tion and learning activities under two instructional
modes. Mixed methods were used, including statistical
analyses of knowledge test and survey data, sequential
analysis of in-class video data, and qualitative analysis of
interview data. Based on the results, this research pro-
posed pedagogical and analytical implications for future
instructional design and research analytics of computer
programming.

Research methodology
Research purposes and questions
The research purpose was to compare effects of learn-
ers’ programming learning between two instruc-
tional modes, namely, the instruction with traditional

instructor-directed lecturing (IDL) and the instruction
with learner-centered unplugged programming (UPP).
We compared the difference of learners’ knowledge gains,
in-class behaviors, and changes of attitudes between
two instructional modes. There were three research
questions:

RQ 1. How did the impact of UPP on learners’ com-
puter programming knowledge and skills differ from
the impact of IDL?
RQ 2. How did the impact of UPP on learners’ learn-
ing behaviors differ from the impact of IDL?
RQ 3. How did the impact of UPP on learners’ posi-
tive attitudes towards programming differ from the
impact of IDL?

The research analytical framework
This research proposed an analytical framework to
investigate the differences between instructor-directed
lecturing of programming (IDL) and learner-centered
unplugged programming (UPP) from the process and
summative perspective (see Fig. 1). On the process
assessment perspective, research can collect behavio-
ral data, including in-class behaviors (classroom video
recordings of in-class programming activities) and com-
puter operation behaviors (computer screen recordings
of learner’s programming operations). Classroom video
analysis and click-stream analysis can be applied to ana-
lyze behavior data, respectively. In addition, classroom
audio recordings can capture in-class conversations from
learners and the instructor, where quantitative content
analysis, lag-sequential analysis and ethnographic inter-
pretations could be applied to examine discourse pat-
terns and characteristics. On the summative assessment
perspective, programming knowledge data (e.g., pre- and
post-tests) and final products (e.g., programming pro-
jects) can be collected as performance data and statistics
can be used to examine the significance of performance
changes. Moreover, as the Additional file 1, Additional
file 2, learner attitudes (including data from pre-, post-
surveys or interviews) can be used to further under-
stand learners’ perceptions about programming. Taken
together, this analytical framework provides an integra-
tion of the process and summative assessments for com-
puter programming education.

Research context, participants, and instructional
procedures
The research context is a compulsory course titled “Crea-
tive Programming Algorithms” offered at a junior high
school during Spring 2020 in the Eastern area of China.
Under the COVID-19 period, learners were not allowed

Page 5 of 15Sun et al. IJ STEM Ed (2021) 8:54 	

to get access to the computer labs; instead, the classes
were offered in a normal classroom with interactive
whiteboards. This research used a quasi-experimental
design to investigate learners’ knowledge gains, in-class
behaviors, and attitudinal changes under the control con-
dition (the instructor-directed lecturing of programming;
IDL) and the experimental condition (the learner-cen-
tered unplugged programming; UPP).

There were 31 learners (female = 16; male = 15) in the
control IDL class and 32 learners (female = 19; male = 13)
in the experimental UPP class. Control and experimental
classes were randomly assigned; learners in two classes
were not informed of the different treatments. Classes
were taught by the same instructor (the fourth author),
who maintained the same teaching style under two con-
ditions, offered the same instructional materials to learn-
ers, and used the same teaching guidance for each class,
except the use of the unplugged programming activities
in the experiment condition. The instructor, with the
guidance and support from the research team, designed
three phases (six instructional sessions; each session

lasted 45 min) in this course. The first four sessions
(Phase I and Phase II) introduced the basic concepts of
programming, including binary conversion, sequence,
selection, and loops; the last two sessions (Phase III)
introduced two advanced algorithms (i.e., sorting
and searching). The design of the instruction sessions
referred to the computer literacy development programs
(CS Unplugged, 2020) and the book titled Computer Sci-
ence Unplugged: Realizing Computing through Games
and Puzzles (Bell et al., 2012). The instructor modified
the instructional content and procedures to adapt local
learners’ programming capacities. For instance, instead
of sorting network, the instructor introduced the sort-
ing algorithm with bubble sort activities, and also con-
trolled the activities duration within 20 min according to
the time limitation of the class. The content are required
to be taught with Python in China’s high school accord-
ing to the Information Technology Curricula for China’s
high schools (MOE, 2020). During the instruction and
learning processes, in the IDL class, learners received the
instructor-directed lecturing with oral presentations to

Fig. 1  Analytical framework

Fig. 2  Control class: IDL (a) and the experimental class: UPP (b)

Page 6 of 15Sun et al. IJ STEM Ed (2021) 8:54

learn programming concepts and algorithms (see Fig. 2a).
In the UPP class, the unplugged programming activities
were intersected with the instructor’s lecturing; learn-
ers experienced 20-min unplugged programming activi-
ties in each session. For example, in the bubble sorting
activity, learners held different paper cards, stood in a
row randomly, and swapped with peers to make a correct
sorting (see Fig. 2b).

Data collection and analysis approaches
This research collected and analyzed data in four ways.
First, we conducted pre- and post-test of learners’ com-
puter programming knowledge and skills. The knowledge
test included 12 questions, comprised of 10 multiple-
choice questions on the programming concepts and 2
fill-in-blank questions related to the programming algo-
rithms. Adapted from Computational Thinking Scale
(CTS), learners’ computer programming skills were
tested about the dimensions of creativity, algorithmic
thinking, cooperativity, critical thinking, and problem
solving. The CTS survey contained 5 dimensions and 29
measurement indicators (Korkmaz et al., 2017). Inde-
pendent t test analysis was applied to compare the post-
test of CT skills between two instructional modes.

Second, we recorded videos of two classes (without
audios) to capture learners’ behaviors. We deliberately
chose the last two courses classes (i.e., Phase III: the
algorithm learning) as the video data for the current
research (45 min/class; a total of 180 min). The rea-
son that we chose the last two classes to collect behav-
ior data was twofold. First, those two classes focused on
two advanced algorithms that could better demonstrate
programming capacities. Second, learners in the experi-
mental class became more familiar with the procedures
of the unplugged programming activities, such that they
were more engaged in those two sessions as informal
observation indicated. Video analysis was used to code
learners’ in-class behaviors emerged during learning and
instruction processes (Kersting, 2008). Video analysis fol-
lowed an iterative coding process based on a previously

validated coding framework (see D. Sun et al., 2021a, b).
Two coders first separately watched the video recordings
and wrote descriptive notes in excel files to identify initial
codes of learners’ behaviors. Then, two coders had multi-
ple meetings to discuss behaviors with conflicting codes
and double checked the codes to achieve an agreement
of the final coding framework (see Table 1). Finally, two
coders independently coded the data again in a chrono-
logical order based on the coding framework, marked
learner behaviors every 5 s, and cross-checked each
other’s coding results. Two coders reached an inter-rater
reliability with the Cohen’s Kappa of 0.801.

Furthermore, based on the video coding results, the
lag-sequential analysis (LsA) was used to analyze learn-
ers’ behavioral patterns (Faraone & Dorfman, 1987),
including the transitional frequencies between two
behaviors and the visualized network representations
in two instructional modes. There are five LsA meas-
ures, including (1) transitional frequencies (how often
a particular transition occurred for a specified sequen-
tial interval); (2) expected transitional frequency (the
expected number of times a transition would occur
under the null hypothesis of independence or no rela-
tion between the codes); (3) transitional probabilities (the
likelihood of occurrence of event B given that event A
occurs); (4) adjusted residuals z scores (the statistical sig-
nificance of particular transitions); (5) Yule’s Q (standard-
ized measure ranging from − 1 to + 1 denoting strength
of association) (Chen et al., 2017). Yule’s Q was finally
adopted to represent the strength of transitional associa-
tion, because it controls for base numbers of contribu-
tions and is descriptively useful (with a range from − 1
to + 1 and zero indicating no association). Moreover,
using a previous network visualization method (Chen
et al., 2017), this research presented LsA results in visu-
alized networks, where the node size represented fre-
quency of behavior code, the edge width represented
transitional Yule’s Q value, and the transitional direction
should be read from the node with the same color to the
other node.

Table 1  Coding framework for classroom behaviors

Code Description

Listening to Instructor (LtI) Learners listened to the instructor during the class

Discussing with Peer (DwP) Learners discussed with their partners during the class, includ-
ing their discussions during the unplugged programming
activities

Asking Questions (AsQ) Learners asked questions to the instructor

Answering Question (AnQ) Learners answered questions proposed by the instructor

Taking Notes (TN) Learners took notes during the class

Irrelevant Behavior (IB) Learners chatted, played or had other irrelevant behaviors

Page 7 of 15Sun et al. IJ STEM Ed (2021) 8:54 	

Regarding the differences of attitudes, pre- and post-
surveys were conducted at the beginning and the end
of the classes. The survey was adapted from the Geor-
gia Computes project (Bruckman et al., 2009) and the
Computing Attitudes Survey, which were validated from
previous research (Dorn & Tew, 2015; Tew et al., 2012).
The survey included five 5-point Likert scale questions
ranging from 1 (strongly disagree) to 5 (strongly agree),
as well as short open-ended questions (see Appendix A).
Independent t test analysis and descriptive analysis were
used to reveal the differences of learners’ confidence,
enjoyment, and future interest between two instructional
modes. Finally, we invited learners to a semi-structured
interview at the end of the class. The interview focused
on learners’ recall of the knowledge they learned from
the class, the most difficult or easiest part of the class,
as well as their self-perceptions and future plan on com-
puter programming (see Appendix B). Thematic analy-
sis was used to analyze the interview data (Cohen et al.,
2013). A six-step sequence was used to identify themes:
(1) formatting the text data, (2) coding the data separately
by two coders, (3) recording specific coded segments of
data, (4) comparing segments with same codes, (5) inte-
grating the codes, and (6) double check the final coded
themes.

Results
Computer programming knowledge and skills
We present the results of learners’ computer program-
ming knowledge and skills on two dimensions, namely,
the post-test scores and the score differences under two
modalities (see Table 2). Regarding the pre-test pro-
gramming knowledge at the outset of the research, no
statistically significant (t (61) = 0.99, p = 0.32) was found
between two instructional modes (IDL: M = 55.51,
SD = 10.91; UPP: M = 58.28, SD = 11.11). After the inter-
vention, learners in the IDL class had an average score
of 68.70 (SD = 24.14), and learners in the UPP class
gained an average score of 83.78 (SD = 10.33). T test

indicated a statistically significant difference between
two instructional modes (t (61) = − 3.20, p = 0.003) (see
Table 2). Regarding the differences of knowledge score
before and after the intervention, a significant differ-
ence (t (61) = − 2.46, p = 0.018) was found between two
modes (IDL: M = 13.19, SD = 24.74; UPP: M = 25.50,
SD = 12.94). These result indicated that learners in UPP
class achieved significantly higher improvement on
the knowledge assessment than peers in IDL class after
the intervention. Moreover, regarding the scores of the
CT skills, there were no significant differences between
the IDL class (M = 3.94, SD = 0.88) and the UPP class
(M = 3.92, SD = 0.94) (t (61) = − 0.23, p = 0.82) before
the intervention. After the intervention, the independ-
ent t test results of post-test of learners’ CT skills indi-
cated no statistically significant difference between two
instructional modes (t (62) = − 0.26, p = 0.253), but the
UPP class performed better than the IDL class overall
(IDL: M = 4.07, SD = 0.45; UPP: M = 4.21, SD = 0.53).
One significant difference was found on the sub item of
cooperativity (t (62) = − 2.11, p = 0.042): the UPP class
outperformed the IDL class (IDL: M = 3.75, SD = 0.62;
UPP: M = 4.09, SD = 0.66). Regarding the differences
of programming skill score, no significant difference (t
(61) = − 1.30, p = 0.198) was found between two modes
(IDL: M = 0.15, SD = 0.54; UPP: M = 0.38, SD = 0.86).
Overall, compared to the instructor-directed lecturing
class, the unplugged programming class had a better
improvement on the programming knowledge and skills
after the intervention.

In‑class behavioral patterns
Learners’ behavioral patterns showed similarities and
discrepancies between two instructional modes. First,
two classes had the most frequent behavior of listen-
ing to instructor (LtI), followed by either the behavior
of discussing with peer (DwP) or taking notes (TN). In
the IDL class, the most frequent behaviors were lis-
tening to instructor (LtI; frequency = 983), taking

Table 2  Independent t test of post-test of computer knowledge and skills in two instructional modes

Dimensions Modes M SD t p

Computer programming
knowledge

Post-test scores IDL 68.70 24.14 − 3.20** 0.003

UPP 83.78 10.33

Differences
(Post-test–pre-test)

IDL 13.19 24.74 − 2.46* 0.018

UPP 25.50 12.94

Computer programming
skills

Post-test scores IDL 4.07 0.45 − 0.26 0.253

UPP 4.21 0.53

Differences
(Post-test–pre-test)

IDL 0.15 0.54 − 1.30 0.198

UPP 0.38 0.86

Page 8 of 15Sun et al. IJ STEM Ed (2021) 8:54

notes (TN; frequency = 831), and discussing with peer
(DwP; frequency = 653). In comparison, learners in
IDL class had much more irrelevant behaviors (IB; fre-
quency = 441) than the UPP class (IB; frequency = 187),

such as chatting or playing (see Fig. 3a). The most fre-
quent behaviors of UPP class were listening to instructor
(LtI; frequency = 757), discussing with peer (DwP; fre-
quency = 736), and taking notes (TN; frequency = 509)
(see Fig. 3b). Second, in the IDL class, the strongest asso-
ciation was IB → DwP (Yule’s Q = 0.84), followed by AsQ
→ LtI (Yule’s Q = 0.60) and AnQ → LtI (Yule’s Q = 0.55)
(see Table 3). The results indicated that learners in the
IDL class had most frequent behavior in irrelevant things
and then transferred to discussing with partner and lis-
tening to the instructor. In the UPP class, the strongest
association was LtI → DwP (Yule’s Q = 0.77), followed
by AnQ → LtI (Yule’s Q = 0.72) and LtI → AnQ (Yule’s
Q = 0.67). The results revealed that learners in the UPP
class spent most of the time on listening to the instructor
and then discussing with their partners. Taken together,
the UPP class appeared to be more engaged (more behav-
iors in LtI and DwP, less behaviors in IB) during the
instructional process, and the IDL class seemed to be
more concentrated on listening to instructor (LtI) and
taking notes (TN), while they were much easier to be dis-
tracted by irrelevant things (IB) during the class.

Attitudinal findings
We examined pre-test score, learning gains, and post-test
score for both classes. First, learners in two modes had
no significant difference in the pre-test of three dimen-
sion (confidence: p = 0.145; enjoyment: p = 0.491; future
interests: p = 0.872). Second, learners in both classes
experienced an improvement in three dimensions (see
Table 4), including an increase of confidence: IDL (0.35),
UPP (0.70); increase of enjoyment: IDL (0.10), UPP
(0.03), increase of future interests: IDL (0.16), UPP (0.34).
Regarding the differences before and after the interven-
tion, no significant difference (t (61) = − 1.43, p = 0.156)

Fig. 3  Transitional network representation in learners’ behavior
from two instructional modes. A node represents a behavior code,
the node size represented the frequency of the code, the width
represented the transitional value, a Yule’s Q value, and the direction
should be read from the node with the same color of the line to the
node with a different color

Table 3  LsA transition frequency of classroom behaviors of
learners in two instructional modes

Transitions with the top five Yule’s Q scores were presented

IDL UPP

Transition Yule’s Q Transition Yule’s Q

IB → DwP 0.84 LtI → DwP 0.77

AsQ → LtI 0.60 AnQ → LtI 0.72

AnQ → LtI 0.55 LtI → AnQ 0.67

DwP → IB 0.54 AsQ → AsQ 0.65

LtI → TN 0.51 IB → DwP 0.61

Table 4  Independent t test of post-test of attitudinal findings under two instructional modes

Dimensions Modes M SD t p

Confidence Post-test scores IDL 3.38 1.05 − 1.47* 0.010

UPP 4.11 1.03

Differences IDL 0.35 0.81 − 1.43 0.156

UPP 0.70 0.44

Enjoyment Post-test scores IDL 4.13 1.15 − 0.57 0.492

UPP 4.24 0.97

Differences IDL 0.10 0.64 0.38 0.703

UPP 0.03 0.59

Future interest Post-test scores IDL 3.94 1.03 − 0.94 0.324

UPP 4.00 1.03

Differences IDL 0.16 0.19 − 0.61 0.547

UPP 0.34 0.38

Page 9 of 15Sun et al. IJ STEM Ed (2021) 8:54 	

was found on the confidence (IDL: M = 0.35, SD = 0.81;
UPP: M = 0.70, SD = 0.44). No significant difference (t
(61) = 0.38, p = 0.703) was found on the enjoyment (IDL:
M = 0.10, SD = 0.64; UPP: M = 0.03, SD = 0.59). In addi-
tion, no significant difference (t (61) =  − 0.61, p = 0.547)
was found on the future interest (IDL: M = 0.16,
SD = 0.19; UPP: M = 0.34, SD = 0.38). Third, a signifi-
cant difference was found in post-test score of confidence
(t (61) =  − 1.47, p = 0.010). Learners in the UPP class
(M = 4.11; SD = 1.03) were more confident than learn-
ers in the IDL class (M = 3.38; SD = 1.05) (see Fig. 4a).
Although UPP class (M = 4.24; SD = 0.97) had a better
enjoyment score than IDL class (M = 4.13; SD = 1.15),
there was no statistically significant differences between
two instructional modes (t (61) = − 0.57, p = 0.492) (see
Fig. 4b). There was also no significant difference in the
aspect of future interests (t (61) = − 0.94, p = 0.324), but
learners in the UPP (M = 4.00; SD = 1.03) had a higher
score than learners in IDL class (M = 3.94; SD = 1.03) (see
Fig. 4c). Overall, UPP class had an overall more positive
attitude towards computer programming than IDL class.

Qualitative analysis of interview data
There were three themes emerged in the thematic analy-
sis of learners’ interview data, namely, the recall of pro-
gramming knowledge, feeling of learning experiences,
and attitudes towards programming (see Table 5). The
first theme revealed differences of acquisitions of pro-
gramming knowledge and skills between two instruc-
tional modes. 18 out of 31 learners in IDL mentioned
that it was hard for them to recall the contents of the
class, and 4 learners expressed that they were easily con-
fused by the divergent contents of each class. Huang said,
“I thought it was ok, but the technical terms and calcula-
tion methods of computers may be too difficult for me,
and I was often confused by different rules.” Ye men-
tioned, “I have some impressions of what I have learned
in this course, but I didn’t master the rules and methods

very well from the class, because I don’t have a chance
to consolidate them after class.” As for UPP, 20 out of 32
learners mentioned that they could remember most of
the content of each class, and they thought unplugged
activities improved their higher-order thinking ability.
For example, Zhang said “I could recall most of the class
content, such as sorting, searching…. What impressed
me most was to the activity of moving the black and
white block to find the correct sequence… activities like
these made me remember the algorithm better than just
sitting and listening to the instructor.” Only 3 learners in
UPP class thought it was difficult for them to master the
instructional content through unplugged activities. Liu
said, “I was attracted to the unplugged activities during
the class, but sometime I found it hard to recall the cor-
responding programming concepts”. Overall, learners in
the UPP class had a better understanding of program-
ming content and concepts, compared with IDL class.

The second theme revealed the difference of learn-
ers’ feeling of learning experience between two

Fig. 4  Scores of learners’ confidence (a), enjoyment (b) and future interest (c) in two instructional modes

Table 5  Themes extracted from semi-interviews in two
instructional modes

Themes and sub-themes IDL
N

UPP
N

Recall of programming knowledge

· Difficulties of recalling course contents 18 3

· Confusion about course contents 4 6

· Recall of most of the course contents 8 20

Feeling of learning experiences

· A low level of participation 22 3

· A lack of opportunity to conduct programming practices 8 0

· An interactive and interesting learning experience 2 26

Attitudes towards programming

· Concerns about the difficult level of the algorithms 15 5

· Positive attitudes towards computer programming 9 27

· Confidence about other STEM subjects, such as math-
ematics

4 10

Page 10 of 15Sun et al. IJ STEM Ed (2021) 8:54

instructional modes. 22 out of 31 learners in IDL class
referred to a low level of participation in the class, as
Yang said: “There is nothing special about this course,
the learning experience was poor, since we did not
have chance to practice the algorithm by ourselves or
through computer.” Two learners in IDL thought the
class was interesting, Huang said “I was interested
in the class because I was attracted to different algo-
rithms like bubble sort”. On the contrary, much more
learners (N = 26) in UPP class described the unplugged
programming as an interactive and interesting learning
experience. Su mentioned: “…we had a lot of opportuni-
ties to join in the programming activities during class,
which promoted our concentration and engagement.”
But three learners in UPP class mentioned participa-
tion issues during unplugged activities, as Chen said “…
sometimes it was difficult for me to get the idea quickly
for the unplugged activities, so I had to follow others
in my group.” Overall, UPP class appeared to be more
interactive and engaging compared to the IDL class.

The third theme of perceptions discussed learners’
attitudes towards computer programming between two
instructional modes. Fifteen learners in IDL expressed
interests in programming, but they appeared to be
more concerned about the difficulty level of the algo-
rithms considering their mathematical abilities. Sun
said, “I thought this course was fine, but the course
seemed to have something to do with the mathemat-
ics ability. I could use some basic knowledge to solve
problems… but when it got harder and deeper, I was
not able to handle it.” Nine learners in IDL thought
the class improved their attitudes towards program-
ming and four learners mentioned the programming
class was beneficial to other subjects which required
computational thinking ability. Most of the learn-
ers (N = 27) in the UPP class mentioned that learn-
ing through unplugged programming activities could
promote their learning attitudes and 10 of them men-
tioned the programming class could improve their
performances in other subjects, especially mathemat-
ics, which was consistent with previous research (e.g.,
Century et al., 2020). For example, Wang responded,
“Some knowledge within the unplugged programming
activities were connected with our mathematics course,
such as sequence… I think it is quite suitable for me.”
Huang said, “I might not be majoring in computer sci-
ence in the future, but I think the profession I choose in
the future will involve computer science knowledge, so
I think it was worth learning.” There were few learners
(N = 5) expressed their concern on the difficulty of the
algorithms. Taken together, UPP seemed to offer the
opportunity to improve learners’ attitudes and allevi-
ate their concerns for computer programming. Overall,

interview data showed that learners in UPP were more
confident in mastering the computer knowledge and
skills, more engaged during the classes, and had more
positive feelings towards programming.

Discussion
As one area of STEM education, computer program-
ming focuses on transforming the instructor-directed
lecturing to the learner-centered instructions (such as
unplugged, game-based programming) to foster learn-
ers’ computational thinking skills, learning motivations
and interests, as well as programming engagement
(Koretsky et al., 2018; Looi et al., 2018; Tekkumru-Kisa
& Stein, 2017). This research used a quasi-experimental
design to apply two instructional modes, namely, the
instructor-directed lecturing and the learner-centered
unplugged programming, to foster computer program-
ming in China’s secondary education. Furthermore,
this research compared the effects of novice learners’
programming between those two instructional modes,
including knowledge gains, in-class behaviors, and
attitudinal changes. The research results revealed dis-
crepancies between two instructional modes. First,
learners in the unplugged programming class achieved
significantly higher scores on the knowledge tests,
compared to learners in the traditional lecturing class.
The results echoed with Grover et al. (2019)’s research
that found unplugged programming activities deep-
ened novice learners’ understanding of programming
concepts. Consistent with previous research results
(Hsu & Liang, 2021), compared to the traditional lec-
turing class, learners in the unplugged programming
class achieved higher scores of computational thinking
skills, particularly on the cooperativity dimension. The
results together indicated that learners benefited from
unplugged programming to improve knowledge gains
as well as computational thinking skills. Next, discrep-
ancies of in-class behaviors showed that the typical
behaviors in unplugged programming class were lis-
tening to the instructor’s lectures and discussing with
peers during unplugged programing activities, while
learners in the instructor-directed lecturing class had
frequent behaviors of listening to the instructor, taking
notes, and irrelevant behaviors. Consistent with previ-
ous research (e.g., Ballard & Haroldson, 2021; Huang &
Looi, 2020), unplugged programming activities reduced
irrelevant in-class behaviors, promoted peer discus-
sions, and facilitated students’ problem-solving pro-
cess. Results of attitudes showed a significant difference
on the confidence dimension between two instruc-
tional modes: learners in the unplugged programming
activities self-reported a higher level of confidence than
learners in the traditional class. Qualitative analysis

Page 11 of 15Sun et al. IJ STEM Ed (2021) 8:54 	

of interview data also confirmed those quantitative
results. Echoing with previous studies (Brackmann
et al., 2017; del Olmo-Muñoz et al., 2020; Price &
Barnes, 2015), this research revealed that the learner-
centered unplugged programming had potential to
improve learners’ programming knowledge, behaviors,
and attitudes compared to the traditional instructor-
directed lecturing mode.

Based on the results, this research proposes pedagogi-
cal and analytical implications for future instructional
design and learning analytics of unplugged programming.
First, on the pedagogical level, instructors should con-
sider integrating unplugged programming activities in
daily instructions for novice learners, with an aim to pro-
vide conceptual contextualization, material supports, and
peer interaction opportunities (Alamer et al., 2015). Our
results showed that, compared to the traditional lectur-
ing class, learners in the unplugged programming class
seemed to be more attracted to the instructional content
and more concentrated on learning with less irrelevant
behaviors. Learners in unplugged programming class
had more behaviors of peer discussions, questioning and
answering, which was critical for improving the cognitive
quality during programming (Lu et al., 2017). Our results
also revealed that learners in the instructor-directed lec-
turing mode mentioned two main barriers which might
lead to difficulties of knowledge acquisition: insufficient
learning time and a lack of opportunity for programming
practices. An integration of the unplugged programming
activities could be beneficial to address those challenges,
since those hands-on activities bring more opportuni-
ties for learners to engage in actual programming prac-
tices. In this way, instructors can deliver programming
knowledge and skills through pragmatic practices, which,
in turn, would facilitate learners’ questioning, thinking,
and reflection of programming (Huang & Looi, 2020).
Learner agency can be also promoted through unplugged
programming practices to increase learners’ intention-
ality for and their action of taking learning initiations
(Bandura, 2001). Overall, the unplugged programming
activity is suggested for instructors to integrate in daily
instructions to increase peer interaction and collabora-
tion opportunities, to maintain learners’ motivation and
interest of programming, and to increase the overall
learning quality of programming.

On the analytical level, there has been a trend currently
to apply the mixed method (e.g., clickstream analysis,
behavior sequential analysis, statistical analysis) to con-
duct the process-oriented analytics of computer pro-
gramming (e.g., D. Pereira et al., 2020; Sun et al., 2021a,
b; Wu et al., 2019). Although final performance is usu-
ally the main focus in education (Zhong et al., 2016), the
process-oriented perspective highlights the importance

of using multiple learning analytics to evaluate program-
ming and emphasizes the essence of promoting learners’
programming quality through pragmatical practices. As
the analytical framework indicates (see Fig. 1), the pro-
cess-oriented and summative assessment complements
each other to provide a holistic insight into learners’ pro-
gramming processes and performances; with the sup-
port of an integrative assessment, researchers can better
understand the programming phenomenon and underly-
ing factors that may influence the programming process.
Specifically, findings from pre- and post-tests of com-
puter programming knowledge and skills provide us with
a general description of learners’ improvement before
and after the intervention; network representations
reveal a process-oriented behavioral transition during the
instructional process; and qualitative interview analytics
discover learners’ in-depth perceptions of the program-
ming after the intervention. Moreover, mixed methods
provide a broader view of the computer programming
phenomenon under investigation, clarify and answer
research questions from varied perspectives, enhance the
validity of the research findings and increase the capac-
ity to cross-check one data set against another (Grbich,
2013). However, due to the technical restriction, we were
not able to capture learners’ in-class behaviors and their
communicative discourses synchronously; such that we
were not able to conduct a more integrated microanalysis
of the moment-to-moment details of how learners coor-
dinate their communications, behaviors, and movements
during the programming processes (Stahl, 2009). Multi-
modal learning analytics could be integrated into future
research to synchronize audio discourse data, video
recording data, facial expressions and eye tracking move-
ments to better reveal the programming learning patterns
(e.g., Chevalier et al., 2020; Sun & Hsu, 2019; Zatarain
Cabada et al., 2018). Overall, complementing each other,
the summative and process-oriented instructional design
and analysis are promoted based on the empirical results,
to provide a more holistic, multilevel, multidimensional
analysis of the unplugged programming processes.

Programming education focuses on cultivating learn-
ers’ higher order thinking abilities (e.g., computational
thinking and logical thinking), which are fundamen-
tal skills that modern learners should possess (Stehle &
Peters-Burton, 2019). The unplugged programming strat-
egy can be easily integrated into various types of com-
puter programing classes, which is beneficial to improve
learners’ knowledge gains, classroom learning behaviors,
and positive attitudes and motivations towards program-
ming, as this research demonstrates. Unlike learning pro-
fessional programming languages (e.g., C, Java, Python),
the instructional mode of unplugged programming
makes programming knowledge accessible to novice

Page 12 of 15Sun et al. IJ STEM Ed (2021) 8:54

learners with different backgrounds, serves as the basis
for learners to make further explorations, and enhances
learners’ higher order cognitive abilities and computer
thinking capacities (Bell & Vahrenhold, 2018; Thies &
Vahrenhold, 2013). As an alternative to formal educa-
tion of computer programming, unplugged programming
has been designed and implemented in China and other
countries all over the world, proved to be a flexible, fea-
sible form for a wide range of learners to learn computer
programming (Huang & Looi, 2020). In formal and infor-
mal learning, instructors can integrate various unplugged
programming strategies into in-class instructions to pro-
mote learners’ learning efficiency and further expand
the coverage of programming education (Looi et al.,
2018). Since the instructor-directed lecturing is the main
instructional mode of computer programming in formal
educational context in China and many other countries
(Panwong & Kemavuthanon, 2014; Wu & Wang, 2017),
instructors might found it hard to integrate unplugged
activities in their daily classes. Moreover, instructors
might meet other difficulties during implementations
of unplugged programming activities, including design
of unplugged activities to illustrate computer knowl-
edge and content, suit for learners with divergent level
of prior knowledge and skills, and class time allocation
of unplugged activities and other instructional lectures
(Taub et al., 2009; Torres-Torres et al., 2019). To deal with
these challenges, the instructor should carefully identify
relationships between unplugged programming activities
and central programming concepts and algorithms when
designing and preparing lesson plans, course materi-
als, and programming activities (Brackmann et al., 2017;
Taub et al., 2012). In addition, this research suggests
that the instructor should take into consideration learn-
ers’ pre-existing knowledge and skill levels when imple-
menting unplugged programming activities to achieve
a learner-centered programming practices. Taken
together, since the effect has been validated by educa-
tional research, unplugged programming, as a computer-
science-for-all strategy in formal education, has potential
to bring practical and pragmatic benefits into formal pro-
gramming education.

Conclusions, limitations, and future directions
Computer science education plays an important role
in STEM education to foster the learner-centered
learning. As a feasible and easy-to-use instructional
activity in computer science education, unplugged
programming is encouraged to be integrated in formal
education to transform education from the instructor-
directed lecturing to the learner-centered learning with
an aim to increase learners’ learning interests and moti-
vations (Alamer et al., 2015; Looi et al., 2018; Sun et al.,

2021a, b). This quasi-experimental research compared
learners’ programming knowledge, behaviors, and
attitudes under two instructional modes, namely, the
instructor-directed lecturing and the learner-centered
unplugged programming, in China’s secondary educa-
tion. The results revealed critical discrepancies between
two instructional modes on learners’ knowledge gains,
classroom learning behaviors, and changes of attitudes
towards programming.

A major limitation of this research is the rela-
tively short period of time of learning in the research.
This research chose the last two sessions as the data
source for process-oriented behavioral analysis, which
might cause selection bias to some extent, since learn-
ers showed the highest level of engagement in this
period. Therefore, future research should expand the
research duration, such as collecting data from the
whole instruction and learning process. Another limi-
tation is the possibility of Hawthorne effect due to the
instructor’s enthusiasm and attention for the treat-
ment class (Chia & Lim, 2020). To eliminate the bias,
future research should extend the sample size to fur-
ther validate the proposed implications. Furthermore,
as the proposed analytical framework suggests, this
research investigated the process and performance
data from behavioral, summative, and attitudinal per-
spectives. Moreover, following the proposed analytical
framework, multimodal learning analytics (MLA) has
potential to guide a better process-oriented analysis for
discovering frequent patterns of behaviors, gestures,
emotions, and communications during instruction
and learning processes (Ochoa, 2017). In computer
programming research, MLA can collect and analyze
multimodal data (e.g., audio/video recording data,
click-stream recording data, facial expressions, move-
ment and gesture, and eye tracking, etc.) to reveal
learners’ coordination of behavioral, cognitive, meta-
cognitive, and social activities of programming (e.g.,
Wiltshire et al., 2019).

Overall, since the intrinsic value of programming
centers on its process, relevant research and practice
should integrate instructor-directed lecturing with
learner-centered unplugged programming and take a
process-oriented perspective to investigate, advance,
and assess learners’ programming. This research takes
a step forward to conduct a holistic analysis of learners’
performances, processes, and attitudes in computer pro-
gramming education in China’s formal secondary educa-
tion. Based on the empirical research results, unplugged
programming has shown its flexibility and practicabil-
ity for a wide range of learners to improve their pro-
gramming knowledge gains, behaviors, and positive
attitudes. Overall, it is highly suggested that computer

Page 13 of 15Sun et al. IJ STEM Ed (2021) 8:54 	

programming education should integrate unplugged
programming with traditional lectures in formal educa-
tion to promote learners’ programming knowledge, pro-
gramming engagement, and positive attitudes towards
programming.

Appendix A
Attitudinal survey

1.	 I will be/am good at programming.
2.	 I will be doing well/did well in this course.
3.	 I like programming.
4.	 I am excited about this course/ I was excited about

this course.
5.	 I might take more programming courses in the

future/ I plan to take more programming courses in
the next semester.

Appendix B
Interview

1.	 Do you like computer programming and why?
2.	 What do you think of this course so far?
3.	 Can you recall what you learned in this course? What

is the most impressive part of the course?
4.	 What do you think is the easiest or hardest part of

this course?
5.	 What abilities have you improved after this course?
6.	 What is your future plan on learning of computer

programming?

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40594-​021-​00311-1.

Additional file 1. Behavior data for the IDL mode.

Additional file 2. Behavior data for the UPP mode.

Acknowledgements
The authors would like to thank the instructors, students, and their parents
from The Affiliated School of the College of Education, Zhejiang University for
their supports of this research.

Authors’ contributions
DS designed and facilitated this research, analyzed the data and wrote the
first draft of the manuscript; FO facilitated data analysis and revised the
manuscript; YL built connections with the experimental school and proofread
the manuscript; and CZ completed the instruction work in this research and
collected data. All authors read and approved the final manuscript.

Funding
This work was supported by Ministry of Science and Technology of the
People’s Republic of China (2019AAA0105403) and National Natural Science
Foundation of China (61907038).

Availability of data and materials
The data was available upon request from the corresponding authors.

Declarations

Competing interests
There are no competing interests to declare.

Author details
1 College of Education, Zhejiang University, #866, Yuhangtang Rd., Hang-
zhou 310058, Zhejiang, China. 2 The Affiliated School of the College of Educa-
tion, Zhejiang University, #118, Fanghua Rd., Hangzhou 310053, Zhejiang,
China.

Received: 6 April 2021 Accepted: 12 September 2021

References
Alamer, R. A., Al-Doweesh, W. A., Al-Khalifa, H. S., & Al-Razgan, M. S. (2015).

Programming unplugged: Bridging CS unplugged activities gap for learn-
ing key programming concepts. In N. Walker (Eds.), Proceedings of the Fifth
International Conference on e-Learning (ICEEE) (pp. 97–103). IEEE. https://​
doi.​org/​10.​1109/​ECONF.​2015.​27.

Ballard, E. D., & Haroldson, R. (2021). Analysis of computational thinking in
Children’s literature for K-6 students: Literature as a non-programming
unplugged resource. Journal of Educational Computing Research. https://​
doi.​org/​10.​1177/​07356​33121​10040​48

Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual
Review of Psychology, 52, 1–26. https://​doi.​org/​10.​1111/​1467-​839X.​00024

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science
unplugged: School students doing real computing without computers.
Journal of Applied Computing and Information Technology, 13(1), 20–29.

Bell, T., Rosamond, F., & Casey, N. (2012). Computer science unplugged and
related projects in math and computer science popularization. In H. L.
Bodlaender, R. Downey, F. V. Fomin, & D. Marx (Eds.), International confer-
ence on the multivariate algorithmic revolution and beyond (pp. 398–456).
Springer. https://​doi.​org/​10.​1007/​978-3-​642-​30891-8_​18

Bell, T., & Vahrenhold, J. (2018). CS unplugged—How is it used, and does
it work? In H.-J. Böckenhauer, D. Komm, & W. Unger (Eds.), Adventures
between lower bounds and higher altitudes: essays dedicated to Juraj
Hromkovič on the occasion of his 60th birthday (pp. 497–521). Springer
International Publishing.

Berland, M., Martin, T., Benton, T., Petrick, S. C., & Davis, D. (2013). Using learning
analytics to understand the learning pathways of novice programmers.
Journal of the Learning Sciences, 22(4), 564–599. https://​doi.​org/​10.​1080/​
10508​406.​2013.​836655

Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., &
Barone, D. (2017). Development of computational thinking skills through
unplugged activities in primary school. In E. Barendsen, & P. Hubwieser
(Eds.), Proceedings of the 12th Workshop on Primary and Secondary Comput-
ing Education (WiPSCE ’17) (pp. 65–72). ACM. https://​doi.​org/​10.​1145/​
31370​65.​31370​69

Bransford, J. D., Brown, A., & Cocking, R. (2000). How people learn: Mind, brain,
experience, and school. National Research Council.

Bruckman, A., Biggers, M., Ericson, B., McKlin, T., Dimond, J., DiSalvo, B., Hewner,
M., Ni, L., & Yardi, S. (2009). Georgia computes!: Improving the computing
education pipeline. In S. Fitzgeraald, & M. Guzdial (Eds.), Proceedings of the
40th ACM technical symposium on Computer science education (IGCSE’ 09).
(pp.86–90). ACM. https://​doi.​org/​10.​2190/​10.​1145/​15390​24.​15088​99

Century, J., Ferris, K. A., & Zuo, H. (2020). Finding time for computer science in
the elementary school day: A quasi-experimental study of a transdisci-
plinary problem-based learning approach. International Journal of STEM
Education, 7(1), 1–16. https://​doi.​org/​10.​1186/​s40594-​020-​00218-3

https://doi.org/10.1186/s40594-021-00311-1
https://doi.org/10.1186/s40594-021-00311-1
https://doi.org/10.1109/ECONF.2015.27
https://doi.org/10.1109/ECONF.2015.27
https://doi.org/10.1177/07356331211004048
https://doi.org/10.1177/07356331211004048
https://doi.org/10.1111/1467-839X.00024
https://doi.org/10.1007/978-3-642-30891-8_18
https://doi.org/10.1080/10508406.2013.836655
https://doi.org/10.1080/10508406.2013.836655
https://doi.org/10.1145/3137065.3137069
https://doi.org/10.1145/3137065.3137069
https://doi.org/10.2190/10.1145/1539024.1508899
https://doi.org/10.1186/s40594-020-00218-3

Page 14 of 15Sun et al. IJ STEM Ed (2021) 8:54

Chen, B., Resendes, M., Chai, C. S., & Hong, H. Y. (2017). Two tales of time:
Uncovering the significance of sequential patterns among contribution
types in knowledge-building discourse. Interactive Learning Environments,
25(2), 162–175. https://​doi.​org/​10.​1080/​10494​820.​2016.​12760​81

Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering compu-
tational thinking through educational robotics: A model for creative
computational problem solving. International Journal of STEM Education,
7(1), 1–18. https://​doi.​org/​10.​1186/​s40594-​020-​00238-z

Chia, H. M., & Lim, C. S. (2020). Characterising the pedagogical practices in
mathematics lessons among selected malaysian primary schools. The
Mathematics Enthusiast, 17(1), 307–323.

Chittum, J. R., Jones, B. D., Akalin, S., & Schram, Á. B. (2017). The effects of an
afterschool STEM program on students’ motivation and engagement.
International Journal of STEM Education, 4(1), 11–26. https://​doi.​org/​10.​
1186/​s40594-​017-​0065-4

Cohen, L., Manion, L., & Morrison, K. (2013). Research methods in education.
Routledge.

CS Unplugged. (2020). Computer science without a computer. https://​www.​
csunp​lugged.​org/​zh-​hans/

del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020). Com-
putational thinking through unplugged activities in early years of primary
education. Computers & Education, 150, 103832. https://​doi.​org/​10.​1016/j.​
compe​du.​2020.​103832

Dorn, B., & Tew, A. E. (2015). Empirical validation and application of the com-
puting attitudes survey. Computer Science Education, 25, 1–6. https://​doi.​
org/​10.​1080/​08993​408.​2015.​10141​42

Falloon, G. (2016). An analysis of young students’ thinking when completing
basic coding tasks using Scratch Jnr. on the iPad. Journal of Computer
Assisted Learning, 32(6), 576–593. https://​doi.​org/​10.​1111/​jcal.​12155

Faraone, S. V., & Dorfman, D. D. (1987). Lag sequential analysis: Robust statistical
methods. Psychological Bulletin, 101(2), 312–323. https://​doi.​org/​10.​1037/​
0033-​2909.​101.2.​312

Gardeli, A., & Vosinakis, S. (2017). Creating the computer player: An engaging
and collaborative approach to introduce computational thinking by
combining ‘unplugged’ activities with visual programming. Italian Journal
of Educational Technology. https://​doi.​org/​10.​17471/​2499-​4324/​910

Gouws, L. A., Bradshaw, K., & Wentworth, P. (2013). Computational thinking in
educational activities. In J. Carter, I. Utting, & A. Clear (Eds.), Proceedings of
the 18th ACM conference on Innovation and technology in computer science
education (ITiCSE ’13) (pp. 10). ACM. https://​doi.​org/​10.​1145/​24624​76.​
24665​18

Grbich, C. (2013). Qualitative data analysis: An introduction. Sage Publications.
Grover, S., Jackiw, N., & Lundh, P. (2019). Concepts before coding: Non-pro-

gramming interactives to advance learning of introductory programming
concepts in middle school. Computer Science Education, 29(2–3), 106–135.
https://​doi.​org/​10.​1080/​08993​408.​2019.​15689​55

Hermans, F., & Avvaloglou, E. (2017). To scratch or not to scratch? A controlled
experiment comparing plugged first and unplugged first programming
lessons. In Proceedings of WiPSCE’ 17 the 12th Workshop on Primary and
Secondary Computing Education (pp. 49–56). https://​doi.​org/​10.​1145/​
31370​65.​31370​72

Hosseini, H., Hartt, M., & Mostafapour, M. (2019). Learning IS child’s play: Game-
based learning in computer science education. ACM Transactions on
Computing Education, 19(3), 1–18. https://​doi.​org/​10.​1145/​32828​44

Hsu, T., & Liang, Y. (2021). Simultaneously improving computational thinking
and foreign language learning: Interdisciplinary media with plugged
and unplugged approaches. Journal of Educational Computing Research.
https://​doi.​org/​10.​1177/​07356​33121​992480

Huang, W., & Looi, C. (2020). A critical review of literature on “unplugged” peda-
gogies in K-12 computer science and computational thinking education.
Computer Science Education, 31(1), 1–29. https://​doi.​org/​10.​1080/​08993​
408.​2020.​17894​11

Kersting, N. (2008). Using video clips as item prompts to measure teachers’
knowledge of teaching mathematics. Educational and Psychological Meas-
urement, 68(5), 845–861. https://​doi.​org/​10.​1177/​00131​64407​313369

Koretsky, M., Keeler, J., Ivanovitch, J., & Cao, Y. (2018). The role of pedagogical
tools in active learning: A case for sense-making. International Journal of
STEM Education, 5(1), 1–20. https://​doi.​org/​10.​1186/​s40594-​018-​0116-5

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of
the computational thinking scales (CTS). Computers in Human Behavior,
72, 558–569. https://​doi.​org/​10.​1016/j.​chb.​2017.​01.​005

Lewis, C. (2012). The importance of students’ attention to program state: A
case study of debugging behavior. In Alison, C., Kate, S., & Beth, S. (Eds.),
Proceedings of the 9th annual international conference on international
computing education research (pp.127–134). ACM.

Looi, C. K., How, M. L., Wu, L. K., Seow, P., & Liu, L. (2018). Analysis of linkages
between an unplugged activity and the development of computational
thinking. Computer Science Education, 28(3), 255–279. https://​doi.​org/​10.​
1080/​08993​408.​2018.​15332​97

Lu, O. H. T., Huang, J. C. H., Huang, A. Y. Q., & Yang, S. J. H. (2017). Applying learn-
ing analytics for improving students engagement and learning outcomes
in an MOOCs enabled collaborative programming course. Interactive
Learning Environments, 25(2), 220–234. https://​doi.​org/​10.​1080/​10494​820.​
2016.​12783​91

Mano, C., Allan, V., & Colley, D. (2010). Effective in-class activities for middle
school outreach programs. In Proceedings of the 40th ASEE/IEEE Frontiers in
Education Conference (FIE) (pp. F2E-1-F2E-6). IEEE. https://​doi.​org/​10.​1109/​
FIE.​2010.​56735​87

MOE. (2020). General high school information technology curriculum standard
(2017 Edition). The Ministry of Education of the People’s Republic of China.
http://​www.​moe.​gov.​cn/​jyb_​xxgk/​xxgk_​jyta/​jyta_​kjs/​20200​2/.​html

Nurbekova, Z., Tolganbaiuly, T., Nurbekov, B., Sagimbayeva, A., & Kazhiakparova,
Z. (2020). Project-based learning technology: An example in program-
ming microcontrollers. International Journal of Emerging Technologies in
Learning, 15(11), 218–227. https://​doi.​org/​10.​3991/​ijet.​v15i11.​13267

Ochoa, X. (2017). Chapter 11: Multimodal learning analytics. In C. Lang, G.
Siemens, A. Wise, & D. Gašević (Eds.), Handbook of learning analytics (1st
edn., pp. 143–150). Creative Commons License 4.0.

Panwong, P., & Kemavuthanon, K. (2014). Problem-based learning framework
for junior software developer: Empirical study for computer program-
ming students. Wireless Personal Communications, 76(3), 603–613. https://​
doi.​org/​10.​1007/​s11277-​014-​1728-9

Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Con-
structionism: Research reports and essays (pp. 1–11). Norwood.

Pereira, F. D., Oliveira, E. H., Oliveira, D. B., Cristea, A. I., Carvalho, L. S., Fonseca, S.
C., Toda, A., & Isotani, S. (2020). Using learning analytics in the Amazonas:
Understanding students’ behaviour in introductory programming. British
Journal of Educational Technology, 51(4), 955–972. https://​doi.​org/​10.​
1111/​bjet.​12953

Price, T., & Barnes, T. (2015). Comparing textual and block interfaces in a novice
programming environment. In B. Dorn (Eds.), Proceedings of the eleventh
annual international conference on international computing education
research (ICER’15) (pp. 91–99). ACM. https://​doi.​org/​10.​1145/​27876​22.​
27877​12

Saxena, A., Lo, C. K., Hew, K. F., & Wong, G. K. W. (2020). Designing unplugged
and plugged activities to cultivate computational thinking: An explora-
tory study in early childhood education. The Asia-Pacific Education
Researcher, 29(1), 55–66. https://​doi.​org/​10.​1007/​s40299-​019-​00478-w

Schnittka, C. G., Evans, M. A., Won, S., & Drape, T. D. (2015). Looking for learning
in afterschool spaces: Studio STEM. Research in Science Education., 46(3),
389–412. https://​doi.​org/​10.​1007/​s11165-​015-​9463-0

Stahl, G. (2009). Studying virtual math teams. Springer.
Stehle, S. M., & Peters-Burton, E. E. (2019). Developing student 21st century

skills in selected exemplary inclusive STEM high schools. Interna-
tional Journal of STEM Education, 6(1), 1–15. https://​doi.​org/​10.​1186/​
s40594-​019-​0192-1

Sun, D., Ouyang, F., Li, Y., & Chen, H. (2021a). Three contrasting pairs’ collabora-
tive programming processes in China’s secondary education. Journal of
Educational Computing Research, 59(4), 740–762. https://​doi.​org/​10.​1177/​
07356​33120​973430

Sun, J. C., & Hsu, K. Y. (2019). A smart eye-tracking feedback scaffolding
approach to improving students’ learning self-efficacy and performance
in a C programming course. Computers in Human Behavior, 95, 66–72.
https://​doi.​org/​10.​1016/j.​chb.​2019.​01.​036

Sun, L., Hu, L., & Zhou, D. (2021b). Which way of design programming activities
is more effective to promote K-12 students’ computational thinking skills?
A meta-analysis. Journal of Computer Assisted Learning. https://​doi.​org/​10.​
1111/​jcal.​12545

Taub, R., Ben-Ari, M., & Armoni, M. (2009). The effect of CS unplugged on
middle-school students’ views of CS. In Patrick, B. (Chairs), Annual confer-
ence on innovation and technology in computer science education, Paris,
France. https://​doi.​org/​10.​1145/​15628​77.​15629​12

https://doi.org/10.1080/10494820.2016.1276081
https://doi.org/10.1186/s40594-020-00238-z
https://doi.org/10.1186/s40594-017-0065-4
https://doi.org/10.1186/s40594-017-0065-4
https://www.csunplugged.org/zh-hans/
https://www.csunplugged.org/zh-hans/
https://doi.org/10.1016/j.compedu.2020.103832
https://doi.org/10.1016/j.compedu.2020.103832
https://doi.org/10.1080/08993408.2015.1014142
https://doi.org/10.1080/08993408.2015.1014142
https://doi.org/10.1111/jcal.12155
https://doi.org/10.1037/0033-2909.101.2.312
https://doi.org/10.1037/0033-2909.101.2.312
https://doi.org/10.17471/2499-4324/910
https://doi.org/10.1145/2462476.2466518
https://doi.org/10.1145/2462476.2466518
https://doi.org/10.1080/08993408.2019.1568955
https://doi.org/10.1145/3137065.3137072
https://doi.org/10.1145/3137065.3137072
https://doi.org/10.1145/3282844
https://doi.org/10.1177/0735633121992480
https://doi.org/10.1080/08993408.2020.1789411
https://doi.org/10.1080/08993408.2020.1789411
https://doi.org/10.1177/0013164407313369
https://doi.org/10.1186/s40594-018-0116-5
https://doi.org/10.1016/j.chb.2017.01.005
https://doi.org/10.1080/08993408.2018.1533297
https://doi.org/10.1080/08993408.2018.1533297
https://doi.org/10.1080/10494820.2016.1278391
https://doi.org/10.1080/10494820.2016.1278391
https://doi.org/10.1109/FIE.2010.5673587
https://doi.org/10.1109/FIE.2010.5673587
http://www.moe.gov.cn/jyb_xxgk/xxgk_jyta/jyta_kjs/202002/.html
https://doi.org/10.3991/ijet.v15i11.13267
https://doi.org/10.1007/s11277-014-1728-9
https://doi.org/10.1007/s11277-014-1728-9
https://doi.org/10.1111/bjet.12953
https://doi.org/10.1111/bjet.12953
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1007/s40299-019-00478-w
https://doi.org/10.1007/s11165-015-9463-0
https://doi.org/10.1186/s40594-019-0192-1
https://doi.org/10.1186/s40594-019-0192-1
https://doi.org/10.1177/0735633120973430
https://doi.org/10.1177/0735633120973430
https://doi.org/10.1016/j.chb.2019.01.036
https://doi.org/10.1111/jcal.12545
https://doi.org/10.1111/jcal.12545
https://doi.org/10.1145/1562877.1562912

Page 15 of 15Sun et al. IJ STEM Ed (2021) 8:54 	

Taub, R., Armoni, M., & Ben-Ari, M. (2012). CS unplugged and middle-school
students’ views, attitudes, and intentions regarding CS. ACM Transactions
on Computing Education (TOCE), 12(2), 1–29. https://​doi.​org/​10.​1145/​
21605​47.​21605​51

Tekkumru-Kisa, M., & Stein, M. K. (2017). A framework for planning and facilitat-
ing video-based professional development. International Journal of STEM
Education, 4(1), 1–18. https://​doi.​org/​10.​1186/​s40594-​017-​0086-z

Tew, A. E., Dorn, B., & Schneider, O. (2012). Toward a validated computing
attitudes survey. In A. Clear, K. Sanders, & B. Simon (Eds.), Proceedings
of the ninth annual international conference on international computing
education research (ICER’12) (pp. 135–142). ACM. https://​doi.​org/​10.​1145/​
23612​76.​23613​03

Thies, R., & Vahrenhold, J. (2013). On plugging “unplugged” into CS classes.
In T.Camp, & P. Tymann (Eds.), Proceeding of the 44th ACM technical sym-
posium on computer science education (SIGCSE ’13) (pp. 365–370). ACM.
https://​doi.​org/​10.​1145/​24451​96.​24453​03

Tom, M. (2015). Five cs framework: A student-centered approach for teaching
programming courses to students with diverse disciplinary background.
Journal of Learning Design, 8(1), 21–27.

Torres-Torres, Y., Román-González, M., & Pérez-González, J. (2019). Implementa-
tion of unplugged teaching activities to foster computational thinking
skills in primary school from a gender perspective. In M. A. C., Gonzalez,
F. J. R., Sedano, C. F. Llamas, & F. J., Garcia-Penalvo (Eds.), Proceedings of the
seventh international conference on technological ecosystems for enhancing
multiculturality (TEEM’19) (pp. 209–215). ACM. https://​doi.​org/​10.​1145/​
33627​89.​33628​13

Tsarava, K., Moeller, K., Butz, M., Pinkwart, N., Trautwein, U., & Ninaus, M.
(2018). Training computational thinking: Game-based unplugged and

plugged-in activities in primary school. In M. Pivec, & Josef. Grundler
(Eds.), Proceedings of the 11th European conference on game-based learning
(ECGBL) (pp. 687–695). Scopus.

Wiltshire, T. J., Steffensen, S. V., & Fiore, S. M. (2019). Multiscale movement
coordination dynamics in collaborative team problem solving. Applied
Ergonomics, 79, 143–151. https://​doi.​org/​10.​1016/j.​apergo.​2018.​07.​007

Wu, H. T., & Wang, Y. (2017). Research and practice on teaching of program-
ming course based on computational thinking. In H. T. Zhou (Eds.),
Proceedings of 2017 4th international conference on information and com-
munication technology for education (ICTE2017) (pp.79–83). Information
Engineering Research Institute

Wu, B., Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing computational thinking
in collaborative programming: A quantitative ethnography approach.
Journal of Computer Assisted Learning, 35(3), 421–434. https://​doi.​org/​10.​
1111/​jcal.​12348

ZatarainCabada, R., Barrón Estrada, M. L., Ríos Félix, J. M., & Alor Hernández, G.
(2018). A virtual environment for learning computer coding using gami-
fication and emotion recognition. Interactive Learning Environments, 28(8),
1048–1063. https://​doi.​org/​10.​1080/​10494​820.​2018.​15582​56

Zhong, B., Wang, Q., & Chen, J. (2016). The impact of social factors on pair
programming in a primary school. Computers in Human Behavior, 64,
423–431. https://​doi.​org/​10.​1016/j.​chb.​2016.​07.​017

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1145/2160547.2160551
https://doi.org/10.1145/2160547.2160551
https://doi.org/10.1186/s40594-017-0086-z
https://doi.org/10.1145/2361276.2361303
https://doi.org/10.1145/2361276.2361303
https://doi.org/10.1145/2445196.2445303
https://doi.org/10.1145/3362789.3362813
https://doi.org/10.1145/3362789.3362813
https://doi.org/10.1016/j.apergo.2018.07.007
https://doi.org/10.1111/jcal.12348
https://doi.org/10.1111/jcal.12348
https://doi.org/10.1080/10494820.2018.1558256
https://doi.org/10.1016/j.chb.2016.07.017

	Comparing learners’ knowledge, behaviors, and attitudes between two instructional modes of computer programming in secondary education
	Abstract
	Background:
	Results:
	Conclusions:

	Introduction
	Literature review
	Research methodology
	Research purposes and questions
	The research analytical framework
	Research context, participants, and instructional procedures
	Data collection and analysis approaches

	Results
	Computer programming knowledge and skills
	In-class behavioral patterns
	Attitudinal findings
	Qualitative analysis of interview data

	Discussion
	Conclusions, limitations, and future directions
	Acknowledgements
	References

