
RESEARCH Open Access

Fostering computational thinking through
educational robotics: a model for creative
computational problem solving
Morgane Chevalier1,2*† , Christian Giang2,3†, Alberto Piatti3 and Francesco Mondada2

Abstract

Background: Educational robotics (ER) is increasingly used in classrooms to implement activities aimed at fostering
the development of students’ computational thinking (CT) skills. Though previous works have proposed different
models and frameworks to describe the underlying concepts of CT, very few have discussed how ER activities
should be implemented in classrooms to effectively foster CT skill development. Particularly, there is a lack of
operational frameworks, supporting teachers in the design, implementation, and assessment of ER activities aimed
at CT skill development. The current study therefore presents a model that allows teachers to identify relevant CT
concepts for different phases of ER activities and aims at helping them to appropriately plan instructional
interventions. As an experimental validation, the proposed model was used to design and analyze an ER activity
aimed at overcoming a problem that is often observed in classrooms: the trial-and-error loop, i.e., an over-
investment in programming with respect to other tasks related to problem-solving.

Results: Two groups of primary school students participated in an ER activity using the educational robot Thymio.
While one group completed the task without any imposed constraints, the other was subjected to an instructional
intervention developed based on the proposed model. The results suggest that (i) a non-instructional approach for
educational robotics activities (i.e., unlimited access to the programming interface) promotes a trial-and-error
behavior; (ii) a scheduled blocking of the programming interface fosters cognitive processes related to problem
understanding, idea generation, and solution formulation; (iii) progressively adjusting the blocking of the
programming interface can help students in building a well-settled strategy to approach educational robotics
problems and may represent an effective way to provide scaffolding.

Conclusions: The findings of this study provide initial evidence on the need for specific instructional interventions
on ER activities, illustrating how teachers could use the proposed model to design ER activities aimed at CT skill
development. However, future work should investigate whether teachers can effectively take advantage of the
model for their teaching activities. Moreover, other intervention hypotheses have to be explored and tested in
order to demonstrate a broader validity of the model.

Keywords: Computational thinking, Educational robotics, Instructional intervention, Problem solving, Trial-and-error

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: morgane.chevalier@hepl.ch
†Morgane Chevalier and Christian Giang contributed equally to this work.
1Haute Ecole Pédagogique (HEP) du Canton de Vaud, Avenue de Cour, 33,
1014 Lausanne, Switzerland
2Mobots Group of the Biorobotics Laboratory, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland
Full list of author information is available at the end of the article

International Journal of
STEM Education

Chevalier et al. International Journal of STEM Education (2020) 7:39
https://doi.org/10.1186/s40594-020-00238-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s40594-020-00238-z&domain=pdf
http://orcid.org/0000-0002-9115-1992
http://creativecommons.org/licenses/by/4.0/
mailto:morgane.chevalier@hepl.ch

Introduction
Educational robotics (ER) activities are becoming in-
creasingly popular in classrooms. Among others, ER ac-
tivities have been praised for the development of
important twenty-first century skills such as creativity
(Eguchi, 2014; Negrini & Giang, 2019; Romero, Lepage,
& Lille, 2017) and collaboration (Denis & Hubert, 2001;
Giang et al., 2019). Due to its increasing popularity, ER
is also often used to implement activities aimed at foster-
ing CT skills of students. Such activities usually require
students to practice their abilities in problem decompos-
ition, abstraction, algorithm design, debugging, iteration,
and generalization, representing six main facets of CT
(Shute, Sun, & Asbell-Clarke, 2017). Indeed, previous
works have argued that ER can be considered an appropri-
ate tool for the development of CT skills (Bers, Flannery,
Kazakoff, & Sullivan, 2014; Bottino & Chioccariello, 2014;
Catlin & Woollard, 2014; Chalmers, 2018; Eguchi, 2016;
Leonard et al., 2016; Miller & Nourbakhsh, 2016).
Nevertheless, studies discussing how to implement ER

activities for CT skills development in classrooms, still
appear to be scarce. The latest meta-analyses carried out
on ER and CT (Hsu, Chang, & Hung, 2018; Jung &
Won, 2018; Shute et al., 2017) have mentioned only four
works between 2006 and 2018 that elaborated how ER
activities should be implemented in order to foster CT
skills in K-5 education (particularly for grades 3 and 4,
i.e., for students of age between 8 and 10 years old). An-
other recent work (Ioannou & Makridou, 2018) has
shown that there are currently only nine empirical inves-
tigations at the intersection of ER and CT in K-12.
Among the recommendations for researchers that were
presented in this work, the authors stated that it is im-
portant to “work on a practical framework for the devel-
opment of CT through robotics.” A different study
(Atmatzidou & Demetriadis, 2016) has pointed out that
there is a lack of “explicit teacher guidance on how to
organize a well-guided ER activity to promote students’
CT skills.”
In the meta-analysis of Shute et al. (2017), the authors

reviewed the state of the art of existing CT models and
concluded that the existing models were inconsistent,
causing “problems in designing interventions to support
CT learning.” They therefore synthesized the informa-
tion and proposed a new CT model represented by the
six main facets mentioned above (Shute et al., 2017).
Though the authors suggested that this model may pro-
vide a framework to guide assessment and support of
CT skills, the question remains whether teachers can
take advantage of such models and put them into prac-
tice. In order to support teachers in the design, imple-
mentation, and assessment of activities addressing these
CT components, it can be presumed that more oper-
ational frameworks are needed. Particularly, such

frameworks should provide ways to identify specific le-
vers that teachers can adjust to promote the develop-
ment of CT skills of students in ER activities.
To address this issue, the present work aims at provid-

ing an operational framework for ER activities taking
into consideration two main aspects of CT, computation,
and creativity, embedded in the context of problem-
solving situations. The objective of the present study is
to obtain a framework that allows teachers to effectively
design ER activities for CT development, anticipate what
could occur in class during the activities, and accord-
ingly plan specific interventions. Moreover, such frame-
work could potentially allow teachers to assess the
activities in terms of CT competencies developed by the
students.
To verify the usefulness of the proposed framework, it

has been used to design and analyze an ER activity
aimed at overcoming a situation that is often observed
in classrooms: the trial-and-error loop. It represents an
over-investment in programming with respect to other
problem-solving tasks during ER activities. In the
current study, an ER activity has been developed and
proposed to two groups of primary school pupils: a test
group and a control group, each performing the same
task under different experimental conditions. The stu-
dents were recorded during the activity and the videos
have been analyzed by two independent evaluators to
study the effectiveness of instructional interventions de-
signed according to the proposed framework and imple-
mented in the experimental condition for the test
groups.
In the following section, past works at the intersection

of ER and CT are summarized. This is followed by the
presentation of the creative computational problem-
solving (CCPS) model for ER activities aimed at CT
skills development. Subsequently, the research questions
addressed in this study are described, as well as the
methods for the experimental validation of this study.
This is followed by the presentation of the experimental
results and a discussion on these findings. The paper fi-
nally concludes with a summary on the possible implica-
tions and the limitations of the study.

Background
What three meta-analyses at the crossroads of ER and CT
have shown
The idea of using robots in classrooms has a long his-
tory—indeed, much time has passed since the idea was
first promoted by Papert in the late 1970s (Papert,
1980). On the other hand, the use of ER to foster CT
skills development appears to be more recent—it was in
2006 that Jeannette Wing introduced the expression
“computational thinking” to the educational context
(Wing, 2006). It is therefore not surprising that only

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 2 of 18

three meta-analyses have examined the studies con-
ducted on this topic between 2006 and 2017 (Hsu et al.,
2018; Jung & Won, 2018; Shute et al., 2017).
In the first meta-analysis (Jung & Won, 2018), Jung and

Won describe a systematic and thematic review on exist-
ing ER literature (n = 47) for K-5 education. However,
only four out of the 47 analyzed articles related ER to CT
and only two of them (Bers et al., 2014; Sullivan, Bers, &
Mihm, 2017) conveyed specific information about how to
teach and learn CT, yet limited to K-2 education (with the
Kibo robot and the TangibleK platform).
In a second meta-analysis (Hsu et al., 2018), Hsu et al.

conducted a meta-review on CT in academic journals (n
= 120). As a main result, the authors concluded that
“CT has mainly been applied to activities of program de-
sign and computer science.” This focus on programming
seems to be common and has been questioned before—
among others, it has been argued that CT competencies
consist of more than just skills related to programming.
A similar conclusion was found in the third meta-

analysis (Shute et al., 2017). Shute et al. conducted a re-
view among literature on CT in K-16 education (n = 45)
and stated that “considering CT as knowing how to pro-
gram may be too limiting.” Nevertheless, the relation be-
tween programming and CT seems to be interlinked.
The authors suggested that “CT skills are not the same
as programming skills (Ioannidou, Bennett, Repenning,
Koh, & Basawapatna, 2011), but being able to program
is one benefit of being able to think computationally
(Israel, Pearson, Tapia, Wherfel, & Reese, 2015).”
According to the findings of these three recent meta-

analyses, it appears that there is still a lack of studies fo-
cusing on how ER can be used for CT skills develop-
ment. Except for two studies that specifically describe
how to teach and learn CT with ER in K-2 education,
operational frameworks guiding the implementation of
ER activities for students, especially those aged between
8 and 10 years old (i.e., grades 3 and 4), are still scarce.
It also emerges that in the past, activities aimed at CT
development have focused too much on the program-
ming aspects. However, CT competences go beyond the
limitations on pure coding skills and ER activities should
therefore be designed accordingly.

CT development with ER is more than just programming
a robot
Because robots can be programmed, ER has often been
considered a relevant medium for CT skill development.
However, many researchers have also argued that CT is
not only programming. As illustrated by Li et al. (2020),
CT should be considered “as a model of thinking that is
more about thinking than computing” (p.4). In the work
of Bottino and Chioccariello (2014), the authors are
reminiscent of what Papert claimed about the use of

robots (Papert, 1980). Programming concrete objects
such as robots support students’ active learning as ro-
bots can “provide immediate feedback and concept reifi-
cation.” The programming activity is thus not the only
one that is important for CT skills development. Instead,
evaluating (i.e., testing and observing) can be considered
equally important. In the 5c21 framework for CT com-
petency of Romero et al. (2017), both activities therefore
represent separate components: create a computer pro-
gram (COMP5) and evaluation and iterative improve-
ment (COMP6).
While the evaluation of a solution after programming

appears to be natural for most ER activities, it seems that
activities prior to programming often receive far less at-
tention. Indeed, it is also relevant to explore what activ-
ities are required before programming, that is to say,
before translating an algorithm into a programming lan-
guage for execution by a robot. Several efforts have
shown that different activities can be carried out before
the programming activity (Giannakoulas & Xinogalos,
2018; Kazimoglu, Kiernan, Bacon, & MacKinnon, 2011,
2012). For instance, puzzle games such as Lightbot (Yar-
oslavski, 2014) can be used to convey basic concepts
needed before programming (Giannakoulas & Xinogalos,
2018). In another work (Kazimoglu et al., 2012), a fine
effort has been made to put in parallel the task to be
done by the student (with a virtual bot) and the cogni-
tive activity implied. This is how the authors sustained
the CT skills of students before programming. The inte-
gration of such instructional initiatives prior to program-
ming is usually aimed at introducing fundamental
concepts necessary for the programming activities. In-
deed, code literacy (COMP3) and technological system
literacy (COMP4) have been described as two other
components in the framework of Romero et al. (2017),
and they have been considered important prerequisites
for the use of programmable objects.
But even if students meet these prerequisites, there are

other important processes that they should go through
prior to the creation of executable code. The two follow-
ing components in the framework of Romero et al. are
related to these processes: problem identification
(COMP1) and organize and model the situation
(COMP2). However, it appears that in the design of ER
activities, these aspects are often not given enough atten-
tion. In a classroom environment, robots and computers
often attract students’ attention to such an extent that
the students tend to dive into a simple trial-and-error
approach instead of developing proper solution strat-
egies. Due to the prompt feedback of the machine, stu-
dents receive an immediate validation of their strategy,
reinforcing their perception of controllability (Viau,
2009), but this also causes them to easily enter in a trial-
and-error loop (Shute et al., 2017). In many different

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 3 of 18

learning situations, however, researchers have shown
that a pure trial-and-error-approach may limit skill de-
velopment (Antle, 2013; Sadik, Leftwich, & Nadiruzza-
man, 2017; Tsai, Hsu, & Tsai, 2012). In the context of
inquiry-based science learning, Bumbacher et al. have
shown that students who were instructed to follow a
Predict-Observe-Explain (POE) strategy, forcing them to
take breaks between actions, gained better conceptual
understanding than students who used the same ma-
nipulative environment without any instructions (Bum-
bacher, Salehi, Wieman, & Blikstein, 2018). The strategic
use of pauses has also been investigated by Perez et al.
(2017) in the context of students who worked with a vir-
tual lab representing a DC circuit construction kit. The
authors argued that strategic pauses can represent op-
portunities for reflection and planning and are highly as-
sociated with productive learning. A similar approach
has been discussed by Dillenbourg (2013) who intro-
duced a paper token to a tangible platform to prevent
students from running simulations without reflection.
Only when students gave a satisfactory answer to the
teacher about the predicted behavior of the platform,
they were given the paper token to execute the
simulations.
However, to this day such instructional interventions

have not been applied to activities involving ER. As a
matter of fact, many ER activities are conducted without
any specific instructional guidance.
As elaborated before, the development of CT skills

with ER should involve students in different phases that

occur prior as well as after the creation of programming
code. While most of the time, the evaluation of a solu-
tion after programming appears to be natural, the phases
required prior to programming are usually less empha-
sized. These preceding phases, however, incorporate
processes related to many important facets of CT and
should therefore be equally addressed. The following
section therefore introduces a model for ER activities
that allows teachers to identify all relevant phases related
to different CT skills. Based on this model, teachers may
accordingly plan instructional interventions to foster the
development of such CT skills.

The CCPS model
Educational robotic systems for the development of CT
skills
Educational robotics activities are typically based on
three main components: one or more educational ro-
bots, an interaction interface allowing the user to com-
municate with the robot and one or more tasks to be
solved on a playground (Fig. 1).
This set of components is fundamental to any kind of

ER activity and has been previously referred to as an
Educational Robotics System (ERS) by Giang, Piatti, and
Mondada (2019). When an ERS is used for the develop-
ment of CT skills, the given tasks are often formulated
as open-ended problems that need to be solved. These
problems are usually statements requiring the modifica-
tion of a given perceptual reality (virtual or concrete)
through a creative act in order to satisfy a set of

Fig. 1 Example of an educational robotics (ER) activity. The figure exemplifies a typical situation encountered in ER activities. One or more
problem solvers work on a playground and confront a problem situation involving an Educational Robotics System (ERS), consisting of one or
more robots, an interaction interface and one or more tasks to be solved

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 4 of 18

conditions. In most cases, a playground relates to the en-
vironment (offering the range of possibilities) in which
the problem is embedded. The modification can consist
in the creation of a new entity or the realization of an
event inside the playground, respectively, the acquisition
of new knowledge about the playground itself. A modifi-
cation that satisfies the conditions of the problem is
called solution. The problem solver is a human (or a
group of humans), that is able to understand and inter-
pret the given problem, to create ideas for its resolution,
to use the interaction interface to transform these ideas
into a behavior executed by the robot, and to evaluate
the solution represented by the behavior of the robot.
The language of the problem solver and the language of
the robot are usually different. While the (human) prob-
lem solver’s language consists of natural languages (both
oral and written), graphical, or iconic representations
and other perceptual semiotic registers, the (artificial)
language of the robot consists of formal languages (i.e.,
machine languages, binary code). Consequently, the
problem should be stated in the problem solver’s lan-
guage, while the solution has to be implemented in the
robot’s language. For the problem solver, the robot’s lan-
guage is a sort of foreign language that he/she should
know in order to communicate with the robot. On the
other hand, the robot usually does not communicate dir-
ectly with the problem solver but generates a modifica-
tion of the playground that the problem solver can
perceive through his/her senses. To facilitate the inter-
action, the robot embeds a sort of translator between
the robot’s language and the problem solver’s language.
Indeed, graphical or text programming languages allow
part of the language of the robot to be shown and writ-
ten in iconic representations that can be directly per-
ceived by the problem solver.

Combining creative problem solving and computational
problem solving
It has often been claimed that CT is a competence re-
lated to the process of problem solving that is contextu-
alized in “computational” situations (Barr & Stephenson,
2011; Dierbach, 2012; Haseski, Ilic, & Tugtekin, 2018;
Perkovic, Settle, Hwang, & Jones, 2010; Weintrop et al.,
2016). These processes involve in particular the under-
standing of a given problem situation, the design of a so-
lution, and the implementation in executable code. At
the same time, some researchers have pointed out that
the development of CT competencies also involves a
certain creative act (Brennan & Resnick, 2012; DeSchry-
ver & Yadav, 2015; Repenning et al., 2015; Romero et al.,
2017; Shute et al., 2017). This perspective refers to cre-
ative problem solving which involves “a series of distinct
mental operations such as collecting information, defin-
ing problems, generating ideas, developing solutions,

and taking action” (Puccio, 1999). In a different context,
creative problem solving has been described as a co-
operative iterative process (Lumsdaine & Lumsdaine,
1994) involving different persons with different mindsets
and thinking modes and consisting of five phases: prob-
lem definition (detective and explorer), idea generation
(artist), idea synthesis (engineer), idea evaluation (judge),
and solution implementation (producer) (Lumsdaine &
Lumsdaine, 1994).
The creative computational problem solving (CCPS)

model presented in the current study, represents a hy-
brid model combining these two perspectives and adapt-
ing them to the context of ERS. Similar to the model of
Lumsdaine and Lumsdaine (1994), the proposed model
involves the definition of different phases and iterations.
However, while Lumsdaine and Lumsdaine’s model de-
scribes the interactions between different human actors,
each taking a specific role in the problem-solving
process, this model considers the fact that different hu-
man actors interact with one or more artificial actors,
i.e., the robot(s), to implement the solution. The CCPS
model is a structure of five phases, in which transitions
are possible, in each moment, from any phase to any
other (Fig. 2).
The first three phases of the model can be related to

the initial phases of the creative problem-solving model
presented in the work of Puccio (1999): understanding
the problem, generating ideas, and planning for action
(i.e., solution finding, acceptance-finding). While the first
two phases (understanding the problem and generating
ideas) are very similar to Puccio’s model, the third phase
in this model (formulating the robot’s behavior) is influ-
enced by the fact that the action should be performed by
an artificial agent (i.e., a robot). On the other hand, the
last two phases of this model can be related to computa-
tional problem solving: the fourth phase (programming
the behavior) describes the creation of executable code
for the robot and the fifth phase (evaluating the solution)
consists in the evaluation of the execution of the code
(i.e., the robot’s behavior).

The phases of the CCPS model
Based on the conceptual framework of ERS (Giang,
Piatti, & Mondada, 2019), the CCPS model describes the
different phases that students should go through when
ERS is used for CT skills development (Fig. 2).
It is a structure of five main phases that theoretically,

in the most effective case, are completed one after the
other and then repeated iteratively.

Understanding the problem (USTD) In this phase, the
problem solver identifies the given problem (see COMP1
in the 5c21 framework of Romero et al. (2017)) through
abstraction and decomposition (Shute et al., 2017) in

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 5 of 18

order to identify the desired modification of the play-
ground. Here, abstraction is considered as the process of
“identifying and extracting relevant information to define
main ideas” (Hsu et al., 2018). This phase takes as input
the given problem situation, usually expressed in the
language of the problem solver (e.g., natural language,
graphical representations). The completion of this phase
is considered successful if the problem solver identifies
an unambiguous transformation of the playground that
has to be performed by the robot. The output of the
phase is the description of the required transformation
of the playground.

Generating ideas (IDEA) The problem-solver sketches
one or more behavior ideas for the robot that could sat-
isfy the conditions given in the problem, i.e., modify the
playground in the desired way. This phase requires a
creative act, i.e., “going from intention to realization”
(Duchamp, 1967). The input to this phase is the descrip-
tion of the transformation of the playground that has to
be performed by the robot. The phase is completed suc-
cessfully when one or more behaviors are sketched that
have the potential of inducing the desired transform-
ation of the playground. The sketches of the different
behaviors are the output of this phase.

Formulating the behavior (FORM) A behavior idea is
transformed into a formulation of the robot’s behavior
while considering the physical constraints of the play-
ground and by mobilizing the knowledge related to the
characteristics of the robot (see COMP4 in Romero
et al. (2017)). To do so, the problem solver has to
organize and model the situation efficiently (like in
COMP2 in Romero et al. (2017)). The input to this
phase is the sketch of a behavior, selected among those
produced in the preceding phase. The phase is per-
formed successfully when the behavior sketch is

transformed into a complete formulation of the robot’s
behavior. The behavior formulation is expressed as algo-
rithms in the problem solver’s language, describing “lo-
gical and ordered instructions for rendering a solution
to the problem” (Shute et al., 2017). This is considered
the output of this phase.

Programming the behavior (PROG) In this phase, the
problem solver creates a program (see COMP5 in
Romero et al. (2017)) to transform the behavior formula-
tion into a behavior expressed by the robot. Prerequisites
for succeeding in this phase are the necessary computer
science literacy and the knowledge of the specific pro-
gramming language of the robot or its interface, respect-
ively (see COMP3 in Romero et al. (2017)). Moreover,
this phase serves for debugging (Shute et al., 2017),
allowing the problem solver to revise previous imple-
mentations. The input to this phase is the robot’s behav-
ior expressed in the problem solver’s language. The
phase is performed successfully when the formulated be-
havior of the robot is completely expressed in the robot’s
language and executed. The output of this phase is the
programmed behavior in the robot’s language and its
execution so that, once the robot is introduced to the
playground, it results in a transformation of the
playground.

Evaluating the solution (EVAL) While the robot per-
forms a modification of the playground according to the
programmed behavior, the problem solver observes the
realized modification of the playground and evaluates its
correspondence to the conditions of the problems and
its adequacy in general. As described in Lumsdaine and
Lumsdaine (1994), the problem solver acts as a “judge”
in this phase. The input to this phase is the transform-
ation of the playground observed by the problem solver.
The observed transformation is compared with the

Fig. 2 Phases and transitions of the CCPS model. The graph illustrates the six different phases (green dots) that students pass through when
working on ER activities and all the possible transitions between them (gray arrows). The theoretically most efficient problem-solving cycle is
highlighted in black. The cycle usually starts with a given problem situation that needs first to be understood by the problem solver
(green arrow)

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 6 of 18

conditions expressed in the given problem. Then, the
problem solver has to decide if the programmed behav-
ior can be considered an appropriate solution of the
problem, or if it has to be refined, corrected, or com-
pletely redefined. This phase is therefore crucial to iden-
tify the next step of iteration (see Shute et al. (2017) and
COMP2 in Romero et al. (2017)). As a result, the transi-
tions in the CCPS model can either be terminated or
continued through a feedback transition to one of the
other phases.
Finally, an additional sixth phase, called off-task behav-

ior (OFFT), was included to account for situations where
the problem solver is not involved in the problem-
solving process. This phase was not considered a priori,
however, the experiments with students showed that off-
task behavior is part of the reality in classrooms and
should therefore be included in the model. Moreover, in
reality, transitions between phases do not necessarily
occur in the order presented. Therefore, the model also
accounts for transitions between non-adjacent phases as
well as for transitions into the off-task behavior phase
(light arrows in Fig. 2). In order to facilitate the presen-
tation of these transitions, the matrix representation of
the model is introduced hereafter (Fig. 3).
In this representation, a feedforward (ff) is the transi-

tion from a phase to any of the subsequent ones and
feedback (fb) is the transition from a phase to any of the
preceding ones. Consequently, ffij denotes the feed-
forward from phase i to phase j, where i < j and fbij

denotes the feedback from phase i to phase j, where j <
i. With six states, there are in theory 15 possible feed-
forward (upper triangular matrix) and 15 possible feed-
back transitions (lower triangular matrix), as represented
in Fig. 3. Although some of the transitions seem mean-
ingless, they might however be observed in reality and
are therefore kept in the model. For instance, it seems
that the transition ff36 would not be possible, since a so-
lution can only be evaluated if it has been programmed.
However, especially in the context of group work, it
might be possible that a generated idea is immediately
followed by an evaluation phase, which was imple-
mented by another student going through the program-
ming phase. Finally, it can be assumed that feedback
transitions usually respond to instabilities in previous
phases. In this model, special emphasis is therefore
placed on the cycle considering the transitions ff23-ff34-
ff45-ff56-fb62 (highlighted in yellow in Fig. 3), which, as
presented before, correspond to the theoretically most
efficient cycle within the CCPS model.

Research question
As presented before, one common situation encountered
in ER activities is the trial-and-error loop that in the
CCPS model corresponds to an over-emphasis on feed-
forward and feedback transitions between PROG and
EVAL phases. However, this condition might not be the
most favorable for CT skill development, since the
remaining phases (USTD, IDEA, and FORM) of the
CCPS model are neglected. Consequently, this leads to
the following research question: In a problem-solving ac-
tivity involving educational robotics, how can the activa-
tion of all the CT processes related to the CCPS model
be encouraged? In order to foster transitions towards all
phases, the current study suggests to expressly generate
an USTD-IDEA-FORM loop upstream so that students
would not enter the PROG-EVAL loop without being
able to leave it. To do so, a temporary blocking of the
PROG phase (i.e., blocking the access to the program-
ming interface) is proposed as an instructional interven-
tion. Based on the findings of similar approaches
implemented for inquiry-based learning (Bumbacher
et al., 2018; Dillenbourg, 2013; Perez et al., 2017), the
main idea is to introduce strategic pauses to the students
to reinforce the three phases preceding the PROG phase.
However, creating one loop to replace another is not a
sustainable solution. With time, it is also important to
adjust the instructional intervention into a “partial
blocking,” so that students can progressively advance in
the problem-solving process. At a later stage, students
should therefore be allowed to use the programming
interface (i.e., enter the PROG phase); however, they
should not be allowed to run their code on the robot, to
prevent them from entering the trial-and-error loop

Fig. 3 Matrix representation of the CCPS model. The figure depicts
all phases of the CCPS model and transitions between them using a
matrix representation. The rows i of the matrix describe the phases
from which a transition is outgoing, while the columns j describe
the phases towards which the transition is made (e.g., ff23 describes
the transition from the phase USTD towards the phase IDEA). In this
representation, feedforward transitions (i.e., transitions from a phase
to one of the subsequent ones) are on the upper triangular matrix
(green). Feedback transitions (i.e., transitions from one phase to one
of the preceding ones) are on the lower triangular matrix (red). Self-
transitions (i.e., the remaining in a phase) are not considered in this
representation (dashes). The theoretically most efficient problem-
solving cycle is highlighted in yellow (ff23–ff34–ff45–ff56–ff62)

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 7 of 18

between PROG and EVAL. Based on these instructional
interventions, the current study aims at addressing the
following research sub-questions:

� Does a non-instructional approach for ER activities
(i.e., unlimited access to the programming interface)
promote a trial-and-error approach?

� Does a blocking of the programming interface foster
cognitive processes related to problem understanding,
idea generation, and solution formulation?

� Does a partial blocking (i.e., the possibility to use the
programming interface without executing the code on
the robot) help students to gradually advance in the
problem-solving process?

The resulting operational hypotheses are as follows:

� Compared to the control group, the students subject
to the blocking of the programming interface (total
then partial) will activate all the CT processes of the
CCPS model.

� Compared to the test group, the students not subject
to the blocking of the programming interface will
mostly activate the PROG-EVAL phases of the CT
processes of the CCPS model.

To test these hypotheses, an experiment using a test
group and a control group was set up, with test groups
that were subject to blocking of the programming inter-
face and control groups that had free access to it.

Methods
The proposed CCPS model was evaluated in a research
study with 29 primary school students (for details see
“Participants” subsection). In groups of 2–3 students,
the participants were asked to solve the robot

lawnmower mission with the Thymio robot. In this ac-
tivity, the robot has to be programmed in a way such
that it drives autonomously around a lawn area, covering
as much of the area as possible. Based on the CCPS
model and the presented instructional interventions, two
different experimental conditions were implemented for
the activity and the students randomly and equally
assigned to each condition. The activities of all groups
were recorded on video, which subsequently were ana-
lyzed by two independent evaluators.

The robot lawnmower mission
The playground of the robot lawnmower mission con-
sists of a fenced lawn area of 45cm × 45cm size (Fig. 4).
The fence is constructed using wood, and the lawn

area is represented by eight squares of equal size with an
imprinted lawn pattern. A ninth square is imprinted
with a brick pattern and placed at the bottom right cor-
ner of the area, representing a garage, i.e., the starting
point of the Thymio lawnmower robot. In this activity,
the students have to program a lawnmower behavior,
which autonomously drives the robot out of its garage
and in the best case, makes it pass over all eight lawn
squares while avoiding any collision with the fence. The
interest of using the Thymio robot to carry out this mis-
sion is twofold: on the one hand, this robot has many
sensors and actuators (Mondada et al., 2017; Riedo,
Chevalier, Magnenat, & Mondada, 2013; Riedo, Rétor-
naz, Bergeron, Nyffeler, & Mondada, 2012). On the
other hand, among the different programming languages
that can be used with Thymio, one is the graphical lan-
guage VPL (Shin, Siegwart, & Magnenat, 2014). The
VPL platform (Fig. 5) represents parts of the robot’s lan-
guage by graphical icons that can be directly interpreted
by human problem solvers, particularly facilitating tran-
sitions from FORM to PROG phases. Students can

Fig. 4 Playground of the robot lawnmower mission with Thymio. The playground consists of a wooden fence surrounding an area (45 × 45cm)
representing the lawn. One of the nine squares represents the garage, the starting position of the mission (left). The task is to program the
Thymio robot so that it passes over all eight lawn squares while avoiding any collisions with the fence (right)

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 8 of 18

implement their solutions by simple drag-and-drop ac-
tions, without the need of extensive efforts on learning
complex syntax beforehand. However, in contrast to se-
quential programming languages, the robot cannot sim-
ply be instructed to move a certain distance towards a
given direction. Instead, in the event-based program-
ming language VPL, students have to reflect on how to
use the robot’s sensors and actuators to generate a de-
sired behavior. The openness and uncertainty of the task
thus requires the students to leverage many compe-
tences related to computational thinking.

Participants
A total of 29 primary school students (13 girls and 16
boys between 9 and 10 years old) participated in an ex-
perimental study with the purpose of evaluating the pro-
posed CCPS model. Prior to the study, all students have
been introduced to the Thymio robot and the VPL pro-
gramming interface through several school lessons (1-h
per week for 12 weeks). The participation of the students
in this study was approved by their guardians (parents)
and class and school leaders (teachers and principal). A
statement on ethics approval and consent was issued by
The Coordination Committee for Educational Research
in the Canton of Vaud (Switzerland).

Experimental procedure
At the beginning of the experimental session, all stu-
dents were randomly assigned to groups of two or three.
Each group of students was then randomly assigned to
one of the two experimental conditions (test or control).
The experimental procedures for the groups in each
condition were different:

Control groups
The activity for the control groups started with a short
introduction, where the goal and the rules of the mission
were explained by one of the experimenters. The stu-
dents were then given 40 min to implement their lawn-
mower robot. During the whole time period, they were
allowed to use everything that was provided to them: the
playground, the Thymio robot, and the VPL program-
ming interface. No additional constraints were imposed.

Test groups
The experimental procedure for the test groups differed
in the structure of the activity. Following the introduc-
tory speech, the activity started with 10 min of blocking
of the programming interface. The students were given
access to the playground and the Thymio robot, but they
were not allowed to use the VPL programming platform.
After this phase, the blocking was released, and the stu-
dents were allowed to use everything for 10 min. This
was followed by a partial blocking phase of 10 min,
where the students had access to everything including
the VPL platform, but they were not allowed to execute
any code on the robot. For the last 10 min, the blocking
was released again, and the students were allowed to use
everything that was provided to them.
The study was conducted in two consecutive sessions

of 45 min, one for each experimental condition. The test
group (7 girls and 8 boys) started the mission first, while
the control group (6 girls and 8 boys) went on a guided
museum exhibition. After the completion of the first ses-
sion, both groups switched. During each session, the five
groups of the same experimental condition worked on
the Thymio lawnmower mission simultaneously. Each
group was provided a playground, a Thymio robot and a
computer with the VPL platform installed. The sessions

Fig. 5 Illustration of proximity between the VPL programming interface and the Thymio robot. The figure illustrates the iconic representation of
programming commands in the VPL programming platform (left). The icons were designed to be as close as possible to the characteristics of the
Thymio robot (right)

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 9 of 18

were supervised by two experimenters who provided
technical support and addressed the students’ questions
regarding the task assignment. However, the experi-
menters did not provide any support regarding the solu-
tion of the lawnmower mission. Each group, as well as
their interactions with the VPL platform and the play-
ground, was recorded on video for later analysis.

Video analysis
Based on a socio-constructivist approach, this study re-
lied upon in situ observations to capture the interactions
of the students with each other as well as with the differ-
ent cognitive artifacts (the robot, the interface, and the
playground). The videos recorded from the experimental
sessions were analyzed in several steps. Prior to individ-
ual analyses, two evaluators met to discuss and agree on
appropriate observables (visual and verbal) indicating
transitions towards the different phases of the CCPS
model. Therefore, both evaluators first analyzed various
prerecorded ER activities together. The videos were re-
corded from different kinds of ER activities and allowed
to establish criterion standards (Sharpe & Koperwas,
2003) that are not limited to one specific ER activity.
The whole procedure was aimed at streamlining the way
both evaluators would perform their individual analyses.
Subsequently, both evaluators performed the behavioral
analysis independently, sequentially mapping the behav-
iors of the students during the robot lawnmower activity
to the different phases of the CCPS model. The map-
pings were made under the assumption that a student
can only be in one of the six phases of the CCPS model
at a time. Each evaluator performed the mapping based
on their interpretation of the behavior of the students,
while considering the criterion standards that have been
established beforehand. Transitions to the first three
phases of the CCPS model were mainly mapped based
on the students’ verbalizations, such as “How can we do
that?” (USTD), “Ah, I have an idea!” (IDEA) or “If this
sensor detects the wall, the robot turns left” (FORM). In

contrast, transitions to the last two phases were mostly
based on visual observations (e.g., a student starting to
use the computer (PROG) or a student watching the
Thymio robot after executing the program (EVAL)). Stu-
dents who were clearly not involved in the activity were
mapped to the off-task behavior phase (OFFT). Two
state graphs were created for each student (one by each
evaluator) using a software dedicated to the creation of
activity chronicles such as Actograph (SymAlgo Tech-
nologies, Paris, France) and a numerical computing tool
such as Matlab (MathWorks, Natick, Massachusetts,
USA). Following this step, both evaluators compared
their state graphs against each other and discussed any
major discrepancies between their evaluations. Major
discrepancies were considered segments in the state
graphs in which both evaluators did not agree on the
same behavior for more than 1 min. The corresponding
video scene was reviewed by both evaluators together to
achieve a mutual decision. Based on this decision, the
state graphs of the evaluators were modified accordingly.
Subsequently, the continuous state graphs of both evalu-
ators were discretized into equally spaced time segments
of one second. Finally, Cohen’s Kappa was computed for
the discretized pair of state graphs of each student, in
order to validate the inter-rater reliability of the per-
formed video analyses. Therefore, confusion matrices
were created for the observations made by both re-
searchers. Agreement between both evaluators was
quantified by the number of times both evaluators
agreed on mapping the same phase of the CCPS model
to a student’s behavior. The Kappa values were then cal-
culated for the observations made for each student,
using the formula presented in (Bakeman & Gottman,
1997) and taking into account the proportion of agree-
ment observed and the proportion expected by chance.
The range of the values for Cohen’s Kappa was 0.59 < k
< 0.84 (Fig. 6), which according to the literature (Landis
& Koch, 1977) can be interpreted as a substantial agree-
ment between both evaluators. Finally, the state graphs

Fig. 6 Cohen’s Kappa values for two independent evaluators. Dots indicate Cohen’s Kappa values calculated for each student based on the
independent observations of two evaluators. The dark horizontal line indicates the mean value, dark gray areas one standard deviation, and light
gray areas the 95% confidence intervals

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 10 of 18

created by the first evaluator were used to perform fur-
ther analyses. Based on these state graphs, the time
spent in each state of the CCPS model was computed
for each student, as well as the total number of transi-
tions made between different phases. Overall, 2162
phase transitions were mapped for the total of 400 min
of recordings: 1072 transitions for the test groups and
1090 for the control groups.

Results
Transition matrices were created for each student, illus-
trating the changes from one state of the CCPS model
to another during each quarter of the activity (first, sec-
ond, third, and last 10 min). All transitions made by the
students in each condition (test and control) were then
summed up to analyze the overall dynamics of the two
experimental groups (Fig. 7). Moreover, the total time
spent in each phase was analyzed for both groups during
each quarter of the activity

The transition matrices for the control groups
showed similar dynamics for all quarters of the activ-
ity. Transitions were found on the upper and lower
triangular part of the matrices, highlighting the occur-
rences of both feedforward and feedback transitions.
Most occurrences were found for transitions between
PROG and EVAL phases. In contrast, transitions from
and towards USTD, IDEA, FORM, and OFFT phases
appeared to be less frequent. When looking at the
total time spent in each phase, a similar trend was
observed: especially in the first three quarters of the
activity, students of the control group predominantly
spent their time in PROG and EVAL phases (on aver-
age 22 out of 30 min), while USTD, IDEA, FORM,
and OFFT phases were observed less frequently (8
out of 30 min). In the last quarter of the activity,
PROG and EVAL remained more prevalent compared
to USTD, IDEA, and FORM phases; however, a simi-
lar amount of time was now also spent on off-task
behavior (OFFT, 3 out of 10 min).

Fig. 7 Transition matrices and total phase times. The top rows show the transition matrices for the test (first row) and control groups (second
row) for the first, second, third, and last 10 min of the activity. The entries in the matrices denote the total number of transitions made between
the different phases for each group. Transitions with higher occurrences are highlighted with darker colors. The last row shows the total time
spent in each phase by both groups for the four quarters of the activity. Colored dots show data points for each student of the test (blue) and
control (red) groups. Dark horizontal lines indicate the mean values, dark-colored areas one standard deviation, and light-colored areas the 95%
confidence intervals

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 11 of 18

Also, in test groups, both feedforward and feedback
transitions were observed; however, the dynamics varied
during the different quarters of the activity. The behav-
ior in the second and last quarter (no blocking condi-
tions) was very similar to the behavior of the control
groups: the great majority of transitions was observed
between PROG and EVAL phases, while transitions to
and from other phases were comparatively lower. How-
ever, when looking at the transition matrices for the first
and third quarter of the activity, remarkable differences
were found. Due to the blocking of the VPL program-
ming interface in the first quarter, students were not
able to enter any of the PROG or EVAL phases and were
thus forced to shift their attention towards the
remaining phases. For the third quarter, on the other
hand, a more even distribution among all phases was
found. Since the partial blocking condition allowed the
students to work with the VPL platform (without the
possibility to send the program to the robot), transitions
to PROG phases could be observed. Moreover, since stu-
dents have already programmed their robot during the
previous quarter of the activity, they were also able to
make transitions to EVAL phases.
Interestingly, there was a high number of transitions

between PROG and EVAL phases, indicating a rigorous
debugging of the students’ previous implementation,
since new implementations could not be executed and
tested (i.e., trial-and-error was not possible). The block-
ing conditions also influenced the total time the students
spent in each of the phases. Compared to the control
group, there was a more even distribution among the
phases for the first three quarters of the activity. On
average, students spent 13 out of 30 min in PROG and

EVAL phases and 12 out of 30 min in USTD, IDEA, and
FORM phases. During the first three quarters, the times
spent on off-task behavior (OFFT) by the test groups
were very similar to the ones by the control groups.
However, in contrast to the control groups, off-task be-
havior also remained on a similar level in the last quarter
of the activity.
In order to further investigate the effect of the initial

blocking condition, transition graphs were generated for
the first 10 min of the activity (Fig. 8).
These graphs depict the transition probability from

one phase to another for both groups as well as the total
time spent in each phase. Moreover, the initial transition
for each student was determined, i.e., the first phase they
entered when the activity started. In the test groups, all
fifteen students started the activity with the USTD
phase, corresponding to the start of the theoretically
most efficient cycle of the CCPS model (see Fig. 2). In
the control groups, this behavior was not observed for
all students. Although the majority started with the
USTD phase, three of the fourteen students entered the
activity by directly going to the PROG phase.
Moreover, when comparing the transition probabilities

between the phases, remarkable differences were found
for both groups: the results showed that the transition
graph for the test groups matched well with the first part
of the theoretically most effective cycle in the CCPS
model. For these groups, the blocking condition hin-
dered any transition from and towards PROG and EVAL
phases. Starting from the USTD phase, students would
therefore most likely continue with IDEA, then FORM
phases, and then eventually return to USTD for another
iteration. Although other feedforward and feedback

Fig. 8 Initial transition graphs for test and control groups. The figure shows the transitions graphs for both groups for the first 10 min of the
activity. The green arrows indicate the probabilities for the first transitions of the activity. The size of the dots, representing the six phases of the
CCPS model, is proportional to the amount of time spent by the groups in each phase. The gray arrows represent the transition probabilities
between phases. Higher transition probabilities are represented by thicker and darker lines. The value for the most probable outgoing transition
for each phase is given next to the corresponding arrow

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 12 of 18

transitions were observed, they appeared to be less likely.
If students showed off-task behavior, they would most
likely return to the activity through the USTD phase.
The total time spent in each of the four phases was

evenly distributed. For the control groups on the other
hand, no blocking conditions were imposed. From the
transition graph, it can be seen that the activities of the
control groups were more centered around PROG and
EVAL phases. Once the students would enter the PROG
phase, the most likely transition was towards the EVAL
phase and vice versa. Although transitions towards other
phases were observed, the probability of leaving this
PROG-EVAL loop was comparatively low. Moreover,
the effect of this loop was reinforced by the fact that
most transitions from USTD, IDEA, FORM, and OFFT
phases were directed towards PROG or EVAL phases,
resulting in an uneven distribution of the time spent in
each phase: during the first 10 min of the activity, the
students of the control groups spent almost 7 min in
PROG and EVAL phases and less than 2 min on USTD,
IDEA, and FORM phases.
In order to illustrate the dynamics at individual levels,

the state graphs, transition matrices, and transition
graphs for one exemplary student of each group are pre-
sented (Fig. 9).
The data is shown for the whole 40 min of the activ-

ity. It can be observed that the student from the control
group immediately started the activity by jumping into
the PROG phase. Throughout the activity, the student
spent most of the time only in PROG and EVAL
phases, sporadically transitioning to one of the other
phases that were then followed by transitions back to
the PROG-EVAL loop. The inclination towards these
phases is highlighted in the corresponding transition
graph, which clearly demonstrates that this student
strongly neglected the preceding USTD, IDEA, and
FORM phases. The student from the test group on the
other hand showed a more balanced distribution among
the five phases of the CCPS model. Indeed, the transi-
tion matrix of this student showed a more even disper-
sion for the transitions towards different phases.
Interestingly, a high number of transitions were found
for the path USTD–IDEA–FORM–PROG–EVAL–
USTD, indicating an inclination towards the theoretic-
ally most efficient cycle of the CCPS model. From the
state graphs, it can also be observed that the student
from the test group performed more playground inter-
actions (11 times), i.e., interactions with the robot or
the lawn area, compared to the student from the con-
trol group (2 times). A similar result was observed
when analyzing the overall data for playground interac-
tions of each experimental group (in total 93 interac-
tions for the test groups and 59 interactions for the
control groups).

Finally, the performance of each group’s lawnmower
was quantified by the highest number of lawn squares
that the robot managed to cover without collision. The
results showed that three groups (two tests and one con-
trol) managed to complete the task, covering all eight
lawn squares with their lawnmower robot. Five groups
(three tests and two controls) covered six squares and
two groups (both control) covered only 4 squares. The
number of squares was only quantified for trajectories
that started from the garage and that were not random.

Discussion
The effect of non-instructional approaches for ER
activities
Usually in educational robotics activities, students work
in pairs or groups to solve one or more problems, espe-
cially when these activities are aimed at the development
of computational thinking skills students are faced with
open-ended problems that they have to solve in collab-
oration. By doing so, they benefit from the “dynamic
feedback inherent in dialog and the creation of cognitive
conflict” (Hoyles, 1985). In many cases, teachers let the
students work in the project without any particular con-
straints (Buss & Gamboa, 2017; Sadik et al., 2017). In
the present study, the control groups were left in this
situation which corresponds to a non-instructional ap-
proach for ER activities in classrooms. However, the re-
sults of this study showed that under these
circumstances, students spent most of their time in
phases related to programming and evaluating. It was
observed that, once entered in this loop, students would
hardly change their strategies and barely work on any of
the other phases presented in the CCPS model. This re-
sult suggests an answer to the first research question ad-
dressed in this study:

Does a non-instructional approach for ER activities (i.e., un-
limited access to the programming interface) promote a
trial-and-error approach?
Indeed, the students from the control groups spent
on average almost two-thirds of their time in pro-
gramming and evaluating which does not leave much
time to develop other skills (understanding the prob-
lem, generating ideas, formulating a behavior). This
large amount of time spent is thus a clue showing
that students were plunged in a trial-and-error loop.
Moreover, the results showed that the probability of
leaving this PROG-EVAL loop was low and that it
proves a lack of organization in the strategy: students
should go from trial-and-error to systematic testing
providing “evidence of problem decomposition” (Shute
et al., 2017). In the current study, the population had
the same background and knowledge: at the age of 9
to 10 years, such a behavior is usual while the

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 13 of 18

students are just in the process of building proper
problem-solving strategies. Indeed, as soon as the stu-
dents from the test groups had access to the com-
puter, they also spent a lot of time in the PROG-
EVAL phases. Based on these results, the main con-
clusion is that in non-instructional classroom ap-
proaches where the teacher does not intervene in the
instructional design of ER activities and does not put
constraints on the students, the latter stays most of
the time in a PROG-EVAL loop.

The effect of blocking and partially blocking the
programming interface
In this study, the test groups had undergone an instructional
intervention while they had to solve a problem involving pro-
gramming. Indeed, in order to prevent them from immedi-
ately entering the PROG-EVAL loop, a blocking of the
programming interface was imposed in order to require
them to shift their attention to the other phases of the CCPS
model. The second intervention condition that was tested
was equally verified by this experimental study:

Fig. 9 State graphs, transition matrices, and transition graphs for two example students. The figure shows the data for two students, each
exemplifying what was observed in the test and control groups, respectively. The top rows show the complete state graphs for the student from
the test (first row) and the control group (second row), displaying in which phase each student was at each moment of the activity. Moreover,
the students’ interaction with the playground is highlighted (PLAY). The third row shows the transition matrices for both students for the whole
40 min of the activity. The entries in the matrices denote the total number of transitions made between the different phases for each student.
The last row shows the transitions graphs for both students for the whole 40 min of the activity

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 14 of 18

Does a blocking of the programming interface foster
cognitive processes related to problem understanding, idea
generation, and solution formulation?
Indeed, in the test groups, students were forced to shift
their attention towards other phases since their possibil-
ities to enter PROG and EVAL phases were limited by
the given constraints. It was observed that given the
same amount of time, the test groups better distributed
their cognitive efforts in total (measured by a similar
amount of time spent in USTD-IDEA-FORM compared
to PROG-EVAL). Although no specific instructions were
given to the students, their behavior tended to converge
towards the theoretically most efficient cycle of the
CCPS model. Students started the activity by trying to
understand the problem, and they then generated ideas
and subsequently suggested formulations of the behavior
of the robot. These iterations can be explained by the
feedback inherent to dialog which occurs during collab-
orative situations (Hoyles, 1985). Whereas it is not an
unusual behavior to go directly for programming (Buss
& Gamboa, 2017; Sadik et al., 2017), no results were
found a priori in state-of-the-art literature considering
the behavior observed under a blocking condition of the
programming interface. The results of this study there-
fore raise the question of how this blocking condition ef-
fectively influences the learning outcomes. It is assumed
that the fact that students perform more transitions to-
wards USTD, IDEA, and FORM phases would help them
on the development and reflection of their problem-
solving process. As shown in previous work on inquiry-
based learning (Bumbacher et al., 2018; Dillenbourg,
2013; Perez et al., 2017), introducing these kinds of stra-
tegic pauses may help students to better reflect prior to
taking actions. Applying this principle to ER activities
could substantially enhance the learning outcomes, es-
pecially with regard to the development of CT skills.
Indeed, in the present study, students from the test
group iterated the USTD-IDEA-FORM loop (perform-
ing both feedforward and feedback transitions be-
tween those phases) in the first 10 min of the
activity, arguing and anticipating what could happen
afterwards. This cognitive state in which they dived
into seems to allow students to distance themselves
from the programming act to better reflect on the
“creative act” (Duchamp, 1967).
Another finding related to the effect of this instruc-

tional intervention is that test groups seemed to interact
more with the playground and the robot than the con-
trol groups. As the latter favored a PROG-EVAL loop,
they were more likely to be immersed in the program-
ming interface. In contrast, since the test groups did not
have access to the computers at the beginning, they ap-
peared to be more inclined towards using the play-
ground and the robot as means to express their thoughts

and findings. This mediation is a key element on which
it is then possible to intervene. In fact, this is what hap-
pened when the experimental condition was altered in a
partial blocking at the beginning of the second half of
the experiment. The findings from the study allowed
verification of the third intervention hypothesis:

Does a partial blocking (i.e., the possibility to use the
programming interface without executing the code on the
robot) help students to gradually advance in the problem-
solving process?
The transition from a full blocking of the programming
interface to a partial blocking can be considered as a
way to provide scaffolding. Thanks to this scaffolding,
during half of the time, the students were able to build a
well-settled strategy to solve the problem and they were
therefore mostly able to iterate the theoretically most ef-
ficient cycle of the CCPS model (USTD–IDEA–FORM–
PROG–EVAL–USTD). Moreover, during this partial
blocking, the high number of transitions between PROG
and EVAL phases suggests a rigorous debugging of pre-
vious implementations, an element which has been con-
sidered important for the development of CT
competencies (Bers et al., 2014; Shute et al., 2017). The
students iteratively worked on the commonly identified
issues and still had to predict possible behaviors because
the partial blocking prevented them from the execution
of the new program code. This condition could be con-
sidered beneficial to help students develop skills related
to CT. For instance, among the test groups, during the
partial blocking, two students decided to set up a writing
strategy for programming the robot. While they were
told that they could use the programming interface with-
out executing their program, they decided to keep their
paper strategy arguing that “it’s the same.” This example
shows the effect of fading from a blocking to the partial
blocking, and these experimental conditions can there-
fore be considered an interesting scaffolding tool for
teachers.
The overall performances of the implemented lawn-

mower robots illustrated higher task completion rates
for the test groups. All five test groups managed to cover
at least six lawn squares and two of them completed the
mission covering all eight squares. In the control groups
instead, there were two groups who did not manage to
cover more than four squares and two groups not more
than six. Although one group managed to finish the mis-
sion using a pure trial-and-error approach, the effective
CT skills development for this group might be question-
able. Indeed, previous work has argued that trial-and-
error strategies may not be considered optimal, since
they may “support task completion but not skills devel-
opment” (Antle, 2013).

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 15 of 18

Off-task behavior as part of the activity
While designing the CCPS model, it was initially not ob-
vious to include off-task as a separate phase of the
model. However, while observing the students during
the experiment, it appeared that the off-task behavior
(OFFT) was indeed part of the reality in classrooms.
Consequently, it was decided to include it as an add-
itional phase of the model. It appeared that the dropout
from the activity was a residue that was found in both
the test and control groups. However, the distribution of
this residue was not equivalent between the two types of
groups. In contrast to the test groups, off-task behavior
increased significantly during the last quarter of the ac-
tivity (after 30 min) for control groups. It seems that the
working modalities in the test groups (i.e., blocking and
partial blocking) may foster engagement in the task in a
longer term, compared to the unconstrained modality
for the control groups. As described, the scaffolding in
the access to programming allows students to have a
progression over time. This may facilitate their
immersion in the activity and thus results in more effect-
ive learning time. In this sense, it seems that the imple-
mentation of the blocking conditions can also minimize
off-task behavior in classroom situations, which could
possibly lead to more efficient learning activities.

Conclusion
The findings reported in this article have provided em-
pirical evidence that (i) a non-instructional approach for
educational robotics activities (i.e., unlimited access to
the programming interface) can promote a trial-and-
error behavior; (ii) a scheduled blocking of the program-
ming interface can foster cognitive processes related to
problem understanding, idea generation, and solution
formulation; (iii) a progressive adjustment of the block-
ing of the programming interface can help students in
building a well-settled strategy to approach educational
robotics problems and therefore may represent an effect-
ive way to provide instructional scaffolding. Taking these
findings into account, this study provides initial evidence
on the need for specific instructional interventions on
ER activities and illustrates how teachers could use the
proposed model to design ER activities aimed at CT skill
development. The findings of this study thus allow to
make a transition from theoretical to more operational
frameworks as recommended by Ioannou and Makridou
(2018). The CCPS model is indeed inspired by existing
CT models (Romero et al., 2017; Shute et al., 2017), but
it makes a distinct contribution regarding the transfer to
the classroom by providing teachers with explicit guid-
ance on the implementation, as previously recom-
mended by Atmatzidou and Demetriadis (2016). Indeed,
this study offers to teachers and researchers a
conceptualization of five cognitive states (USTD IDEA–

FORM–PROG–EVAL) which is adapted to ER activities
and K-5 students. In the present work, the main peda-
gogical lever that has been manipulated was the blocking
of the programming interface. This intervention proved
to be an effective way to help students cover a more
complete spectrum of CT competencies, in contrast to a
non-instructional modality, in which they mainly focus
on their programming skills. As a matter of fact, this
intervention can be easily implemented by teachers re-
gardless of the type of robot used. Consequently, this
study also addresses the lack of research on CT for K-5
classrooms, particularly grades 3 and 4, i.e., students of
age between 8 and 10 years old. However, the presented
findings are not limited to this age range and may pos-
sibly be extended to younger and older students. Finally,
the establishment of this model and especially of its me-
chanics could appear as a step forward in the implemen-
tation of the CT in the classroom through ER activities.

Limitations and future work
Although the results of this study appear to be promis-
ing, further studies are needed to draw more substantial
conclusions. Due to school regulations, access to class-
rooms is limited for research purposes, hence in this
study, the experiments were conducted with a small
sample size. Nevertheless, considering the 2162 mapped
transitions, this size could be considered sufficient for
the purpose of this research, which is namely to verify
the present model. However, as the main goal of the
CCPS model is to support teachers in the design, imple-
mentation, and evaluation of ER activities, future work
should investigate whether teachers really perceive an
added value of the model for their teaching activities.
Moreover, other intervention hypotheses could be ex-
plored and tested, in order to demonstrate more ex-
haustive validity of the model. Furthermore, in order to
present evidence for the effectiveness as a reference
model for ER activities, future longitudinal studies
should investigate the effective learning gains evoked by
the interventions proposed by the model. In this regard,
the findings of the present study may provide a good
starting point for the design and executions of such
studies.

Acknowledgements
The authors would like to thank the Coordination Committee for Educational
Research of the Canton of Vaud (Switzerland) as well as the school
administration and all teachers, students, and their parents for the
participation in the study. Moreover, the authors would like to thank Melissa
Skweres for proofreading the manuscript.

Authors’ contributions
M.C. designed the model, carried out experiments, analyzed data, and wrote
the paper; C.G. designed the model, carried out experiments, analyzed data,
and wrote the paper; A.P. designed the model, carried out experiments, and
wrote the paper; F.M. designed the model and wrote the paper. The
author(s) read and approved the final manuscript.

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 16 of 18

Funding
This work was partially supported by the Swiss National Science Foundation
NCCR Robotics.

Availability of data and materials
The data sets generated and analyzed during the current study are not
publicly available due to the sensitivity of the data of the under-age partici-
pants but are available from the corresponding author on reasonable
request.

Competing interests
The authors declare that they have no competing interests.

Author details
1Haute Ecole Pédagogique (HEP) du Canton de Vaud, Avenue de Cour, 33,
1014 Lausanne, Switzerland. 2Mobots Group of the Biorobotics Laboratory,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015
Lausanne, Switzerland. 3Department of Education and Learning (DFA),
University of Applied Sciences and Arts of Southern Switzerland (SUPSI),
Piazza S. Francesco 19, 6600 Locarno, Switzerland.

Received: 18 March 2020 Accepted: 6 July 2020

References
Antle, A. N. (2013). Exploring how children use their hands to think: An

embodied interactional analysis. Behaviour & Information Technology, 32(9),
938–954.

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational
thinking skills through educational robotics: A study on age and gender
relevant differences. Robotics and Autonomous Systems, 75, 661–670.

Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to
sequential analysis, (2nd ed.,). New York: Cambridge University Press.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to k-12: What is
involved and what is the role of the computer science education
community? Inroads, 2(1), 48–54.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational
thinking and tinkering: Exploration of an early childhood robotics curriculum.
Computers & Education, 72, 145–157.

Bottino, R., & Chioccariello, A. (2014). Computational thinking: Videogames,
educational robotics, and other powerful ideas to think with. In T. Brinda, N.
Reynolds, R. Romeike, & A. Schwill (Eds.), Key Competencies in Informatics and
ICT (KEYCIT), 7, (pp. 301–309). Potsdam: Universitätsverlag Potsdam Available
at http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-70325. Accessed 6 June
2020.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. In Paper presented at the annual
meeting of the American Educational Research Association (AERA). Vancouver:
Available at https://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_
AERA2012_CT.pdf. Accessed 6 June 2020.

Bumbacher, E., Salehi, S., Wieman, C., & Blikstein, P. (2018). Tools for science
inquiry learning: Tool affordances, experimentation strategies, and
conceptual understanding. Journal of Science Education and Technology,
27(3), 215–235.

Buss, A., & Gamboa, R. (2017). Teacher transformations in developing
computational thinking: Gaming and robotics use in after-school settings. In
P. Rich, & C. Hodges (Eds.), Emerging research, practice, and policy on
computational thinking, (pp. 189–203). Cham: Springer. https://doi.org/10.
1007/978-3-319-52691-1.

Catlin, D., & Woollard, J. (2014). Educational robots and computational thinking. In
M. Merdan, W. Lepuschitz, G. Koppensteiner, R. Balogh, & D. Obdrzalek (Eds.),
Robotics in Education : current research and innovations, (pp. 144–151). Cham:
Springer. https://doi.org/10.1007/978-3-030-26945-6.

Chalmers, C. (2018). Robotics and computational thinking in primary school.
International Journal of Child-Computer Interaction, 17, 93–100.

Denis, B., & Hubert, S. (2001). Collaborative learning in an educational robotics
environment. Computers in Human Behavior, 17(5-6), 465–480.

DeSchryver, M. D., & Yadav, A. (2015). Creative and computational thinking in the
context of new literacies: Working with teachers to scaffold complex
technology-mediated approaches to teaching and learning. Journal of
Technology and Teacher Education, 23(3), 411–431. Waynesville: Society for

Information Technology & Teacher Education. Available at https://www.
learntechlib.org/primary/p/151572/. Accessed 6 June 2020.

Dierbach, C. (2012). Introduction to computer science using python: A
computational problem-solving focus. Hoboken: Wiley Publishing.

Dillenbourg, P. (2013). Design for classroom orchestration. Computers & Education,
69, 485–492.

Duchamp, M. (1967). The creative act [audio recording]. New York: Roaring Fork
Press Available at https://www.youtube.com/watch?v=lqLSZdX0IbQ (min.4:
20). Accessed 6 June 2020.

Eguchi, A. (2014). Robotics as a learning tool for educational transformation. In D.
Alimisis, G. Granosik, & M. Moro (Eds.), 4th International Workshop Teaching
Robotics, Teaching with Robotics & 5th International Conference Robotics in
Education, (pp. 27–34). Padova: RIE ISBN 978-88-95872-06-3. Available at
http://www.terecop.eu/TRTWR-RIE2014/files/00_WFr1/00_WFr1_04.pdf.
Accessed 6 June 2020.

Eguchi, A. (2016). Computational thinking with educational robotics. In G. Chamblee,
& L. Langub (Eds.), Proceedings of society for information technology & teacher
education international conference, (pp. 79–84). Savannah: Association for the
Advancement of Computing in Education (AACE) Available at https://www.
learntechlib.org/p/172306. Accessed 6 June 2020.

Giang, C., Chevalier, M., Negrini, L., Peleg, R., Bonnet, E., Piatti, A., & Mondada, F.
(2019). Exploring escape games as a teaching tool in educational robotics.
Educational Robotics in the Context of the Maker Movement, 946, 95.

Giang, C., Piatti, A., & Mondada, F. (2019). Heuristics for the development and
evaluation of educational robotics systems. IEEE Transactions on Education.

Giannakoulas, A., & Xinogalos, S. (2018). A pilot study on the effectiveness and
acceptance of an educational game for teaching programming concepts to
primary school students. Education and Information Technologies, 23(5), 2029–2052.

Haseski, H. I., Ilic, U., & Tugtekin, U. (2018). Defining a new 21st century skill-
computational thinking: Concepts and trends. International Education Studies,
11(4), 29–42.

Hoyles, C. (1985). What is the point of group discussion in mathematics?
Educational studies in mathematics, 16(2), 205–214.

Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach
computational thinking: Suggestions based on a review of the literature.
Computers & Education, 126, 296–310.

Ioannidou, A., Bennett, V., Repenning, A., Koh, K. H., & Basawapatna, A. (2011).
Computational thinking patterns. In Paper presented at the annual meeting of
the American Educational Research Association (AERA). New Orleans: Available
at https://files.eric.ed.gov/fulltext/ED520742.pdf. Accessed 6 June 2020.

Ioannou, A., & Makridou, E. (2018). Exploring the potentials of educational
robotics in the development of computational thinking: A summary of
current research and practical proposal for future work. Education and
Information Technologies, 23(6), 2531–2544.

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all
learners in school-wide computational thinking: A cross-case qualitative
analysis. Computers & Education, 82, 263–279.

Jung, S. E., & Won, E.-s. (2018). Systematic review of research trends in robotics
education for young children. Sustainability, 10(4), 905.

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L. (2011). Understanding
computational thinking before programming: Developing guidelines for the
design of games to learn introductory programming through game-play.
International Journal of Game-Based Learning (IJGBL), 1(3), 30–52.

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L. (2012). Learning
programming at the computational thinking level via digital game-play.
Procedia Computer Science, 9, 522–531.

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for
categorical data. Biometrics, 33, 159–174.

Leonard, J., Buss, A., Gamboa, R., Mitchell, M., Fashola, O. S., Hubert, T., &
Almughyirah, S. (2016). Using robotics and game design to enhance
children’s self-efficacy, stem attitudes, and computational thinking skills.
Journal of Science Education and Technology, 25(6), 860–876.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., &
Duschl, R. A. (2020). Computational thinking is more about thinking than
computing. Journal for STEM Education Research, 3, 1–18. https://doi.org/10.
1007/s41979-020-00030-2.

Lumsdaine, E., & Lumsdaine, M. (1994). Creative problem solving. IEEE Potentials,
13(5), 4–9.

Miller, D. P., & Nourbakhsh, I. (2016). Robotics for education. In B. Siciliano, & O.
Khatib (Eds.), Handbook of robotics, (2nd ed., pp. 2115–2134). Cham: Springer.
https://doi.org/10.1007/978-3-319-32552-1_79.

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 17 of 18

http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-70325
https://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
https://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
https://doi.org/10.1007/978-3-319-52691-1
https://doi.org/10.1007/978-3-319-52691-1
https://doi.org/10.1007/978-3-030-26945-6
https://www.learntechlib.org/primary/p/151572/
https://www.learntechlib.org/primary/p/151572/
https://www.youtube.com/watch?v=lqLSZdX0IbQ
http://www.terecop.eu/TRTWR-RIE2014/files/00_WFr1/00_WFr1_04.pdf
https://www.learntechlib.org/p/172306
https://www.learntechlib.org/p/172306
https://files.eric.ed.gov/fulltext/ED520742.pdf
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/s41979-020-00030-2
https://doi.org/10.1007/978-3-319-32552-1_79

Mondada, F., Bonani, M., Riedo, F., Briod, M., Pereyre, L., Rétornaz, P., & Magnenat,
S. (2017). Bringing robotics to formal education: The thymio open-source
hardware robot. IEEE Robotics & Automation Magazine, 24(1), 77–85.

Negrini, L., & Giang, C. (2019). How do pupils perceive educational robotics as a
tool to improve their 21st century skills? Journal of e-Learning and Knowledge
Society, 15(2). https://doi.org/10.20368/1971-8829/1628.

Papert, S. (1980). Mindstorms: Computers, children, and powerful ideas. New York:
Basic Books.

Perez, S., Massey-Allard, J., Butler, D., Ives, J., Bonn, D., Yee, N., & Roll, I. (2017).
Identifying productive inquiry in virtual labs using sequence mining. In E.
André, R. Baker, X. Hu, M. Rodrigo, & B. Du Boulay (Eds.), International
conference on artificial intelligence in education, (pp. 287–298). Wuhan:
Springer. https://doi.org/10.1007/978-3-319-61425-0_24.

Perkovic, L., Settle, A., Hwang, S., & Jones, J. (2010). A framework for
computational thinking across the curriculum. In A. Clear, & L. Dag (Eds.),
Proceedings of the 15th annual conference on innovation and technology in
computer science education (ITiCSE), (pp. 123–127). New York: Association for
Computing Machinery (ACM). https://doi.org/10.1145/1822090.1822126.

Puccio, G. (1999). Creative problem solving preferences: Their identification and
implications. Creativity and Innovation Management, 8(3), 171–178.

Repenning, A., Webb, D., Koh, K., Nickerson, H., Miller, S., Brand, C.,… Repenning, N. (2015).
Scalable game design: A strategy to bring systemic computer science education to
schools through game design and simulation creation. ACM Transactions on
Computing Education (TOCE), 15(2), 11. https://doi.org/10.1145/2700517.

Riedo, F., Chevalier, M., Magnenat, S., & Mondada, F. (2013). Thymio II, a robot
that grows wiser with children. In Proceedings of the 2013 IEEE Workshop on
Advanced Robotics and its Social Impacts (ARSO), (pp. 187–193). Tokyo: IEEE.
https://doi.org/10.1109/ARSO.2013.6705527.

Riedo, F., Rétornaz, P., Bergeron, L., Nyffeler, N., & Mondada, F. (2012). A two years
informal learning experience using the Thymio robot. In U. Rückert, S.
Joaquin, & W. Felix (Eds.), Advances in Autonomous Mini Robots, (pp. 37–48).
Berlin: Springer. https://doi.org/10.1007/978-3-642-27482-4_7.

Romero, M., Lepage, A., & Lille, B. (2017). Computational thinking development
through creative programming in higher education. International Journal of
Educational Technology in Higher Education, 14(1), 42.

Sadik, O., Leftwich, A.-O., & Nadiruzzaman, H. (2017). Computational thinking
conceptions and misconceptions: Progression of preservice teacher thinking
during computer science lesson planning. In P. Rich, & C. Hodges (Eds.),
Emerging research, practice, and policy on computational thinking, (pp. 221–
238). Cham: Springer. https://doi.org/10.1007/978-3-319-52691-1_14.

Sharpe, T. L., & Koperwas, J. (2003). Behavior and sequential analyses: Principles and
practice. Sage Publications, Inc. https://doi.org/10.4135/9781412983518.

Shin, J., Siegwart, R., & Magnenat, S. (2014). Visual programming language for
Thymio II robot. In Paper presented at the Conference on interaction design
and children (idc’14). Aarhus: Available at http://se.inf.ethz.ch/people/shin/
publications/shin_idc14.pdf. Accessed 6 June 2020.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational
thinking. Educational Research Review, 22, 142–158.

Sullivan, A., Bers, M., & Mihm, C. (2017). Imagining, playing, and coding with kibo:
Using robotics to foster computational thinking in young children. In
Proceedings of the International Conference on Computational Thinking
Education. Wanchai: Available at https://ase.tufts.edu/devtech/publications/
Sullivan_Bers_Mihm_KIBOHongKong%20.pdf. Accessed 6 June 2020.

Tsai, M.-J., Hsu, C.-Y., & Tsai, C.-C. (2012). Investigation of high school students’ online
science information searching performance: The role of implicit and explicit
strategies. Journal of Science Education and Technology, 21(2), 246–254.

Viau, R. (2009). La motivation en contexte scolaire, (2nd ed.,). Bruxelles: De Boeck
ISBN ISBN: 978-2-8041-1148-9.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.
(2016). Defining computational thinking for mathematics and science
classrooms. Journal of Science Education and Technology, 25(1), 127–147.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Yaroslavski, D. (2014). How does lightbot teach programming? Lightbot.com

Available at https://lightbot.com/Lightbot_
HowDoesLightbotTeachProgramming.pdf. Accessed 6 June 2020.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Chevalier et al. International Journal of STEM Education (2020) 7:39 Page 18 of 18

https://doi.org/10.20368/1971-8829/1628
https://doi.org/10.1007/978-3-319-61425-0_24
https://doi.org/10.1145/1822090.1822126
https://doi.org/10.1145/2700517
https://doi.org/10.1109/ARSO.2013.6705527
https://doi.org/10.1007/978-3-642-27482-4_7
https://doi.org/10.1007/978-3-319-52691-1_14
https://doi.org/10.4135/9781412983518
http://se.inf.ethz.ch/people/shin/publications/shin_idc14.pdf
http://se.inf.ethz.ch/people/shin/publications/shin_idc14.pdf
https://ase.tufts.edu/devtech/publications/Sullivan_Bers_Mihm_KIBOHongKong%20.pdf
https://ase.tufts.edu/devtech/publications/Sullivan_Bers_Mihm_KIBOHongKong%20.pdf
https://lightbot.com/Lightbot_HowDoesLightbotTeachProgramming.pdf
https://lightbot.com/Lightbot_HowDoesLightbotTeachProgramming.pdf

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Background
	What three meta-analyses at the crossroads of ER and CT have shown
	CT development with ER is more than just programming a robot

	The CCPS model
	Educational robotic systems for the development of CT skills
	Combining creative problem solving and computational problem solving
	The phases of the CCPS model

	Research question
	Methods
	The robot lawnmower mission
	Participants
	Experimental procedure
	Control groups
	Test groups

	Video analysis

	Results
	Discussion
	The effect of non-instructional approaches for ER activities
	Does a non-instructional approach for ER activities (i.e., unlimited access to the programming interface) promote a trial-and-error approach?

	The effect of blocking and partially blocking the programming interface
	Does a blocking of the programming interface foster cognitive processes related to problem understanding, idea generation, and solution formulation?
	Does a partial blocking (i.e., the possibility to use the programming interface without executing the code on the robot) help students to gradually advance in the problem-solving process?

	Off-task behavior as part of the activity

	Conclusion
	Limitations and future work

	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

