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Abstract

Background: Contemporary work in the design and development of intelligent training systems employs task analysis
(TA) methods for gathering knowledge that is subsequently encoded into task models. These task models form the
basis of intelligent interpretation of student performance within education and training systems. Also referred to as
expert models, they represent the optimal way(s) of performing a training task. Within Intelligent Tutoring Systems
(ITSs), real-time comparison of trainee task performance against the task model drives automated assessment and

interactive support (such as immediate feedback) functionality. However, previous task analysis (TA) methods, including
various forms of cognitive task analysis (CTA), may not be sufficient to support identification of the detailed design
specifications required for the development of an ITS for a complex training task incorporating multiple underlying skill
components, as well as multi-modal information presentation, assessment, and feedback modalities. Our current work
seeks to develop an ITS for training Robotic Assisted Laparoscopic Surgery (RALS), a complex task domain that requires
a coordinated utilization of integrated cognitive, psychomotor, and perceptual skills.

Results: In this paper, we describe a methodological extension to CTA, referred to as multi-modal task analysis (MMTA)
that elicits and captures the nuances of integrated and isolated cognitive, psychomotor, and perceptual skill modalities
as they apply to training and performing complex operational tasks. In the current case, we illustrate the application of
the MMTA method described here to RALS training tasks. The products of the analysis are quantitatively summarized,
and observations from a preliminary qualitative validation are reported.

Conclusions: We find that iterative use of the described MMTA method leads to sufficiently complete and robust task
models to support encoding of cognitive, psychomotor, and perceptual skills requisite to training and performance of
complex skills within ITS task models.

Keywords: Task models, Task analysis, Intelligent tutoring system, Robot-assisted surgery, Psychomotor skills, Cognitive

skills, Perceptual skills, Multi-mnodal task, Simulation-based training

Background

The practice of task analysis (TA) is used in the design
and development of procedures, training, and evalua-
tions across a wide variety of human-performed as well
as automated skills and tasks. While early TA studies
often focused on relatively simple procedural and phys-
ical tasks, over the years, TA methods have been applied
to increasingly complex tasks with increased emphasis
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on the cognitive components of such tasks; cognitive
task analysis (CTA) typically refers to methods focused
primarily on the cognitive processes associated with
proficient or expert performance of operational tasks,
including reasoning, problem-solving, and decision-
making (for a detailed review, see Hoffman & Militello,
2012). Within the context of more complex tasks that
were not purely behavioral in nature, CTAs particularly
sought to capture the decisions and analyses that could
not be directly observed, as well as the deeper conceptual
knowledge that served as the basis for analytical strategies
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(Clark, Feldon, vanMerrienboer, Yates, & Early, 2008).
CTAs have shown to be effectively applied to declarative
knowledge, procedural knowledge, and decision points, as
well as complex cognitive tasks incorporating multiple
types of knowledge and processes (Clark et al., 2008).

The specific methods of task analysis, as well as their
outcomes and applications, differ vastly depending on
the objectives of the TA (Silber & Foshay, 2009). For
example, a TA focused on the development of a training
system may require not only characterization of the
correct way of performing the targeted tasks, but also
elucidation of optimal ways for teaching correct task per-
formance, including identification of common mistakes,
helpful hints and cues, and appropriate assessment and
feedback techniques. Furthermore, the underlying know-
ledge, skills, and abilities/attitudes (KSAs) associated with a
particular task or domain dictate the methods necessary to
effectively decompose task characteristics. For example,
procedural tasks involving ordered steps may require a
hierarchical task analysis (HTA) approach (Annett, 2003).

Specifically in the field of training, a tradition of con-
ducting task analysis exists, and in many cases CTA is
used to develop curriculum content within the medical
domain (e.g., Velmahos et al., 2004; Johnson et al., 2006).
Behavioral task analysis (Jonassen et al., 1998) is used to
determine what should be taught and what is the best way
of training students. This way of thinking naturally leads
to modeling how experts perform well-defined tasks (e.g.
performing routine engine maintenance). Extensions of
this practice to learning domains that not only exercise
procedural knowledge but also conceptual knowledge are
discussed within the field of cognitive task analysis (Clark
et al, 2008), which retains the principle of modeling
expert performance.

While some TA methods rely primarily on real-time
“think aloud” protocols in which individuals explain
what they are thinking and doing while completing a
task, others involve post hoc assessments, including the
use of video recordings to conduct “play-by-play” ana-
lysis of one’s own recorded task scenarios or by other in-
dividuals (e.g., Schlager, Means & Roth, 1990).

In our ongoing work, we are developing scalable train-
ing technologies that make expert human-level personal-
ized instruction available to learners. We are extending
intelligent tutoring technologies developed for concep-
tual domains such as high-school level Mathematics and
Science to complex task domains that not only involve
recall and application of conceptual knowledge, but also
precise display of psychomotor skill and perceptual acu-
ity. Specifically, in our current efforts, we are developing
an ITS that will augment simulation based training cur-
rently used by surgeons learning to use a sophisticated
robotic surgical system. Training surgeons to utilize
robotic surgical devices such as the da Vinci Surgical
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System (DVSS) is a prime example of a complex task do-
main involving integrated cognitive, psychomotor, and
perceptual skills; and for which a set of well-defined
training tasks have been developed. With the increasing
use of these surgical systems, reaching over 3 million
cases worldwide to date (Intuitive Surgical, 2016), there
is a dramatic increase in the need for effective training
and assessment of the surgical skills required to perform
medical procedures using these systems. Of particular
importance is the initial learning curve associated with
acquisition of these skills by inexperienced surgeons,
which has numerous implications, particularly in terms
of patient safety (Hopper et al., 2007). While prevailing
training practices involve the use of sophisticated high-
fidelity simulation based training as well as on-device
training, instruction and feedback currently require ex-
pert surgeon supervision. Meeting this training need
places an additional training burden on clinical surgical
staff who are primarily engaged in catering to patients’
need for these surgical procedures.

In addition to incorporating traditional TA methods
into the design and development of such training sys-
tems, empirical research involving objective measures is
often helpful in identifying underlying characteristics of
task performance and aspects of task performance that
result in a large degree of variability across individual
performers. For example, within laparoscopic tasks in-
volving tissue pulling, Lamata et al. (2008) found a loga-
rithmic relationship between perceptions of tissue
consistency parameters by comparing subjective valori-
zations with objective parameters such as peak forces
applied to tissues in vivo.

Developing the ability to perform surgical procedures
requires mastering complexity in multiple dimensions.
Requisite cognitive skills include declarative information
recall, procedural knowledge, and decision-making, as
well as skills and abilities relevant to communication
and situation awareness such as working memory
capacity. Perceptual skills integral to surgical perform-
ance include both visuo-spatial and perceptual-motor
skills including; but not limited to, depth perception and
discrimination, recognition, interpretation, and often
transformation of visual information. In the case of
laparoscopic surgery this includes transformation of 2-
dimensional visual information while working within a
3-dimensional physical space (Stefanidis et al., 2006).
Relevant perceptual-motor skills within laparoscopic sur-
gery include haptic or tactile perception (Singapogu,
2012) and proprioception within a context in which a
mismatch exists in visuo-motor mapping between the
visual image and the hands (Cao et al., 1996). Mature at-
tending surgeons must be competent in all of these skills
to effectively lead a surgical team through a procedure in
which a patient’s health and life are at risk. Accomplishing
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all of this has led to extensively long educational pro-
grams, which typically include a four-year bachelor degree,
a four-year medical degree, a three to five year residency,
and perhaps a two-year fellowship. At the same time, the
explosion of medical tools and technologies has led to
ever increasing numbers of available procedures and ac-
companying increase in specialized knowledge. Acquiring
more knowledge and skills by increasing the number of
practice hours is not possible. Although, in many coun-
tries, safety regulations have limited the number of hours
that a resident or fellow can learn and practice during this
process. One alternative is to improve the methods of
training, ideally increasing the speed at which mastery can
be attained through more efficient training methods.
Virtual reality (VR) training environments have been
shown to be useful objective assessment tools for evaluat-
ing psychomotor skills for laparoscopic surgery (e.g.,
Gallagher, Richie, McClure, & McGuigan, 2001), in
addition to providing effective means for training in such
complex skills. VR training environments for laparoscopic
surgery range from simplistic so-called box trainers using
a cell phone or tablet to high fidelity procedural simula-
tors with advanced motion tracking metrics. The
Fundamentals of Laparoscopic Surgery™ (FLS) program,
developed by the Society of American Gastrointestinal
and Endoscopic Surgeons (SAGES), is currently the
“gold standard” for training, assessment, and certifica-
tion of laparoscopic surgery skills in the United States,
as well as many other countries. This didactic training
and assessment protocol consists of declarative know-
ledge training materials and an associated computer-
based test, as well as training of five manual skills tasks
to specified proficiency levels using a video trainer box.
The use of the FLS manual skills tasks has been dem-
onstrated to be a valid method for both teaching and
assessing psychomotor skills in laparoscopic surgery
based on randomized controlled studies (Westwood,
Hoffman, Stredney, & Weghorst, 1998). Several studies
have also demonstrated that virtual reality training
translates to improved laparoscopic skills in the operat-
ing room. In particular, FLS box trainer scores have
been shown to be independently predictive of intraop-
erative laparoscopic performance as measured by the
Global Operative Assessment of Laparoscopic Skills
(GOALS) (Fried et al., 2004; McCluney et al., 2007;
Soper & Fried, 2008; Sroka et al., 2010). However, the
FLS box trainer tasks are designed to assess psycho-
motor skills in isolation from the cognitive skills
required to perform complex surgical procedures.
Intelligent Tutoring Systems (ITS) have been shown to
be particularly valuable for teaching cognitive tasks such
as troubleshooting, problem solving, and resolving critical
situations. As a human tutor does, an ITS continually
monitors and assesses the individual student's actions,
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infers the student's state of knowledge, and decides on the
next instructional move to maximize the student's learn-
ing based on an embedded student model, task model,
and instructional model. As highlighted by a recent meta-
analysis (Kulik & Fletcher, 2016), research and develop-
ment within the domain of ITS has demonstrated the
technical feasibility and relative effectiveness of computer-
based adaptive instruction as compared to classroom and
small group instruction. ITS development has been ap-
plied across multiple domains, including within military
applications such as ship handling and tactical decision-
making. Furthermore, previous development efforts have
demonstrated the ability to effectively apply generic ITS
components such as authoring tools to specific military
domains (Stottler et al., 2001; Sottilare & Holden, 2013).
Motivated by this training need and the feasibility of
extending the envelope of existing technology, we are
building an ITS for training surgeons to use robot-
assisted surgical devices, specifically to use the DVSS
system for high demand laparoscopic procedures. This
motivating context informs the task analysis that is doc-
umented in this article. Specifically, we have conducted
task analysis of a set of well-defined robotic surgery
training tasks, developed and validated under the Funda-
mental of Robotic Surgery (ERS) curriculum, which are
elaborated in the next section. We have developed a
modified task analysis technique to be able to capture
the complexity rising from the interaction of cognitive,
psychomotor and perceptual skills, together referred to
here as the multiple modalities of (or multi-modal) skills
involved in this domain, and also to identify optimal
instructional strategies, assessment metrics, and multi-
modal feedback for guiding acquisition of these skills.
Representative products of the multi-modal task analysis
(MMTA) method presented here are based on consider-
ations for inputs necessary to encode expert knowledge
into the task model component of the ITS being built.

Robot-assisted laparoscopic surgery (RALS)

Originating from the military’s vision for telemedicine,
surgical robots were intended to provide patients (e.g.
injured soldiers) in remote locations access to advanced
medical care. In their present realization however, surgi-
cal robots are used to perform on-site complex proce-
dures in which the surgeon is decoupled from the
patient. Instead of controlling the surgical instruments
by direct hand manipulation, surgeons use a console,
which in turn tele-manipulates surgical instruments that
are mounted on the arms of a robot. This type of robot-
assisted surgery provides increased precision, flexibility
and control to a surgeon compared to traditional prac-
tice. For example, the surgeon is in a seated position at
the console, has the freedom to relax or reorient his/her
hands without moving the surgical instruments and has



Skinner et al. International Journal of STEM Education (2018) 5:14

better access to the surgical area. Additionally, compared
to traditional laparoscopic surgical systems, robot-assisted
laparoscopic surgery (RALS) offers stereoscopic vision
that offers better depth perception for the surgeon.

A prominent surgical robot is the da Vinci Surgical Sys-
tem (DVSS) which is presently used to perform a variety
of minimally invasive surgical procedures within the areas
of gynecology, urology, neurosurgery and cardiology.
While additional makes and models of surgical robots are
also being commercially marketed, presently the DVSS is
the most widely deployed globally and has been used to
perform over 3 million surgical procedures.

Current training regimen

RALS practice in its current state requires highly trained
surgical staff. Specifically, the surgeon at the console
requires significant training to safely and successfully
complete procedures using the robot. In response to this
need, training regimens have been developed and are
being used across the spectrum of institutions engaged in
training surgeons. However, a standardized curriculum for
RALS training does not exist (Foote & Valea, 2016).

Training for using surgical robots is conducted in the
form of courses. Surgeons typically receive instruction
on the necessary psychomotor skills in isolation from
the cognitive and perceptual skills, and may only
perform these skills in an integrated manner during a
single-day course on an animal model. Following an
introductory orientation to robotic surgery, surgeons
train under the mentorship of a practicing robotic sur-
geon at their respective hospitals. None of this guidance
is standardized, validated, or accredited by outside pro-
fessional groups, although efforts are underway to de-
velop certification programs for robot-assisted surgery.
The FRS, which we will describe in detail, represents a
leading effort on developing multi-specialty surgical skill
education, training, and assessment program, including
standardized objective measures of RALS proficiency in
psychomotor skills that have been determined to be fun-
damental across specialties.

Another key development that informs the current
robot-assisted surgical training practice is the availability
of simulation-based training systems that reduce the cost
of training and provide access to an increasing collection
of training content (simulations). We will also present
an overview of simulation-based training for RALS later
in this section.

In addition to the availability of a well-defined set of
standardized training tasks within the FRS curriculum
and high fidelity simulated FRS training scenarios within
existing robotic surgery simulator platforms, this use
case provides several additional advantages. Both exist-
ing and emergent training scenarios can be augmented
with additional external pedagogical controllers with
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relative ease due to a collaborative relationship with an
existing RALS simulator company; this makes a case for
the feasibility of timely development of an ITS that
would observe, support and assess trainees performing
ERS tasks in the simulation. Furthermore, upon develop-
ment and validation, this ITS would be potentially ready
for use within prevailing medical training practice for
training novice robotic surgeons as well as for refresher
training and assessment for expert surgeons.

Fundamentals of robotics surgery (FRS)

The FRS curriculum is a multi-specialty robotic surgical
skills education, training, and assessment program that
was developed through a series of consensus conferences
involving expert surgeons, medical educators, behavioral
psychologists, and cognitive scientists. The goal of the
FRS development process was to develop a proficiency-
based curriculum of basic technical skills that surgeons
could be trained and assessed on to prepare them for
performing robot-assisted surgical procedures across a
wide range of specialties.

The FRS curriculum, in its current form, is divided
into four modules, including an introduction to surgical
robotic systems, didactic instructions, psychomotor skills
tasks, and team training. Of specific interest to our
current work is the psychomotor skills curriculum that
is comprised of six training tasks. These training tasks
have been implemented both as a physical training
model suitable for use on the da Vinci surgical robot as
well as simulation-based training available on multiple
RALS simulator manufacturers. Table 1 lists these tasks
along with brief descriptions and listing of surgical skills
that each task is intended to exercise. A snapshot of
each task being performed in a simulation based training
environment is also shown.

Despite the FRS terminology used to characterize
these tasks, they exercise not only the psychomotor skills
listed in Table 1 but also the cognitive and perceptual
skills used in performing surgical procedures. While the
task analysis described in this paper is applied only to
the FRS tasks, the scope of the ITS development effort
extends to supporting training for surgical procedures.
Specifically, we are currently working on developing task
models for prostatectomy using the method described in
this work. These surgical procedures employ the cogni-
tive skills such as knowledge of anatomy and biosignals
to a greater extent.

Simulation-based training for RALS

Our approach to the development of an ITS for RALS
(RALS ITS) involves the use of a simulator for robotic
surgery procedures. The ITS operates as a controller of
the simulation. Commercial availability and deployment
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Table 1 Fundamentals of robotics surgery psychomotor skills tasks
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Fundamentals of robotics surgery psychomotor skills tasks

FRS Task 1:

Ring Tower Transfer
The trainee removes a
ring from the top right
middle tower and
places it on the lower

. left side tower. Then
the ring from the top left middle tower is removed and
[placed on the lower right side tower.

Primary Skills:

Eye-hand instrument coordination;
Camera navigation; Use of camera
pedal; Wristed instrument
maneuvering

Secondary Skills:
Wrist articulation; Ambidexterity

v FRS Task 2:
Knot Tying
Y The trainee ties a

surgeon’s knot to
approximate the two
eyelets such that they
touch each other and

Primary Skills:
Appropriate handling of suture
material; Tying secure knots

Secondary Skills:
Wrist articulation; Eye hand
instrument coordination;

The trainee must
perform horizontal
mattress suturing
through a series of
target points to
approximate the
tissue, followed by anchoring the needle by passing it
through the final two target points twice.

then backs up the knot with two more throws. Ambidexterity
FRS Task 3 Primary Skills:
Railroad Track Holding and manipulating the needle;

Following the curve of the needle;
Utilizing the full range of motion of
the endowrist; Using graspers

Secondary Skills:

Eye hand instrument coordination;
Passing objects between instruments;
Appropriate handling of suture
material; Running suture

FRS Task 4

3rd Arm Cutting
The trainee must
switch control
between different
instruments to use the
monopolar scissors to
cut the vein transversely at the hash marks.

Primary Skills:
Switching between and controlling
multiple arms; Cutting

Secondary Skills:
Atraumatic handling of tissue; Eye
hand instrument coordination

FRS Task 5
Puzzle Piece
Dissection

In this task, the
trainee must cut the
puzzle piece pattern
between the lines
without incising the underlying tissue or cutting
outside of the lines.

Primary Skills:
Dissection; Cutting; Atraumatic tissue
handling; Sharp and blunt dissection

Secondary Skills:
Eye hand instrument coordination;
Wrist articulation

FRS Task 6

Vessel Energy
Dissection

The trainee must
dissect through the fat
layer to expose the
vessel then coagulate
the vessel at two
points and finally cut the vessel between the two
coagulated points.

Primary Skills:

Accurate activation and use of energy
sources; Dissection of vessels and
tissues; Cutting and coagulation of
vessels; Multiple arm control

Secondary Skills:
Atraumatic tissue handling; Eye hand
instrument coordination
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of simulation-based training systems for RALS informs
and enables this approach.

Simulation-based surgical skills training has been dem-
onstrated to be effective, and can produce learning curves
similar to non-simulation based learning (e.g., Hernandez
et al., 2004), indicating that simulation could provide a
safe and structured context in which to ascend the initial
phase of the learning curve without exposing patients to
increased risk. Currently, four different simulation systems
are available for training and developing skills in robotic
surgery, each attempting to convey a standardized cur-
riculum that can be assessed via standardized metrics,
while providing limited assistive cueing and feedback to
support a level of unsupervised learning (Smith et al,
2015). Three of the four simulators have demonstrated
the ability to improve basic robotic skills, resulting in skills
comparable with those obtained on dry laboratory simula-
tion (Bric, Lumbard, Frelich, & Gould, 2016). Training,
however, continues to rely heavily on instruction and
guidance provided by a human instructor.

In our current work, we are using the RobotiX Mentor
simulation system developed and marketed by Simbionix
because of the availability of large collection of curriculum
content which includes simulated FRS tasks as well as sev-
eral surgical procedures (Prostatectomy, Hysterectomy,
Vaginal Cuff Closure and Lobectomy). Furthermore, the
RobotiX Mentor offers a hardware implementation of the
surgeon console that is close to the DVSS and accurately
models the robot’s kinematics, tools and workspace. The
RobotiX Mentor features a stereoscopic personal display
and life-like graphical rendering of the FRS tasks as well
as anatomical space. Finally, the choice of this simulation
system for prototyping our ITS is informed by technical
reasons including the off-the-shelf computing hardware
used by this simulator and an ongoing effort to expose an
application programming interface (API) that would allow
the ITS to observe student behavior in real-time and con-
trol the simulation’s behavior in various ways necessary to
deliver interactive support to the trainee. Figure 1 shows a
photograph of the RobotiX Mentor. The FRS task snap-
shots shown in Table 1 were rendered by this simulator.

Intelligent tutoring system for RALS

In our recent work, we have developed an online learn-
ing platform for creating and delivering problem-solving
based learning tasks to students. In addition to the wide
applicability of problem-solving as a learning activity in
secondary and higher education, scalability goals are ac-
complished through domain independence and online
access. The ITS embedded within this learning platform
uses example-tracing (Aleven et al, 2009) based task
models to represent optimal solutions to learning tasks
(problems). Example-tracing is a technique used in intel-
ligent tutoring systems to develop task models. A set of
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Fig. 1 RobotiX Mentor Simulation System
.

example demonstrations of ways of successfully com-
pleting a task are collected from individuals directly per-
forming the task. These demonstrations are used to
construct a behavior graph, which is a directed graph
that models multiple ways to solve the problem. During
tutoring, student’s steps are traced against this model i.e.
the behavior graph to interpret the student’s actions. This
example-tracing approach to tutor development requires
less effort and expertise than other approaches such as
model tracing tutors, in part due to well-developed
general-purpose authoring tools such as the Cognitive
Tutors Authoring Tools (CTAT) (Aleven et al., 2006) and
the ASSISTment Builder (Razzaq et al., 2009). To further
reduce the effort in constructing task models, we have de-
veloped tools and techniques for automating the develop-
ment and maintenance of these task models using fine-
grained log of behavior demonstration by multiple experts
(Kumar et al., 2014).

One of the caveats of the above application of ITS
technology arises from the relative simplicity of the
learning tasks, and correspondingly task models, taught
in secondary school subjects like mathematics and phys-
ics. Training domains such as RALS require an extension
of the task modeling techniques employed in cognitive do-
mains such as problem-solving in order to also model the
skills exercised in perceptual and psychomotor domains
within the underlying ITS framework. Furthermore, des-
pite the effectiveness of ITS, not many fully developed
applications of intelligent tutoring technologies have been
developed for medical training. Some of the earlier tutors
from the medical training domain included: medical diag-
nosis training (Clancey, 1983, 1986), teaching drawing
conclusions from diagnostic reasoning (Voytovich, 1985),
how to interpret mammograms (Azevedo & Lajoie, 1998),
teaching diagnostic reasoning for antibody identifica-
tion (Smith et al., 1998), teaching the interpretation
of neuroradiological images (Sharples, et al, 2000),
teaching how to detect diagnostic errors in internal
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medicine (Graber et al.,2005), teaching clinical medicine
using various media (Martens, et al., 2001), teaching med-
ical students to develop high level pedagogic strategies
(Yudelson et al, 2008), and training pathologists using
natural language (Saadawi, et al., 2008). More recent re-
search and development in this domain has examined very
specific use case applications such as gist comprehension
and knowledge about genetic testing for breast cancer risk
(Wolfe et al., 2015), as well as underlying processes within
targeted use cases. For example, Duffy et al. (2015) ex-
amined the nature of cognitive, metacognitive, and
affective processes among a medical teams managing
challenging simulated medical emergencies. Dulffy,
Lajoie, and Lachapelle (2016) also explored the detection,
tracing, and modeling of emotional processes during
learning within medical education contexts. Furthermore,
recent medical ITS development has increasingly focused
on web-based platforms such as the Virtual Civilian Aero-
medical Evacuation Sustainment Training (VCAEST)
(Shubeck, Craig, & Hu, 2016). The still relatively limited
application of ITS to medical training as well as the need
to extend ITS component technologies (such as task
models) to the complex learning tasks involved in medical
training informs our development approach.

High-level design of the RALS ITS is shown in Fig. 2. A
RALS simulation system is connected to the ITS frame-
work through an integration API. As discussed in the pre-
vious section, we will use the RobotiX Mentor simulation
system to develop the first prototype of the RALS ITS.
The ITS is built upon a framework that includes state-of-
the-art computational models of the learner skill profi-
ciencies and task procedures. While this framework will
be developed to be widely extensible to other training of
medical procedures, in our current research and develop-
ment efforts the framework will be customized for the
RALS FRS tasks and surgical procedures included in the
prototype (prostatectomy). The ITS observes a student’s
performance of a surgical task within a simulated environ-
ment and, much like a human tutor, offers guidance to the
student through four intelligent capabilities: (1) a model
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of the environment in which the task occurs, including
knowledge of the simulator, its controls and visualizations,
(2) an expert level understanding (or model) of the learn-
ing task being performed, (3) an ability to assess the stu-
dent’s proficiencies at the various skills required in the
tasks by observing the student and (4) the ability to apply
pedagogical best practices to steer the student’s learning
through an optimal path. The task model of the ITS is in-
formed by the multi-modal task analysis (MMTA), which
we describe in detail in Section 4. The student model
statistically analyzes observations of the student’s perform-
ance against established performance standards to gener-
ate a profile of the student. Finally, the third capability is
realized through the ITS instructional model.

An integration API specifies the interaction between the
framework and the simulator to enable ITS access to stu-
dent performance data collected within the simulator as
well as to inject pedagogical interventions produced by
the ITS. Our long-term goal is to make the ITS agnostic
of the simulators that implement this API specification.

Given the inherent complexity of developing an ITS
for a task domain such as RALS, a critical element of
the design process is the task analysis, which must be
capable of generating highly granular requirements and
specifications to drive the development of effective
instructional, world, task, and student models. In par-
ticular, as the resulting ITS must be capable of providing
real-time guidance and feedback regarding the various
underlying cognitive, perceptual, and psychomotor skills
involved in performance of RALS tasks and procedures,
it is necessary to explicitly decompose each of these
contributing factors in isolation, but also to determine
optimal methods for providing both isolated and inte-
grated performance-based feedback. Furthermore, while
a traditional ITS typically focuses on training primarily
cognitive skills, integration of ITS capabilities within a
RALS simulation environment requires detailed specifi-
cations regarding psychomotor and perceptual skills
assessment and instruction in order to develop models
that account for all aspects of the targeted tasks. In

~
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Fig. 2 High-level design of RALS ITS
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order to accomplish this, a need was identified to de-
velop a novel TA method for application to a series of
RALS tasks.

Methods

Multi-modal task analysis design

The objective of this effort was to leverage best practices
and existing TA methods to develop a novel approach to
complex task decomposition and analysis that would
enable highly granular modeling of both isolated and
integrated task components, as well as identification of
metrics necessary to assess performance and provide intel-
ligent instruction in real-time. For example, advanced hand
motion tracking metrics can be used to provide granular
assessments of psychomotor skills. The MMTA was specif-
ically designed to develop simulation-based training for
complex tasks involving cognitive, perceptual, and psycho-
motor skills. While there has been increasing emphasis on
both technical and non-technical skills within the surgical
domain, and development of multiple evaluation tech-
niques, these skills are largely trained and assessed in isola-
tion (Dedy, Bonrath, Zevin, & Grantcharov, 2013). As
demonstrated by Skinner (2014), psychomotor and cogni-
tive/perceptual skill relevant to laparoscopic surgery are
acquired and decay at differential rates when performed in
isolation as compared to performance of the same skills in
an integrated manner.

Particularly in the case of a RALS simulation-based
training environment, cues and feedback to the user
could be in the form of a wide variety of visual, auditory,
and even haptic stimuli. This required an emphasis on
identifying current and potential metrics to determine
how best to facilitate real-time root cause error analyses
and appropriate error correction feedback. Therefore,
the TA methods had to explicitly decompose the current
task modality parameters and also identify potential
novel multi-modal cues and feedback to be integrated
within the ITS.

Multi-modal processes have been used in the past for
training system design, but with an emphasis on cue fidel-
ity for simulator design. For example, Milham et al. (2008)
describe a Sensory Task Analysis (STA), which is used to
identify multi-modal cues experienced during real-world
performance and their associated functionalities. The pri-
mary goal of the STA is to gather rich contextual data,
which are then leveraged in the training system design.
For each task and subtask in the STA, multi-modal cues
(visual, auditory, haptic, etc.) that trainees gather and act
upon within the real world operational environment in
order to successfully complete the task are identified.
These multi-modal cues can then be replicated within a
simulated environment at various levels of fidelity (Muller
et al., 2006). The MMTA seeks to extract salient multi-
modal cues from instances of real world task performance,
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but also for existing training systems. For example, the
MMTA conducted for FRS tasks presented in this paper
included detailed evaluations for the tasks performed on
both the physical FRS dome using the DVSS robot as well
as the simulated versions of the FRS tasks on the RobotiX
Mentor.

Previously established CTA technique

The MMTA method builds on an established CTA tech-
nique developed by Cannon-Bowers et al. (2013) for simul-
taneous generation of training requirements, performance
metrics, scenario requirements, and simulator/simulation
requirements for medical tasks using a scenario-based ap-
proach. This approach requires experts to perform targeted
tasks multiple times, with each iteration probing a different
dimension of the training development process, and in-
cludes the following steps:

Step 1:Select subject matter experts (SMEs). SMEs
must be able to give detailed accounts of task/
training requirements. Typically, multiple SMEs are
selected. Instructors are often used as SMEs.

Step 2: Elicit the major tasks and subtasks. The
major steps and sub-steps needed to accomplish the
training task are collected by administering a “think
aloud” protocol to the SMEs as they perform the
training task. A human patient simulator maybe as
used a reference point to help them recount how
the task is performed.

Step 3:Elicit critical cues. The SMEs then perform the
task again, and the task analyst(s) interview the SME
using probe questions to elicit critical cues at each
step. These usually include visual or tactile cues that
serve as pre-conditions (i.e., if the step should be
performed) or post-conditions (if it has succeeded).
The cues are often documented along with applicable
contexts, affordances and constraints.

Step 4: Ask specific questions pertaining to
deficiencies in simulation. During this step, the
SMEs are asked specific questions pertaining to
deficiencies in prototype simulation and training
devices after interacting with these devices. This step
becomes increasingly prominent as the task analysis
iterations progress alongside simulation
development.

Step 5: Elicit specific errors. Lastly, task analysts elicit
specific annotations about each level of the task
decompositions that include common errors likely
to be made by novices and specific trainee behaviors
that typify each step.

This CTA approach provides an excellent model for a
multi-step process targeting various aspects of simulation-
based training design, which is broadly applicable to
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training systems design across a range of domains. The
MMTA sought to expand on this method, including sev-
eral key differentiating components. First, the MMTA
adapts Step 3 of the above process to specifically target
individual skill components (cognitive, perceptual, and
psychomotor) and to emphasize the use of multi-modal
information presentation via visual, auditory, and haptic
stimuli to optimize intelligent instruction. Furthermore,
the MMTA process and analysis was designed to not only
capture the behaviors and observations of skilled practi-
tioners and instructors, but also of novice and intermedi-
ate users to capture non-optimal and inaccurate deviations
from the best path to performing a training task within the
task model. Therefore, unlike the CTA method used by
Cannon-Bowers et al. (2013), which included skilled practi-
tioners and instructors, the MMTA design included surgi-
cal trainees with varying levels of experience within the
RALS domain. Finally, the MMTA method, detailed in the
following section, includes a step involving experts from a
similar but distinct specialty domain in order to identify
specialty-agnostic instructional design requirements and to
assess generalizability of the resulting TA products.

MMTA technique

The MMTA method includes specified approaches for
capturing, analyzing, and representing ideal skills per-
formance and common deviations from the ideal, as well
as associated multi-modal cues, instructional strategies,
feedback, and metrics. This method provides a novel
approach to task analyses across complex training do-
mains, and particularly for medical training tasks which
exercise complex integrated skills. The perceptual and
psychomotor aspects of medical training tasks make video
recording a critical component of this approach to enable
targeted probing and decomposition of underlying cogni-
tive, psychomotor, and perceptual processes, which may
be performed in an integrated manner, but require initial
training at the component task level. This level of decom-
position is critical from the perspective of ITS design as
the ITS must have the ability to determine which under-
lying skill components are contributing to overall per-
formance in order to provide appropriate tailored training
content and support to the trainee.

This approach seeks to address a common challenge in
knowledge elicitation from skilled experts as they often
have reached a stage of automaticity in which multiple
steps and underlying skill components are no longer dif-
ferentiated at the conscious level; thereby making it diffi-
cult for experts to articulate low level processes and steps.
Video recording and repeated replay of the targeted tasks
during task decomposition enables the researcher 1) to
pause the video at various points to probe the expert for
finer level details, and 2) to emphasize specific task or skill
subcomponents during each iteration of the video review
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process. For example, the researcher might first review the
video with an expert, focusing only on cognitive task com-
ponents, processes, and skills; then review the video a sec-
ond time, focusing only on psychomotor components,
and a third time focusing only on perceptual components.
The MMTA method includes the following steps,
which could be applied across a variety of task domains:

Step 1:Review relevant materials. Materials used in
this step may include documentation, texts, videos,
and existing training content relevant to the tasks in
the form of available formalized curriculum, texts,
and publications. In the case of some tasks and
domains, this may also include technical manuals for
equipment and tools involved in task performance.
In some cases the later phases of the MMTA may
reveal inconsistencies between formal
documentation and standard practice within a
domain. Identification of such inconsistencies may
serve to elucidate best practices that have been
established through practice and perhaps handed
down via formal and informal apprenticeship and
training models, but not formally documented.

Step 2:Select subject matter experts (SMEs) and
novices. Domain experts and instructors with
expertise in performing and/or training others to
perform the tasks being analyzed are selected to
participate as SMEs. Also, a range of novices are
recruited to provide video recordings of task
performance for subsequent SME interviews.
Novices also participate as trainees to elicit real-time
assessment, instruction, and feedback. Instructors
are used as a particular type of SME as they are
often able to better articulate cues used to determine
if a trainee is performing well or poorly. They are
also able to provide effective instructional strategies,
which can be instantiated within the ITS.

Step 3:Video record training and conduct
structured interviews. Novices are observed and
video recorded as they perform the tasks while
receiving real-time assessment, guidance, and
feedback from an instructor. Targeted questions are
asked of both the novice trainee and the instructor
during and after task performance. The recorded
performance is then reviewed with the instructor to
determine whether existing assessment metrics are
suitable, and to identify additional metrics that have
the potential to improve real-time and post-hoc
assessment. Instructional strategies, guidance, and
feedback employed by the instructor are also
explored, including tips and tricks that the
instructor finds to be particularly effective.
Instructors are also encouraged to think about ways
in which multi-modal training technologies could
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be used to facilitate instruction and convey complex
concepts within the targeted domain. The videos
are used to assist in further task decomposition and
brainstorming related to development of additional
instructional approaches to improve training.

Step 4: Video record instructors performing the task
using a think-aloud protocol. Researchers observe
and video record a think aloud protocol for an
instructor completing the relevant tasks, explaining
how they are completing the task as if they were
demonstrating proper task performance and
performance strategies to a trainee. The emphasis of
this protocol is on decomposition of proper task
performance, rather than on demonstrating ideal
task performance at a faster pace. The instructor is
encouraged to pause as needed to demonstrate
complex task components and may even
demonstrate or describe common errors and root
causes of those errors. The researcher likewise may
ask the instructor to pause or slow down, and may
ask targeted questions to support task
decomposition, understanding of assessment metrics
and techniques, common errors, and effective
“tricks” or strategies for successful task completion.
Following the think aloud task performance, the
researcher may review the video with the instructor
for further clarification to highlight underlying
cognitive, psychomotor, and perceptual skills and
instructor-specific feedback.

Step 5: Video record novice task performance.
Domain novices are video recorded while
performing selected tasks, primarily in order to
generate videos for subsequent review by experts.
However, this step in the process may serve several
purposes. A think aloud protocol may be completed
by the novice during task performance. The video
could also be reviewed with a researcher following
task performance, providing an opportunity for
probing questions to determine novice strategies and
perceived areas of difficulty. An expert or instructor
could also provide real-time instructional guidance
and feedback during novice task performance as
well.

Step 6:Review video with instructors. Researchers
review the novice videos with an instructor, probing
to elicit underlying cognitive, psychomotor, and
perceptual skill components, as well as skill
integration in the form of knowledge concepts that
can be applied to the student model. Videos are
iteratively reviewed with probe questions designed to
target underlying cognitive, psychomotor, and
perceptual skill components, as well as skill
integration in the form of knowledge concepts that
can be applied to the training system student model.
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Probe questions can also be designed to target
training requirements, performance metrics, and
scenario requirements to be applied to the resulting
system design.

Step 7:Review video with domain-specific experts.
Multiple domain experts view the novice videos with
a member of the research team asking probe
questions to elicit critical multi-modal assessment
cues, diagnose errors, and discuss potential training
requirements and strategies for improved
performance.

Step 8:Review video with experts from a different
specialty or domain. One or more experts from a
different specialty or domain view the novice
procedure videos with a member of the research
team asking probe questions to elicit critical
multi-modal assessment cues, diagnose errors, and
discuss similarities and differences across domains.

The following section provides details regarding the
application of this process to the targeted RALS use
case. Future work will seek to apply this same method-
ology to additional use cases and domains in order to
assess generalizability.

MMTA application to RALS
We evaluated existing robotic surgery skills training, pri-
marily focusing on the FRS curriculum, which is designed
to train and assess surgeons in the technical skills required
to safely and efficiently perform robotic-assisted surgery
(Smith et al., 2014), and conducted an MMTA for the six
ERS tasks illustrated in Figure 2.

This data collection effort focused on the following
steps in the MMTA method:

Step 1:Review relevant materials. In our case this
included documents such as the Report from the
ERS Consensus Conference on Outcomes Measures,
training curriculum from the FRS online curriculum
(frsurgery.org), promotional literature from robotic
simulator companies, YouTube videos of RALS
procedures and ERS tasks, and simulator training
such as the RobotiX Mentor Simulator’s FRS skill
module.

Step 2: Select subject matter experts (SMEs) and
novices. RALS instructors were recruited from
Florida Hospital Nicholson Center (FHNC), who
currently conduct RALS training courses at the
center. Expert surgeons were recruited from
attendees at the 2015 American Association for
Gynecologic Laparoscopists (AAGL) Global
Congress on Minimally Invasive Gynecology, as well
as from available expert RALS surgeons at FHNC.
Four of those surgeons had performed over 1,000
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RALS procedures. Novice RALS surgeons were also
recruited from FHNC. Importantly, the novice RALS
surgeons were specifically selected based on their
relative expertise in conventional (non-robotic)
laparoscopic surgery. This particular demographic of
surgeons was selected based on the assumption that
many surgeons seeking RALS training are likely to
be experienced, or even expert, surgeons having
originally trained and practiced laparoscopy. As
RALS prevalence and the availability of robots
continues to increase, many laparoscopic surgeons
are seeking RALS training. These “novice”
participants had in depth prior knowledge of general
surgical principles, skills, and laparoscopic surgical
equipment, as well as detailed knowledge regarding
the targeted (or similar) tasks. For example, these
participants may have had extensive experience in
performing a laparoscopic hysterectomy or
experience performing laparoscopic inanimate skills
labs using tools similar to the FRS dome. In most
cases these participants also had cursory exposure to
the DVSS and/or RALS simulators, and therefore
had some familiarity and comfortability with the
interface, including camera and clutch usage. In
addition to the novice RALS surgeons, additional
participants were selected to represent true novices
in the classical/traditional sense: having limited prior
exposure to any aspects of the targeted tasks,
including little to no understanding of general
surgical principles or familiarity with relevant
anatomy or surgical tools.

Step 3:Video record training and conduct

structured interviews. All novices were asked to
perform one or more of the targeted MMTA tasks,
including FRS tasks and simulated partial surgical
procedure tasks (i.e., vaginal cuff closure and
hysterectomy). During these sessions, RALS
instructors provided real-time assessment, guidance,
and feedback (positive and negative) to the novices
as if they were a trainee in a RALS course of
instruction. One or more members of the research
team took notes and asked targeted questions of
both the trainees and instructors during and after
each session. Immediately following performance of
each task, the instructors reviewed the resulting
simulator scores with researchers, highlighting aspects
of task performance that are automatically captured
by the simulator. The videos from these sessions were
also used to assist in formal task decomposition and
additional brainstorming to identify additional met-
rics, instructional strategies, guidance, and feedback to
potentially improve training within the RALS ITS.

Step 4: Video record instructors performing the task

using a think-aloud protocol. Within this step,
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instructors were asked to complete each of the
targeted FRS tasks, while providing think aloud
commentary to describe their actions and thought
processes particularly regarding task difficulty and
approach/strategy. A researcher recorded video and
notes during these sessions and asked targeted
questions before and after each task was completed
to support task decomposition, understanding of
assessment metrics and techniques, common errors,
and effective “tricks” or strategies for successful task
completion.

Step 5: Video record novice task performance. The

research team identified optimal FRS tasks and
surgical procedure modules based on currently
available training modules, access to novices (and
experts to review the videos) in the same specialty,
generalizability, and applicability to the military. The
novices recorded included an expert laparoscopist
with limited robotic surgical experience and limited
ERS exposure. Novices were recorded performing all
six FRS tasks, as well as other RALS procedures,
including a vaginal cuff closure.

Step 6:Review video with instructors. A member of

the research team reviewed each novice task
performance video with one or more RALS
instructors, pausing the videos as necessary to allow
the instructor to make or elucidate on a point, or to
allow the researcher to ask targeted questions. In
support of the task decomposition, probe questions
were used at each step in the task in order to target
cognitive, psychomotor, or perceptual subtasks and
subskills; relevant training requirements; key
performance assessment cues and metrics; critical
multi-modal cues and feedback needed to assist the
trainee; tasks components requiring skill integration
in the form of knowledge concepts, and scenario
requirements to be applied to the RALS ITS.

Step 7:Review videos with expert surgeons. The

expert observing the novice in real-time was
interviewed first; the expert reviewed the video, with
his/her commentary audible, pausing as needed to
enable the expert to make or elucidate on a point,
explain his or her commentary (including technical
jargon), or to allow the researcher to ask targeted
questions about what the surgeon was cueing on
when making assessments of performance and
providing specific feedback. The same video was
then viewed by additional experts without the
commentary of the first expert audible, again
pausing as needed to enable the expert to make or
elucidate on a point, explain his or her commentary,
or to allow the researcher to ask targeted questions.
Lastly, the video was watched a second time by some
experts, but with the commentary of the real-time
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expert audible. This enabled other experts to make
observations regarding the real-time instruction provided,
and in some cases provided an explanation for the
approach the novice was taking. This also helped
the researchers to determine what types of feedback
were based on personal preference or surgical style,
as opposed to specific safety and efficacy concerns.
Step 8:Review video with expert surgeons from a
different specialty. Due to resource constraints, we
did not review videos with expert surgeons from
different specialties. Instead, as part of the MMTA
validation process, we reviewed the MMTA products
with a variety of FRS and RALS experts from different
specialties including an expert pediatric RALS
surgeon, and an expert military RALS surgeon.

Results and discussion

Products

ITS task models make it possible to compare the trainee’s
task performance in the simulator against that of experts.
The models must encode experts’ knowledge of the proce-
dures, techniques, checks and other nuances of performing
the training tasks that are collected and documented through
this task analysis. Hence, the computational representation
of the task model informs the products of the MMTA.

We will use behavior graphs as a task model representa-
tion. Behavior graphs have been widely used by ITS because
of the robust representation and readability they offer. Be-
havior graphs are directed graphs. Nodes in behavior graphs
correspond to valid task states. Edges represent behaviors
that may cause progression (or regression) through task
states. As a trainee performs the training task, a path is
traced through these nodes by following the traversed
edges. The path provides an interpretation of the observed
behaviors of the trainee. Behavior graphs support multiple
paths to completing a task. Elements of the graphs may be
annotated with nuances that help the interpretation of
trainee behavior or drive the pedagogical strategies of the
ITS. Some of the annotations commonly used include skills
associations, identification of common errors and feedback
prompts. Authoring tools are often used to construct, anno-
tate and maintain behavior graphs. For complex tasks, mul-
tiple interlinked behavior graphs can be used. Each graph
may represent various levels of task decomposition hier-
archy or behaviors corresponding to loosely coupled yet co-
ordinated skills that must be exercised to perform the task.

In order to construct these behavior graphs, the task
analysis method described above must produce (1) task
flow diagrams that capture the task procedure and (2) task
decomposition tables that document annotatable nuances.

Task flow diagrams
Tasks flows are directed graphs that represent a hierarch-
ical decomposition of the task into steps and substeps.
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Multiple levels may be used until the task is decomposed
down to a finite vocabulary of atomic actions. This type of
decomposition follows commonly used HTA task decom-
position methods such as those described by Annett
(2003). The atomic action vocabulary is incrementally
developed and iteratively refined during the task analysis.
In addition to providing sufficient granularity to represent
the task flow, the list of atomic actions is informed by ITS
implementation considerations. Atomic actions form con-
ditional clauses that the behavior graph edges encode. In
order to automatically trace behavior graphs, it is neces-
sary that these atomic actions are detectable, by the simu-
lator, when they are performed by the trainee.

The first iteration of the set of atomic actions used for
encoding the FRS task flows was developed at the conclu-
sion of the first iteration of the task analysis for these tasks.
This set of 19 actions consist of the extracted and consoli-
dated verbs such as cutting, grasping, moving an instru-
ment, or pressing a pedal to activate surgical instruments
or robotic limbs. Together with their related subjects and
direct objects, they form a rudimentary vocabulary of de-
scribing the procedures of performing FRS tasks. Figure 3
shows an example of part of task flow diagram correspond-
ing to the sub-step of forming a suture loop in FRS task 3.
At the lowest level i.e. within step 2.3, the sub-steps repre-
sent atomic actions and are described using the atomic ac-
tion verbs like stabilize, drive, release, move, pull and grasp.

Task decomposition tables

While the task flows include task procedures that corres-
pond to necessary steps and sub-steps as well as steps that
may be taken under certain conditions, they do not docu-
ment additional information collected during the task ana-
lysis that is encoded into the task models. This includes
information like optimal paths, skills required in perform-
ing each step, instructional strategies (e.g. cues & feed-
backs) and effected assessment metrics.

The task decomposition tables include a textual descrip-
tion of each of the multiple levels of task flow steps as well
as a mapping from these steps to the surgical skills tar-
geted/assessed, metrics, cues, optimal and sub-optimal
strategies, and common/critical errors. Where applicable,
mappings to standardized assessment metrics such as
Global Evaluative Assessment of Robotic Skills (GEARS)
metrics (Goh et al, 2012), and Robotic Objective Struc-
tured Assessment of Technical Skills (R-OSATS) metrics,
are included. To illustrate, Table 2 lists the additional in-
formation document through the task analysis for one of
the sub-steps shown in Figure 3.

While the products resulting from the above applica-
tion of MMTA are too voluminous to be included in this
document, Table 3 presents quantitative measures of the
flow diagrams resulting from the task analysis of six FRS
tasks. All of the FRS tasks were decomposed into three
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Fig. 3 Task-flow diagram of a sub-step of an FRS task

Table 2 Information captured in task decomposition table for

sub-step A.23.6

Description

Move needle under skin to stitch exit location
using grasper A

Instructional
Goals

CommonErrors

OptimalStrategy

Non-optimal Strategies

Metrics

1. Optimal needle orientation and motion
2. Optimal needle depth

1. Instrument collision
2. Drive needle too deep into tissue

Bring needle tip in contact with the under side
of the second target point by supinating hand
A wrist slightly (if initial target is on top) or
pronating hand A wrist slightly (if initial target
is on bottom), maintaining perpendicular
orientation and without driving needle too
deep into the tissue

1. Align needle tip with the under side
without supinating dominant hand.
2. Align needle tip without maintaining

perpendicular orientation.

1. Number of instrument-instrument collisions
2. Time and economy metric

3. Number of instrument movements

4. Instrument path length

5. Number of unnecessary needle punctures
6. Hand orientation

7. Needle driving depth

levels (steps, sub-steps and actions) as illustrated in Figure 3.
We noticed that while some of the atomic actions (move,
press, release and grasp) are used across all the tasks, the
other atomic actions have specialized use only in a fraction
of the FRS tasks. For example, drive as an atomic action is
only used in the railroad track task which is the only task
that involves driving a needle. We asked two robotic surgery
instructors to rank the six task in terms of relative difficulty,
and found that the variety of actions used within each task
had the highest rank correlation among quantitative mea-
sures of flow diagram complexity, with increased number of
actions correlating to higher perceived complexity. FRS task
3 (railroad track) task also has the highest amount of
iteration of a sequence of actions because the stitching sub-
steps have to be repeated several times.

Validation

The MMTA task flows and task decomposition tables were
validated by personnel from FHNC. The validation pro-
cedure starts with a surgeon performing the each of the
ERS task on the simulator. The surgeon’s task performance
is directed by reading out the task flow sequence captured
in the MMTA products. As the surgeon performs these
tasks, any occurrence of errors, lack of clarity in the docu-
mented steps, necessary deviations are identified and doc-
umented. In our validation of the FRS task flows, we found
that the surgeons were able to successfully complete the
tasks while following the read-out task flows.
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Table 3 Quantitative characteristics of FRS task flow diagrams
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Task #Steps #Sub-steps #Actions Action Variety Actions in loops
FRS Task 1 10 10 76 4 24%
FRS Task 2 4 13 85 6 20%
FRS Task 3 3 10 55 8 51%
FRS Task 4 7 7 35 7 20%
FRS Task 5 5 5 29 6 38%
FRS Task 6 5 10 40 7 28%

Furthermore, the products resulting from the MMTA is
compared with documentation of FRS task procedures and
inconsistencies are noted. This is also applied to available
documentation of metrics for each task. Specific inconsist-
encies that were found during this step of the validation
pertained to differences in terminology used in medical lit-
erature, especially across specialties. For example, identical
maneuvers to tighten a suture were named differently by
different groups of surgeons (e.g, pulley maneuver vs.
thread sweep).

The MMTA products for FRS tasks were reviewed by
two expert surgeons who were previously not engaged in
this task analysis. Both of these surgeons practice robotic
surgery in different specializations. Both of these sur-
geons suggested modifications to the task flows and spe-
cific alternate techniques used in their specializations.
For example, Fig. 4 shows a comment from one of these
surgeons who suggested an alternative technique that
can be used for stabilizing tissue which is more com-
monly used in pediatric practice.

When necessary, the tasks are repeated on a DVSS
system (either on the FRS tasks simulation available on
the DVSS or using the physical model) to identify and
correct inconsistencies in the MMTA products arising
from differences in fidelity and function of the RobotiX
Mentor’s controls from the DVSS. As a last step of the
validation, the issues identified are corrected through
discussed among the task analysts and SMEs.

Conclusions
This article summarizes the development of a novel ap-
proach to knowledge elicitation within the context of

complex tasks for the development of highly granular
TA products capable of driving design requirements
for ITS models, and in particular for an ITS that is
capable of targeting not only cognitive skills, but also
integrated perceptual and psychomotor skills. This
requires the development of complex ITS task, world,
instructional, and student models, as well as the iden-
tification of appropriate metrics and algorithms to
drive real-time performance assessment, error diagno-
sis, and intelligent feedback across these skill compo-
nents in real-time. Furthermore, while a traditional
ITS may use multi-modal cues and feedback to
support cognitive skills training, the inclusion of psy-
chomotor and perceptual skills components necessi-
tates a deeper exploration of the ways in which
visual, auditory, and even haptic modalities can be
used to provide intuitive instruction. This required
exploration of current methods of training by human
instructors, as well as exploration of novel ways in
which software-based instruction could emulate human
instruction, or even provide alternative instructional strat-
egies beyond what a human instructor is capable of
providing.

The MMTA method leverages best practices in TA
methods, including strategies for targeting the decom-
position of complex tasks having underlying cognitive,
psychomotor, and perceptual skill components, which
must be performed in concert. Such tasks are challen-
ging to perform, and perhaps more challenging to train
as skilled experts and instructors may be unable to
articulate the intricacies of optimal task performance or
assessment.

at stitch insertion
point with Grasper B

If the tissues are not too sensitive, they can be
directly grasped. However, if the tissues are delicate, a
"no-touch" technique is preferred where the tips of
one instrument are placed underneath the target
tissues to lift them up while spreading the instrument
tip. This levitates the target and then the needle can
be driven through the tissues with counter-force in the
opposite direction provided atraumatically by the non-
needle-driving instrument.

Fig. 4 Alternative technique suggested by an expert surgeon during MMTA validation
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The MMTA method, described here as a generalizable
approach and also applied to a specific target domain,
RALS, uses knowledge elicitation techniques involving
both novice and expert robotic surgeons as they perform a
series of procedural exercises. The process of examining
the task from multiple perspectives, including novices,
instructors, and expert surgeons, as well as iteratively ex-
tending and refining the MMTA products was a central
characteristic of this MMTA process.

Results of the application of this method to the psycho-
motor skills curriculum of FRS and sample surgical pro-
cedure subtasks, which were reviewed and validated by
expert robotic surgeons, will be implemented within a
prototype RALS ITS. Through the validation process, we
found that the task flows developed in this effort were
complete and robust as demonstrated by a surgeon’s abil-
ity to perform these tasks while being read out the task
flows; however, the current results are primarily qualita-
tive. As we continue with the development of a RALS ITS
and operationalize the task flows and decomposition
tables produced in this work into task models, we will be
able further validate their completeness as well as make
necessary refinements through iterative application of per-
tinent MMTA steps. Furthermore, the resulting prototype
ITS will be validated via a formal training effectiveness
evaluation. Future work could also further explore alterna-
tives to the MMTA method, comparing the resulting
products to those resulting from more traditional TA
methods.

More broadly, we posit that this method can be used
for additional complex training domains that require
cognitive, perceptual and psychomotor skills and know-
ledge such as maintenance tasks. It may be applied for
the development of ITS task models specifically as well
as for conducting task analyses in general. Future work
will seek to apply this same methodology to additional
use cases and domains in order to assess generalizability.
Within the course of our efforts, we will be applying this
method to additional surgical procedures (specifically
prostatectomy).

Endnotes

¥hile we use the term ‘novice, these individuals were
typically accomplished surgeons, but with limited or no
prior exposure to robotic surgery.
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