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Abstract

Understanding the functioning of natural systems is not easy, although there is general agreement that understanding
complex systems is an important goal for science education. Defining what makes a natural system complex will assist
in identifying gaps in research on student reasoning about systems. The goal of this commentary is to propose a
framework that explicitly defines the ways in which biological systems are complex and to discuss the potential
relevance of these complexity dimensions to conducting research on student reasoning about complexity in biology
classrooms. We use an engineering framework for dimensions of complexity and discuss how this framework may also
be applied to biological systems, using gene expression as an example. We group dimensions of this framework into
components, functional relationships among components, processes, manifestations, and interpretations within biological
systems. We explain four steps that discipline-based education researchers can use to apply these dimensions to
explore student reasoning about complex biological systems.
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Background
For many science educators, the passion for our work
stems from a deep sense of awe for the complexity of
natural systems that we have come to recognize as beau-
tiful. We also share a common goal to help students
recognize, appreciate, and understand the complexities
of natural phenomena. In particular, the intricacies of
biological systems are important for students to under-
stand for medical, environmental, and social health. Un-
derstanding how biological complexity is manifest at
different levels of organization (molecules to ecosystems)
is a major challenge for advancing twenty-first-century
biology (National Research Council (NRC) 2009) and for
preparing undergraduate students to address difficult is-
sues that our society faces (American Association for the
Advancement of Science (AAAS) 2011). This same goal
is expressed in different ways throughout primary and
secondary standards in the USA and post-secondary
education, both generally in terms of sequences of in-
creasing sophistication across grade bands and specific-
ally in terms of concepts that students should master
(AAAS 2011; NRC 2012).

Despite general agreement about the importance of
understanding complexity, the meaning of “complexity”
is not often defined. For example, NRC’s “A Framework
for K-12 Science Education” (2012) and the “Next
Generation Science Standards” (NGSS Lead States 2013)
in the USA promote scale and systems and systems
modeling; however, the use of the word “complexity”
throughout the documents includes as follow: “complex
food molecules [sugars],” that “organisms are complex,”
and that ecosystems are “complex, interactive systems.”
The NRC framework does not specify what characteris-
tics make molecules, organisms, or ecosystems complex.
A system has been described as complex (Jacobson

2001; Johnson 2009) if it exhibits particular characteris-
tics including the following:

– Having many interacting agents
– Being affected by agents’ behaviors (i.e., positive and

negative feedback) that can be modified based on
history

– Being open
– Having emergent properties that arise without a

central control
– Showing patterns that arise both ordered and

disordered
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Some of these characteristics are present in the way
that complex biological systems are described in “Vision
and Change in Undergraduate Biology Education: A Call
to Action” (AAAS 2011), either explicitly or implicitly in
the text. However, when thinking about biology instruc-
tion, a problem arises—complexity is not a singular idea,
but rather has many characteristics. If a biology in-
structor wanted to make complexity a centerpiece of his
or her curriculum, what is the best way to help students
recognize, explain, and grapple with the characteristics
of complexity in a way that is coherent and generalizable
across levels of organization and different contexts? The
goal of this commentary is to present a framework for a
language of complexity that may aid instructors in this
endeavor, as well as education researchers who seek to
understand student learning about complexity.

Explicitly addressing complexity in classrooms: the need
for a complexity framework
The characteristics of complex systems listed above are
based on observations. The list, with the exception of
feedback on behavior, does not reveal mechanistic or
causal relationships that give rise to the observed
phenomenon. We think that when learning about com-
plex systems, students will benefit from a more concrete
connection between mechanistic relationships and the
resulting phenomenon with complex characteristics
(Doyle et al. 2008; Hmelo et al. 2000; Jacobson &
Wilensky 2006; Wilensky & Resnick 1999). For example,
diffusion is the result of millions of molecules moving
independently, yet students associate the term diffusion
more with the phenomenon of moving from high con-
centration to low concentration than the causal mechan-
ism of molecular kinetics (Garvin-Doxas & Klymkowsky
2008). Focusing on mechanisms will mean extra foot-
work for an instructor to discuss both abstract system
behaviors like movement of molecules and concrete ex-
amples like diffusion in lungs during gas exchange in a
way that is explicitly linked (Goldstone & Son 2005;
Levy & Wilensky 2008). But, revealing generalizable
mechanisms can be a powerful way for students to make
sense of systems, specifically explaining complexity at
multiple biological scales and how this complexity
impacts processes across these scales (Jacobson &
Wilensky 2006; Verhoeff et al. 2008).
There is a struggle inherent to introducing students to

new concepts and portraying the depth of complexity
that we hope to have them achieve by the time they have
advanced in their learning. There is a danger of being
too complex and losing students in cognitive overload
(Reber & Kotovsky 1997; Schnotz & Kürschner 2007),
but there is also a danger in being too simple in a way
that promotes misconceptions (Feltovich et al. 2004) and
can promote memorization instead of understanding

(Jiménez-Aleixandre et al. 2000). Students’ misconcep-
tions frequently arise from reductive biases (Spiro et al.
1988), which are tendencies to reduce important aspects
of complexity. For example, medical students have been
shown to misunderstand the impact of cardiac output
on venous pressure because they treat a continuous
process such as blood flow as a more simple discrete
process (Feltovich et al. 1994). In cognitive flexibility
theory, conditions that help students acquire knowledge
while preventing reductive biases will allow students to
master complexity and transfer this knowledge across
contexts (Spiro et al. 1988). The conditions to promote
mastery of complexity include avoiding oversimplifica-
tion, providing multiple representations, increasing con-
nectedness of concepts and skills, and offering explicit
guidance on managing complexity (Hmelo-Silver et al.
2007; Jacobson & Wilensky 2006; Spiro et al. 1988).
Chi (2005) provided an explanation about why some

misconceptions about systems are so robust and sup-
ported the idea of instruction that explicitly addresses
characteristics of complexity. She compared students’
conceptual thinking about two processes: the flow of
blood in human circulatory systems versus diffusion of
dye in water. The flow of blood is an example of a direct
process because the aggregate components of the heart
(the structure of the chambers and valves) are directly
causing the global pattern of blood direction and speed.
Diffusion is an example of an emergent process because
the mechanism is explained by the collective interaction
of the dye and water molecules rather than any single or
aggregate components. She observed that students’ mis-
conceptions of emergent processes are robust because
they misinterpret emergent processes as a direct process.
For example, students might explain diffusion as a series
of sequential steps where first the oxygen “comes in”
and then the carbon dioxide would “go out,” rather than
simultaneous movement of a collection of molecules
(Chi 2005). Overcoming this misconception requires
students to know about emergent processes in order to
overcome their predisposition to conceive of all pro-
cesses as direct. This conceptual change in systems
thinking is difficult to achieve and may require students
to first become aware of ontological categories such as
“direct” and “emergent,” and then shift their conceptions
across categories (Chi, 2005). Therefore, students’ lack
of awareness of these categories may promote reductive
biases. If generalizable explanations of processes are
taught explicitly, they may help students recognize and
understand a variety of systems characteristics in mul-
tiple contexts.
Instructors need additional resources to help them

navigate a balance between being too complex and being
over simplistic. Instructors also need resources to ad-
dress generalized characteristics of complex systems in
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classrooms. We agree with Jacobson and Wilensky
(2006) and Chi (2005) that providing instructors with
explicit language to define what makes a system
“complex” will help teachers be more adept in inte-
grating specific aspects of complexity in their teaching
and to determine when to include or exclude or draw
connections between concepts. We propose a frame-
work below to address this need, which represents
generalizable dimensions of complexity that provide
the ontological basis for complex systems.

Adapting an engineering framework for biological
complexity
Our approach builds on the work of Feltovich and col-
leagues (Feltovich et al. 2001; Feltovich et al. 2004, 1994)
who have identified eleven dimensions of complexity in
engineered systems. Speaking from their expertise in
cognition, they suggest that these eleven dimensions of
complexity make designing systems (in their case, intelli-
gent design systems) very difficult. They suggest that the
reductive biases of learners in general, and cognitive en-
gineers specifically, result in oversimplification and even-
tually poor performance and misconceptions.
Biological systems evolved through eons of time and

are not constructed and therefore not exactly analogous
to engineered systems (Modell et al. 2015). Despite the
difference between engineered and biological systems,
we propose that these eleven characteristics are a useful
framework for approaching research on student learning

about biological systems and aid biology educators and
researchers to move beyond the phenomenological de-
scriptions of systems. By doing so, we are also proposing
that there are a relatively small number of definable
characteristics that make living systems complex.
In order to more clearly apply these dimensions to

biology, we grouped Feltovich et al.’s dimensions into
those that deal with the components of the system, the
functional relationships (i.e., mathematical relationships)
among components, the processes by which components
interact, the manifestation of those relationships and
processes, and the interpretation of the system or how a
given biological system may viewed differently by dif-
ferent audiences both in terms of functionality and
representation. We changed the name of one original di-
mension from “mechanism/organicism” to “deterministic/
emergent” to better align with familiar terminology in
biology. We eliminated another dimension (“surface/
deep”) because we felt this dimension was encom-
passed by all of the other dimensions. The 10 dimen-
sions are described in Table 1 with an eye toward the
hypothesis that students may be susceptible to reduc-
tive biases in one or more dimensions.
Previous science education research have proposed

ways to investigate student understanding of complex
systems. One example is the structures-behavior-
function (SBF) framework that has been used to both
support and research students’ systems thinking (Bray-Speth
et al. 2014; Dauer et al. 2013; Hmelo-Silver et al. 2007;

Table 1 Dimensions of complexity (right column), taken and adapted from Feltovich et al. (2004), organized into components,
functional relationships, etc. The middle column represents the potential reductive tendencies that affect learners’ reasoning about
complex biological systems (Spiro et al. 1988)

Reductive tendencies Systems thinking

Components Homogeneous: components are similar and
perform similarly.

Heterogeneous: components are diverse and have
diverse reponses.

Functional relationships Linear: changes and interventions will have
incremental impact.

Non-Linear: relationships between the variables are
nonproportional.

Processes

Discrete: processes have discernable steps. Continuous: Processes proceed in unbreakable continua.

Separable: processes occur in isolation. Interactive: Processes have strong interactions and are
interdependent.

Sequential: process have steps that occur in serial. Simultaneous: multiple processes occur at the same time.

Static: multiple processes within systems are unchanging
and can be captured in a single "snapshot".

Dynamic: critical characteristics are captured only by changes
from frame to frame, possessing vector-like characteristics.

Manifestations

Deterministic: products are a result of simple cause
and effect.

Emergent: results are products of systemwide, organic
functions, requiring understanding the entire system to
understand the parts well.

Universal: products will be the same in multiple contexts. Conditional: application of principles do not hold across
different situations, requiring sensitivity to context.

Regular: phenomena exhibit symmetry and repeatable
patterns.

Irregular: phenomena exhibit asymmetry and absence of
consistent patterns.

Interpretation Single representation: a single viewpoint captures
multiple processes.

Multiple Representations: elements in a situation afford many
interpretations, functional uses, categorizations and so on, so that
multiple schemas, analogies, models or case precedents are
needed to capture and convey the meaning of the situation.
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Liu & Hmelo-Silver 2009; Vattam et al. 2011). Like the
framework we propose in this article, SBF was first uti-
lized in engineered systems (Goel & Stroulia, 1996) then
adapted by Hmelo-Silver and colleagues in biological sys-
tems (Hmelo-Silver et al. 2007; Hmelo-Silver & Pfeffer
2004; Jordan et al. 2008). Another commonality between
the SBF model and the framework we propose is that
components in our framework mirrors “structures” in SBF
representations and is a critical piece for teaching students
about complex systems. As Hmelo-Silver et al. (2007)
point out, it is a critical first step for learners to be aware
of the components in order to describe the operation of
the system. However, our proposed framework for com-
plexity in biological systems differs from the SBF frame-
work in important ways. “Behaviors” and “functions” do
not map exactly onto our framework. Our framework
describes the ontological level of behavior, so processes in
our framework explain behaviors. For example, air moving
in and out of the lungs is a behavior facilitated by
the lungs and diaphragm (structures/components).
The process of air moving in and out of the lungs is
a continuous, interactive, simultaneous, and dynamic set
of processes. SBF representations, like student-created
models, are limiting in that the nature of some processes
cannot easily be represented in the models frequently used
to elicit learners’ mental models of the systems (Dauer
et al. 2013; Hmelo-Silver et al. 2007). For example,
representing the diffusion of oxygen and carbon dioxide
across a capillary wall in a lung as a simultaneous (not se-
quential) process is challenging in a static drawing unless
the learner specifically reports this process as simultan-
eous. Similarly, the function, or purpose of the system,
e.g., to facilitate gas exchange, is not captured in our
framework, except somewhat in the interpretation dimen-
sion. Instead, in our framework, the manifestation dimen-
sions describe how the combination of processes is
manifest in the system and the nature of those manifesta-
tions. Again, SBF representations have some limitations in
that the nature of some manifestations may be challenging
to represent in a static drawing unless specifically noted.
The goal of this commentary is to present a framework

for complexity dimensions and to discuss the potential
relevance of these complexity dimensions to teaching
and to conducting research on student reasoning about
complexity in biology classrooms. This framework of
complexity dimensions can aid researchers in using a
more specific language around complexity and inspire
new potential research questions around student learn-
ing. At present, there are significant gaps in research
about undergraduate student reasoning about complex-
ity, and our understanding of student reasoning is cru-
cial for teaching biological systems. We present a sort of
prescription for how a biology education researcher may
use the dimensions of complexity, using gene expression

as an example, to highlight how we have found these di-
mensions to be useful in organizing our own thinking
about potential research questions.

Discussion
Determine how the biological concept is complex
We find it useful to first examine a single biological con-
cept to determine how the dimensions of complexity are
reflected in the characteristics of the concept. When
considering the concept of gene expression, we can sep-
arately consider components, functional relationships,
processes, manifestations, and interpretation (Table 1) to
make explicit the ontological dimensions of complexity.
The components of the system include DNA and RNA
sequences, ribosomes, and proteins. The functional rela-
tionships are the rates and frequencies of biochemical
reactions that happen at an atomic, molecular, cellular,
and organismal level and contribute to a phenotype. The
processes in gene expression include the following: tran-
scription, translation, gene regulation by transcription
factors, and interactions with the environment. The
manifestation of gene expression is the phenotype of an
organism, either directly if one gene-one trait or indir-
ectly through protein interactions. The interpretation
might include multiple representations (or models) of
gene expression that highlight subcellular, cellular, or-
ganismal, or population levels of biological organization
to be used for various purposes. For example, a phys-
ician or scientist may view the gene expression system
with a different lens depending on if the context is med-
ical, ecological, evolutionary, or hereditary.
Next, we can consider how gene expression might be

complex and hypothesize about potential reductive
tendencies of our students when reasoning about this
complexity. The components may be “heterogeneous”
because mutations in DNA nucleotide sequences occur
frequently and may or may not be corrected, become
fixed in the population, or be expressed at all. The func-
tional relationships may be “non-linear” because tran-
scription factors may have a pleiotropic, cascading effect
(Hadorn 1961). The processes in gene expression may
be “interactive” because transcription occurs only when
regulatory factors are readily available from previous
transcription and translation processes (Latchman 2010).
The manifestation of the process of gene expression can
be “conditional” because of two different mechanisms:
(1) gene expression in different body organs may be due
to differential gene regulation or (2) gene expression
may be influenced by epigenetics due to environmental
factors (Ansel et al. 2008; Shah & Sukumar 2010).
When a biological concept is broken down into

components, processes, manifestations, and so on, it
will clarify and organize why gene expression may be
considered complex. Explicitly identifying processes and
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manifestations aid students who are prone to focus on
just the components of a system (Batzri et al. 2015;
Hmelo-Silver et al. 2007), in developing systems thinking
or the ability to consider many of the dimensions of a
system simultaneously. Breaking down concepts this way
may aid instructors in being aware of when and how to
break down content into simpler pieces without
oversimplifying in a way that may hinder students from
a deeper level of understanding as they progress in
their learning (Spiro et al. 1988). A framework of
generalizable dimensions of complexity may give in-
structors ideas for how to illustrate complexity more ac-
curately or to include “exceptions to the rule” that play
an important role in the fabric of living systems. There
are volumes of literature on students’ lack of general
knowledge about genes, alleles, chromosomes, and pro-
teins (Couch et al. 2015; Garvin-Doxas & Klymkowsky
2008; Smith et al. 2008; Tsui & Treagust 2010). Focusing
on one particular dimension within a biology concept,
such as how the manifestations of gene expression are
“conditional” or “universal,” may direct and simplify how
we approach research questions about how students reason
about gene expression. For the remainder of our example,
we chose to consider how teachers could instruct about
conditional manifestations within the concept of gene ex-
pression due either to gene regulation or epigenetics.

Investigate what is known about how students
reason about this dimension
Naturally, the best place to begin a research question is
by examining primary literature about student learning
within this dimension. Using the complexity framework
to research student learning about biology is novel, as
suggested by the lack of previous literature at this
detailed level of analysis. We have found an uneven
amount of research conducted on some dimensions
compared to others. For example, there is literature
on student reasoning about emergent manifestations
(Hmelo-Silver & Pfeffer 2004; Jacobson 2001; Levy &
Wilensky 2008; Wilensky & Resnick 1999) but no re-
search, that we could find, about student learning of
conditional manifestations. Our proposed framework
of complexity in biology may be useful in highlighting
opportunities for new research focusing on one par-
ticular dimension of complexity. However, there is a
lack of overall guidance in the literature on the relative
importance, relevance, and learning difficulty of any par-
ticular dimension, so some aspects of the framework may
prove to be more fruitful than others.
As we investigated literature, we found articles sug-

gesting teaching strategies related to gene regulation and
epigenetics (for example, Colón-Berlingeri 2010; Drits-
Esser et al. 2014; Heyduck & Harms 2015), but not
directly related to reasoning about conditional

manifestations related to gene expression. Some aspects
of gene regulation are less complex and easier for stu-
dents to understand according to the literature. For ex-
ample, students’ conceptions about which cells in an
organism possess genes for a given trait can be remedied
during instruction (Makarevitch et al. 2015). (All cells
except red blood cells and cornified cells in your skin,
hair, and nails possess a copy of each gene in the gen-
ome, although there are copy number variations within
different cells of an organism (Redon et al., 2006).) How-
ever, other aspects of gene regulation and epigenetics
are more difficult for students to understand and relate
to familiar concepts of the transcription and translation.
For example, of advanced molecular biology students
who understand the impact of transcription factors,
30 % are unable to reason about methylation or the
regulation of transcription factors by environmental cues
(Couch et al. 2015). After our literature search, we
gained little insight on student tendencies toward sim-
plistic explanations of gene expression by ignoring dif-
ferential gene regulation in organisms or epigenetics.
Therefore, there exists an opportunity for research on
how students learn about conditional manifestations in
general and specifically related to gene expression.

Look for reductive tendencies in student explanations
The initial data to be collected about student reasoning
about complexity dimensions in the context of biology may
take multiple forms such as constructed models, short an-
swer explanations, interviews, or multiple-choice questions.
Constructed models (from question prompts targeting spe-
cific dimensions) may provide critical information about
some dimensions, for example, heterogeneous components,
simultaneous processes, or non-linear functional relation-
ships (Bray-Speth et al. 2014; Dauer et al. 2013; Liu &
Hmelo-Silver 2009). For example, in a recent semester,
introductory biology students at our university constructed
conceptual models of gene regulation of expression and
struggled to represent simultaneous events in the lac op-
eron system (JT Dauer, unpublished data).
Students’ written explanations or verbal explanations in

an interview may be the most effective way to reveal the
nuances of student reasoning about complexity, especially
pertaining to the processes and manifestations present in
the system. Interview questions that ask student to explain
gene expression phenomena may reveal students’ reduc-
tive tendencies or difficulty understanding gene regulation
or epigenetics. Examples are as follows:

� Cells in the human body contain 46 chromosomes,
making up approximately 20,000 different protein-
coding genes. Where in the body does gene
expression occur? Are all the coding regions active in
every cell in our bodies? Why or why not?
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� In a multicellular organism, cells contain the same
genes. However, these organisms generally have
many different cell types with different morphology
and physiology (e.g., neurons versus liver cells). How
is this possible?

� Cells in the liver and the pancreas contain both the
gene for the protein serum albumin that makes up
blood plasma and the gene for protein amylase that
helps digest starch. However, only the liver produces
the protein serum albumin and only the pancreas
produces amylase. Can you explain why? Can you
explain how this happens?

� Identical twins have an identical set of genes. Do
identical twins have the same gene expression? Can
anything from an individual twin’s life experiences
influence what genes are producing proteins in their
body? Why? How?

The result of this research would be a first-order ap-
proximation of student reasoning of the complexity di-
mension in a given context. Fully capturing students’
mastery of complexity would require extensive research
for the other nine dimensions plus interactions among
dimensions, applied to multiple biology concepts—an
overwhelming proposition. But small steps, like focusing
on a single understudied dimension or applying what is
known from well-studied dimensions to similar dimen-
sions, can lead to generalizations that will advance
our knowledge about how students know and learn
complexity.

Design an intervention to test if reductive tendencies can
be overcome
Continuing with our example of conditional manifesta-
tions in gene expression, the next step would be to de-
sign a set of instructional material and assessments or to
refine existing materials based on results from observa-
tions of student thinking. The results of observations in
step 3 should help inform learning objectives, support
tools, and assessments. Instructional materials should be
designed to support student explanations to include the
complexity and nuance of regulation of gene expression
and epigenetics. An instructor should be explicit in linking
biological phenomena to the concept that the process and
quantity of transcription and translation are conditional
on the presence of transcription factors and environmen-
tal cues. Instructors may explicitly discuss with students
how manifestations of process that occur at the atomic
and cellular levels in a living organism may be conditional,
emergent, or irregular and that gene expression is an
example of a conditional manifestation.
There are many existing resources on regulation of

gene expression and epigenetics (Billingsley & Carlson
2010; Colón-Berlingeri 2010; Drits-Esser et al. 2014;

Militello 2013) that could be modified to provide an
intervention to student learning grounded in how stu-
dents learn this dimension of complexity. An example is
Makarevitch et al. (2015) who have designed gene ex-
pression laboratory exercises related to abiotic stress
effects on maize. Their curriculum for upper-level genet-
ics classrooms allows students to propose hypotheses
about how stress may affect the expression of different
genes, then explore online repositories of gene expres-
sion data to test their hypotheses. This inquiry approach
is carefully choreographed to allow student inquiry
while maintaining a focus on the underlying biological
content.
We also envision derivations of this approach that may

further emphasize conditional manifestations or other
dimensions of complexity in a simulated environment.
Simulations provide an excellent opportunity for students
to model, quantify, or visualize systems complexity.
Learn.Genetics (http://learn.genetics.utah.edu) provides
interactive visualizations of epigenetics. Several resources
exist for designing or modifying simulations to improve
visualizing complex systems. For example, Wilensky, col-
leagues, and other contributors (Jacobson & Wilensky,
2006; Resnick & Wilensky, 1998; Wilensky & Resnick,
1999) have developed models using a multi-agent simula-
tor called NetLogo, that allows users to simulate systems
through simple rules governing the agents and the envir-
onment (the extensive reference list is available at: http://
ccl.northwestern.edu/netlogo/references.shtml). The Cell
Collective (http://cellcollective.org), while focused cur-
rently on cellular scale systems, allows computational biol-
ogists and students to create models of biological systems
with or without the underlying mathematical expression
(Helikar et al., 2012, 2015). These software platforms may
allow researchers to develop learning modules related to
specific dimensions of complexity and test the efficacy of
instructional materials related to these dimensions.

Conclusions
This essay seeks to promote greater discussion around
the idea of what makes biological systems complex and
how we can improve students’ learning about complex-
ity. While we, as a science community, often use the
term complexity to describe biological systems, we sus-
pect most of us have not considered what we really
mean by complexity. While the term “complexity” is
widely and ambiguously used in education, there are a fi-
nite number of ways why a biological system is complex.
Feltovich et al. (2004) provided a framework to disentan-
gle systems complexity into a small number of dimen-
sions. We do not think Feltovich et al. intended their
framework to necessarily apply to a biology classroom;
however, we attempted to show how it can be used to
guide research on how students learn complexity and
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ultimately guide instruction that assists students in
learning about complex biological systems.
Obviously, instructors will always need to simplify

concepts when they present new ideas to students.
Without a clear definition of systems complexity, it is
not easy for instructors to know how to simplify con-
cepts or how to deliberately present additional complex-
ity in instruction. Additionally, instructors may lack
language that could be used to provide explicit instruc-
tion on generalizable concepts of complexity. The
framework we propose may provide a roadmap of the
ontology of complexity for both instructors and re-
searchers as they explore a range of biological systems
understanding from reductive tendencies to expert sys-
tems thinking.
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