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Results of our ab initio calculations of (111)-oriented GaP, GaAs, GaSb, InP, InAs and InSb nanowires with the
zinc-blende structure indicate morphology to crucially affect their electronic properties. For these nanowires, where
{011} facets characterize their hexagonal cross section, the formation of small {112} facets between the adjacent {011}
ones provides a more stable structure and removes surface states from the gap region even without hydrogen
passivation. Our new structural model also predicts a crossover between the indirect and direct band gap in GaP,
GaAs and GaSb nanowires when increasing diameters starting from 4 nm, while InP, InAs and InSb nanowires display
the direct band gap at diameters of 1.5 nm and larger. Analysis of charge distribution between atoms suggests that
{011} facets are positively charged even though a (011) surface of these materials is considered to be non-polar.

1 Background

In small diameter III-V nanowires (NWs), where the
surface-to-volume ratio is rather large, one can expect
surface effects in addition to effects caused by quantum
confinement to govern properties of these NWs. It is also
important to trace a link between morphology and differ-
ent properties of such NWs in order to open a way to their
integration in various applications [1,2]. Even though in
most cases III-V compounds have the zinc-blende struc-
ture, in the case of NWs both the zinc-blende and wurtzite
structures are observed [2] because of larger density of
surface dangling bonds for the zinc-blende structure as
confirmed by first principles calculations [3-10]. However,
high quality NWs in the zinc-blende structure mainly ori-
ented along the (111) directions can be grown by different
methods involving the vapor-liquid-solid and vapor-solid
growth mechanisms [1,2,11]. It is found that their cross
section is hexagonal with {011} or {112} facets [12-20],
while a triangular-like morphology with {112} facets can
also occur [15-17,21]. Theoretical predictions on stabil-
ity of zinc-blende GaP, GaAs, InP and InAs NWs showed
that they were close in total energy independently of
morphology [3-10]. Moreover, investigations of electronic
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properties of bare GaAs, InP and InAs N'Ws, which had
only {011} facets, indicated metallic properties because
the Fermi level crossed some bands originated from states
of surface atoms at edges [3,5,10,22]. However, passiva-
tion of dangling bonds by different chemical species was
widely used to investigate a band-gap variation with N'W
diameter [7,8,22-27], while bare zinc-blende N'Ws with
{112} facets and any bare wurtzite NW turned out to be
semiconductors without passivation [3,5,9,10].

In this paper by means of ab initio calculations we show
that the appearance of small {112} facets acting as edges
between the adjacent {011} facets in zinc-blende GaP,
GaAs, GaSb, InP, InAs and InSb N'Ws provides lowering in
total energy and eliminates bands in the gap region leading
to semiconducting properties.

2 Methods

The structural optimization and band structure calcula-
tions of zinc-blende III-V N'Ws have been performed by
the total energy projector-augmented wave method (code
VASP) [28]. Exchange and correlation potentials were
included using the local density approximation of Ceperly
and Alder [29]. We considered (111)-oriented N'Ws with
hexagonal cross sections involving {011} facets, while peri-
odic boundary conditions were applied along the NW
axis with the unit cell parameter (g)). To provide a neg-
ligible interaction between neighboring NWs at least 9

© 2015 Migas et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.


mailto: migas@bsuir.by
http://creativecommons.org/licenses/by/4.0

Migas et al. Nano Convergence (2015) 2:14

A of vacuum were introduced. The further increasing in
the vacuum thickness did not noticeably affect the total
energy. All atoms in NWs were allowed to relax. We set the
energy cutoff at 250 eV. The grid of 1x1x6 Monkhorst-
Park points was found to be sufficient to assure total
energy convergence with respect to number of k-points.
Atomic relaxation was stopped when forces on the atoms
were smaller than 0.04 eV/A. The optimization of a; was
done by gradually increasing/decreasing its value along
with the relaxation of the atomic positions till the equi-
librium was reached. The bulk lattice parameters (ap,x)
summarized in Table 1 are very close to the experimental
values. The charge transfers have been analyzed by uti-
lizing the Bader method [30]. Since we did not perform
quasiparticle calculations within the GW-approximation,
the estimated gaps in our cases were smaller that experi-
mental values for both bulk and NWs.

3 Results and discussion

3.1 Morphology and stability

Possible cross sections of (111)-oriented zinc-blende III-
V NWs can be viewed as bounded {011} facets in the
hexagonal shape (Figure 1, the top panel). Morphology
without small {112} facets was used in all previous cal-
culations [3-10,22-27], where three corner V and three
corner III atoms at different edges had three and one
dangling bands, respectively. However, the appearance of
small {112} facets acting as edges between adjacent {011}
facets by removing a pair of corner atoms was shown to
be preferable in total energy for silicon NWs with (111)
axes since it was possible to eliminate surface atoms with
two dangling bonds by forming pentagon-like structures
with dimers [31]. Contrary to silicon NWs, where all six

Table 1 Bulk lattice parameters (a,,, A), lattice
parameters along a NW axis (), A), lll-V interatomic
distances in the bulk (dj;;_y, A), lengths of V-V (dy_y, A)
and -1 (dg7—pr, ) dimers on {112} facets of a NW,
charge transfer between atoms (qpy/k, in units of the
electron charge) in the bulk and in the llI-1II (g, in units of
the electron charge) and V-V (qy, in units of the electron
charge) dimers on {112} facets of a NW

GaP GaAs GaSb InP InAs InSb
Abulk 5419 5.623 6.067 5.871 6.063 6.468
a 5415 5610 6.046 5.867 6.038 6.446
di—y 235 243 263 254 263 2.80
dv—v 2.24 249 2.88 2.21 246 2.86
di—n 244 245 246 2.76 2.78 2.79
Gbulk 0.56 0.58 0.12 0.56 0.53 0.21
qi 047 0.38 0.20 0.45 0.39 0.25
qv 0.39 030 0.14 0.36 030 0.16

The data presented are for NWs after full structural optimization which cross

section with diameter of about 3 nm is depicted in Figure 1.
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Figure 1 The top panel: cross sections of (111)-oriented IlI-V
NWs without (left) and with (right) small {112} facets and
diameters of about 2.6 nm (the case of GaAs is shown) after full
structural optimization. All facets are indicated. Pink and yellow
spheres stand for lll and V atoms, respectively. The bottom panel: the
dependence of the total energy of GaAs NWs per the Ga-As formula
unit on the number of formula units in the unit cell. The number of
formula units is proportional to NW diameter. Zero at the energy scale
corresponds to the energy of the GaAs formula unit in the bulk.

{112} facets are equivalent, in the case of III-V NWs a
half of {112} facets displays V-V dimers and no V atom
with three dangling bonds, while another half has III-III
dimers with virtually no dangling bonds. The V-V dimers
are clearly seen in Figure 1, whereas atoms forming the
III-III dimers show sizable inward relaxation leading to
a slight incline of {011} facets towards {112} facets with
V-V dimers. Dimer lengths are comparable to the corre-
sponding III-V interatomic distances (Table 1) indicating
a well-resolved correlation with the dimer composition
(for example, dp_p is almost the same for GaP and InP
NWs, while dg,—g, is very close for GaP, GaAs and GaSb
NWs). The main structural features indicated in the cross
sections (Figure 1, the top panel) are essentially the same
for GaP, GaAs, GaSb, InP, InAs and InSb N'Ws regardless
of diameter (in our case from 1.5 to 4.0 nm). Dimer lengths
(Table 1) do not change with respect to NW diameter. We
have also found g of all considered NWs to be slightly
smaller than the initial value corresponding to the bulk
case and it gets closer to the bulk value when diameter of
a NW increases.
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Figure 2 Projection of charge distribution on the plane of the
cross section for llI-V NWs with small {112} facets and largest
considered diameter of about 4 nm.

Now it is obvious that the formation of small {112}
facets in III-V N'Ws decreases density of dangling bonds
with respect to NWs without {112} facets because some
V atoms at edges with multiple dangling bonds are elim-
inated. This issue, in turn, provides a clear lowering in
total energy for all considered here NWs as can be seen in
Figure 1, the bottom panel, for GaAs NWs.
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We have estimated charge distribution between atoms
in the III-V bulks and N'Ws. For the bulks of phosphides
and arsenides the III atoms donate and the V atoms accept
of about 0.53 — 0.58¢™ (Table 1), while for the antimonide
bulks the charge transfer is less (0.12 — 0.20e 7). In the case
of NWs of phosphides and arsenides the effective atomic
charges are essentially the same as for the correspond-
ing bulks, while main differences can only be spotted for
atoms at surface and especially for atoms forming dimers
(Table 1) and back-bonds to the dimer atoms. For anti-
monide NWs a larger span of charge distribution than in
the corresponding bulks (by 0.2e7) is found.

Since for (111)-oriented III-V NWs any III-V atomic
pair located between double layers is parallel to the NW
axis, consists of the first neighbor atoms and does not
coincide with any other pair within the unit cell in the
plane of the cross section, we have summed up individual
atomic charges for each III-V pair providing informa-
tion about charge distribution projected to the NW cross
section (Figure 2). We have assumed a III-V pair to be
positively or negatively charged if the total charge per
pair is respectively less or larger 8¢~ (any III or V atom
has three or five valence electrons, respectively). It is evi-
dent that {011} facets are positively charged, while {112}
facets attract a negative charge. To neutralize the charge
accumulated on the surface of NWs, the subsurface region
gains a negative charge, while the inner core region has a
mixture of positively and negatively charged III-V pairs
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Figure 3 The top panel: band structures of llI-V NWs without {112} facets and diameters of about 2.6 nm, which cross section is shown in
Figure 1. Zero at the energy scale corresponds to the Fermi level indicated by the red dashed lines. The bottom panel: band structures of lll-V NWs
with {112} facets and diameters of about 2.6 nm, which cross section is shown in Figure 1. For GaP, GaAs and GaSb NWs with diameter of 4 nm the
top valence band and the bottom conduction band are presented by the blue dashed lines. The bands are aligned to the top of the valence band in
the I point. Zero at the energy scale corresponds to the top of the valence band.
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(Figure 2). Such character of charge distribution is inde-
pendent of NW composition and diameter. Even though
the (011) surface is believed to be non-polar, in the case
of considered III-V N'Ws the {011} facets get a positive
charge, which is rather small: 0.04 — 0.06e™ per III-V pair
except for some corner pairs with 0.14 — 0.20e™. Thus,
for a III-V NW with diameter of 4 nm (Figure 2) a pos-
itive charge of about le™ can be accumulated on each
{011} facet if a NW length is equal to a double unit cell
along the NW axis. The observed surface charge accu-
mulation can affect parameters and performance of field
effect transistors on III-V N'Ws [32].

3.2 Morphology and band structure

All band structures of GaP, GaAs, GaSb, InP, InAs and
InSb NWs without {112} facets and with different diam-
eters indicate metallic nature because the Fermi level
crosses several bands (Figure 3, top panel). These bands
originate mainly from p-states of III and V atoms with
dangling bonds located at the edges between adjacent
{011} facets. The same issue was observed in previous
theoretical calculations [3,5,10,22]. In addition to the fact
that III-V N'Ws with small {112} facets are predicted to
be more stable (Figure 1), these NWs are semiconduc-
tors because the Fermi level is in the band gap (Figure 3,
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the bottom panel). Moreover, GaP and GaAs N'Ws have
a competitive character of the gap: the lowest in energy
conduction band has two minima in the I' and Z points,
which are almost equal in energy, while the maximum of
the valence band is in the I' point. The GaSb NW is char-
acterized by the indirect band gap since the minimum of
the conduction band is in the Z point and the maximum
of the valence band can be found in the I" point. Besides
a band-gap reduction due to quantum confinement effect
attenuation when increasing diameter of GaP, GaAs and
GaSb NWs, we have revealed a crossover to the direct
band gap. Thus, at diameters of about 4 nm these NWs
show the first direct transition in the I" point (Figure 3, the
bottom panel) because the second minimum of the con-
duction band in the Z point goes up in energy. At the same
time, InP, InAs and InSb N'Ws independently of diameter
have the direct band gap displaying the first direct tran-
sition in the I' point. Dispersion of the top valence band
and bottom conduction band of hydrogenated GaP [24],
GaSb [23], InP [8,26] and InAs [23] NWs is different from
that of the bare NWs presented in Figure 3 because hydro-
gen passivation leads to the well-resolved maximum of the
valence band and minimum of the conduction band (both
in the I" point), which are characterized by s- and p-states
of atoms belonging to the inner part of NWs. Moreover,
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Figure 4 Cross sections of (111)-oriented IlI-V NWs with diameters of about 2.6 nm where lll (blue spheres) and V (green spheres) atoms,
whose states characterize the top of the valence band and the bottom of the conduction band, are highlighted. The rest of the lll and V

atoms are pink and yellow spheres, respectively.
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hydrogenated GaP [24] and GaSb [23] NWs always have
the direct band gap even at diameters less than 4 nm,
while a crossover from direct transition to the indirect one
is previously predicted [24] for GaP N'Ws with diameters
starting from 4 nm and larger.

We have also revealed that independently of diameter
phosphide NWs have both the maximum of the valence
band and the minimum of the conduction band to be
mainly defined by p-states of III and V surface atoms,
while for arsenide N'Ws valuable contributions to the top
of the valence band also come from the inner part atoms
and eventually for antimonide NWs p-states of almost all
atoms can be found in the extrema points, as can be clearly
seen in Figure 4. For the sake of comparison in the cases
of GaP, GaAs and GaSb N'Ws such an analysis has been
performed for both conduction band minima in the I" and
Z points indicating that in the Z point less atoms con-
tribute their states with respect to the I" point for GaP and
GaAs. Contrary to hydrogenated III-V N'Ws [8,23,24,26],
bare III-V NWs are characterized by lack of s-states in
the band extrema points that can compromise optical
properties.

4 Conclusions

We have suggested a new structural model of III-V N'Ws
with the zinc-blende structure and {011} facets bounded
in the hexagonal shape, which involves small {112} facets
between the adjacent {011} ones acting as edges. In this
case it is possible to reduce number of dangling bonds
at the surface because of the formation of III-III and
V-V dimers and to provide a sizable lowering in total
energy. We have also predicted {011} and {112} facets to
be positively and negatively charged, respectively, whereas
essential charge distribution can be spotted for surface
atoms located near edges. Moreover, such III-V NWs are
semiconductors since there is no band associated with
surface states to be crossed by the Fermi level and no
hydrogen passivation is necessary to investigate semicon-
ducting properties of these NWs. Moreover, previously
published and reported here changes in direct/indirect
character of the gap and band dispersion near the gap
region in III-V N'Ws with different morphology and with
or without surface passivation can be viewed as a valuable
tool for band-gap engineering in order to tune electronic,
optical and transport properties of such NWs targeting
specific applications.
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