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Abstract 

Background  Fear of firework noises and other loud, sudden noises (noise reactivity) is a significant problem for many 
dogs and may have a negative effect on both welfare and, in severe cases, the life expectancy of dogs. A wide range 
of behavior traits, including fear-related behaviors, have high heritability estimates in dogs. The aim of this study was 
to estimate genomic heritability for fear of fireworks and loud noises in dogs.

Results  A genomic heritability estimate was performed based on genome-wide SNPs from standard poodles with 
records of fear of fireworks and noise reactivity. The study was based on questionnaires answered by owners, who 
also volunteered to return a cheek swab from their dog for DNA analyses. SNP-based heritability was estimated to be 
0.28 for firework fear and 0.16 for noise reactivity. We also identified an interesting region on chromosome 17 that was 
weakly associated with both traits.

Conclusions  We have estimated low to medium genomic heritabilities for fear of fireworks and noise reactivity in 
standard poodles. We have also identified an interesting region on chromosome 17, which harbors genes that have 
been shown to be involved in different psychiatric traits with anxiety components in humans. The region was associ-
ated with both traits; however, the association was weak and need further verification from other studies.

Keywords  Noise reactivity, GWAS, Dog, Fear of fireworks, Behavior, Behavioral genetics, Genome heritability, SNP-
based heritability

Plain English summary 

The prevalence of fear of fireworks and loud noises is very high in many dog ​​breeds and can be a serious problem for 
both the dogs and the owners. A genetic study of fear of fireworks and fear of other loud noises was conducted on 
standard poodles. The study was based on owner questionnaires, where the dog owners scored their dogs’ degree of 
fearfulness from 1 (not fearful) to 5 (very fearful). We estimated genomic heritabilities of 28% for fear of fireworks and 
15% for noise reactivity. We also identified a region on chromosome 17 with a possible association with the two traits. 
This genomic region contains genes of interest in human anxiety-related disorders. Genomic studies in dog breeds 
where the individuals with and without fear-associated phenotypes can be clearly distinguished, based on owner 
records, may provide opportunities for the implementation of methods for genomic selection for those fear-associ-
ated traits. The results of this study may be helpful for standard poodle breeders in their selection of breeding animals, 
which ultimately will contribute to better animal welfare.
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Background
Studies have shown that up to 30% of dogs of some 
breeds, including the standard poodle, show a strong 
or extreme fear of loud noises and/or fireworks [1–6]. 
Fearfulness and anxiety disorders constitute a large 
proportion of behavioral problems in both family dogs 
and working dogs, and noise reactivity is a large part of 
these problems [1–3, 5]. Noise reactivity is a complex 
trait with a wide spectrum of phenotypes, and is likely 
affected by both environmental factors, as well as herit-
age. The etiology of fear and anxiety is poorly under-
stood. While fear is a natural response to potentially 
dangerous stimuli or situations, and is necessary for 
survival [7–11], excessive fear responses out of context 
are problematic and may be pathological [12]. Anxiety 
and fear can also have a strong negative effect on ani-
mal welfare [13], as well as the relationship between the 
owner and the dog [14, 15]. In severe cases, anxiety and 
fear may impact the life expectancy of the dog [16, 17].

Studies from human behavior research have esti-
mated heritabilities for many personality and behavior 
traits to be between 20 and 70% [18–20]. These traits 
include aggressiveness, and disorders like social anxiety 
and major depression disorder [21–24]. Identifying spe-
cific genes associated with behavior traits has, however, 
proven to be difficult. Several behavior traits, including 
a range of fear phenotypes, have been shown to have 
high heritability also in dogs. For example, Goddard 
and Beilharz found heritability estimates of 0.46 for 
fearfulness in guide dogs, and Ruefenacht et  al. found 
heritability estimated to 0.23 for reaction to gunfire, 
similar results have been reported by other research-
ers [25–28]. The relatively high heritability of behavior 
traits in dogs is also supported by the variation in prev-
alence of different behaviors between breeds [29, 30]. 
Despite the many studies in both humans and several 
other species, there is limited information about the 
genetic architecture of phobias, anxieties, and fearful 
behavior [12, 31, 32].

In recent years, hundreds of human genome-wide 
association studies (GWAS) have provided new infor-
mation about genetic associations to disorders like 
general anxiety, major depressive disorder, schizo-
phrenia, autism spectrum disorders and bipolar dis-
order and others, indicating that most behavior traits 
have a complex genetic background where many dif-
ferent loci may be involved [33–37]. GWAS in dogs 
has successfully identified candidate markers and 
genes for several behavior traits [38–41] including 
fearfulness [42–44]. Studies have found significant dif-
ferences in the frequency of noise reactivity between 
dog breeds, which suggest this trait has a relevant 
genetic component [1, 29, 45].

The evolutionary bottlenecks and breeding for spe-
cific traits have caused purebred dogs to have lower 
genetic diversity with longer linkage disequilibrium 
(LD) compared to humans [46–48]. The accumulation 
of risk alleles associated with specific behaviors, as 
well as the limited genetic heterogeneity within breeds, 
makes the dog a good model for identifying associated 
loci for complex traits, even with a limited sample size.

The aim of this study was to estimate the genomic 
(SNP-based) heritability of fear of fireworks and loud 
noises in standard poodles and search for potential 
genomic regions associated with these traits.

Results
Heritability estimates
The genomic heritability estimates were 0.28 (SE 0.10) 
for firework fear and 0.16 (SE 0.10) for noise reactivity, 
with a high genetic correlation between the two traits, 
0.99 (SE 0.05).

Genome‑wide association study
Mixed linear models for the phenotypes firework fear 
and noise reactivity each identified suggestive association 
(p  < 2 × 10− 05) to a region on chromosome 17 (CFA17) 
(Fig. 1). For firework fear the top SNP (BICF2P1194351) 
was found in position 44.487.783 (p = 6.065 × 10− 06) and 
the top SNP for noise reactivity (BICF2P966078) in posi-
tion 44.409.723 (Table  1). Top SNPs for both traits are 
located in the same chromosomal region, see Fig. 2. The 
SNPs are in high level of LD with the neighboring SNPs. 
Both top SNPs are within the same intron of the Catenin 
alpha 2 gene (CTNNA2), and in < 1 Mb range of two 
other genes; Leucine rich repeat transmembrane neu-
ronal 1 (LRRTM1) and Regenerating islet-derived pro-
tein III-alpha (REG3A) (Table 2). As shown in Fig. 2, the 
LD decays around 1.5 Mb on each side of the top SNPs, 
giving a region/LD block of about 3 Mb (2.973.859). The 
relevant genes (CTNNA2, LRRTM1, REG3A) within this 
region are depicted in Fig.  2. CTNNA2 and LRRTM1 
are within the highest LD region and would be the most 
likely candidate genes (Fig.  2, Table  2). SNPs on chro-
mosomes 7 and 15 also reach near-suggestive p-values 
(Fig. 1). All genomic positions are given according to the 
assembly GSD_1.0 (CanFam4) [50].

The Multidimensional scaling (MDS)-plot show an even 
spread of cases and controls for both firework fear and 
noise reactivity (Fig. 3) and for male and female between 
the clusters (supplementary Fig. 1). Clustering in the pop-
ulation can be partly explained by subpopulations with 
different solid colors, but cases and controls are evenly dis-
tributed in both subpopulations (supplementary Fig. 2).
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Fig. 1  Manhattan plots for a firework fear and b noise reactivity. A suggestive line (blue) was placed at p = 2 × 10−05, based on Bonferroni 
adjustment using the number of independent haplotype blocks (Karlsson et al., 2013). The more conservative GWAS significance line (red) was 
placed at p = 3.54 × 10− 07 using the total number of tested SNPs (141.174 SNPs after QC). Quantile-quantile plots for c firework fear and d noise 
reactivity. Lambda was calculated at 1.0 for both traits

Table 1  Top SNPs on chromosome 17 with position, p-values, risk alleles and allele frequency in the case group and the control group 
for firework fear and noise reactivity

SNP CFA position P-value Risk allele Allele frequency

Cases Controls OR

Firework fear BICF2P1194351 44.487.783 6.065 × 10−06 A 0.400 0.246 2.04

BICF2P602076 44.485.033 1.8264 × 10−05 G 0.331 0.201 1.96

BICF2P350894 44.477.990 2.3265 × 10−05 A 0.337 0.206 1.96

BICF2P1264633 46.831.173 5.1340 × 10−05 C 0.226 0.133 1.91

Noise reactivity BICF2P966078 44.409.723 1.2807 × 10−05 G 0.300 0.155 2.30

BICF2P1194351 44.487.783 1.6688 × 10−05 A 0.419 0.263 2.02

BICF2P350894 44.477.990 4.2310 × 10−05 A 0.356 0.225 1.90

BICF2P602076 44.485.033 5.2879 × 10−05 G 0.348 0.221 1.88
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Discussion
Our estimates showed medium to low genomic herit-
abilities for fear of fireworks and noise reactivity. In a 
previous study, pedigree-based heritability for noise 

reactivity and fear of fireworks was estimated to be 0.09 
(noise reactivity) and 0.16 (fear of fireworks), with high 
genetic correlation between the two traits (rg > 0.95) [51]. 
It has been argued that GCTA may overestimate the 

Fig. 2  Chromosomal position of top associated SNPs for firework fear and noise reactivity, LD to top SNP is indicated with different colors. 
Interesting genes in the region are also included. The plots were created using LocusZoom-like [49]

Table 2  Genes in the nearby region of top SNPs. The distance between top SNPs of the two traits is 0.08 Mb

Genes in region Association summary Distance from top SNP
Fireworks / Noise

CTNNA2 Canine: Canine compulsive disorder
Human: Excitement seeking, ADHD, Schizophrenia, Bipolar disorder

0.00 Mb / 0.00 Mb

LRRTM1 Mice: claustrophobic-like behavior in knock-out-mice
Human: Schizophrenia

0.21 Mb / 0.13 Mb

REG3A Human: Gastrointestinal cancers, (no reported association to behavior-traits) 0.81 Mb / 0.89 Mb

Fig. 3  Multidimensional scaling plot for a firework fear and b noise reactivity. NA = dogs with score 2 or 3
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genomic heritability [52], but both the pedigree-based 
and genomic heritabilities are based on partly different 
and relatively small materials.

The genetic heterogeneity is lower within a dog breed 
than in humans, and it should therefore be easier to 
identify genes for complex traits with smaller materi-
als within a single dog breed compared to humans. Still, 
our study supports the challenge of identifying genomic 
regions associated with behavior traits in general regard-
less of species. The region on CFA17 with a suggestive 
association to fear of fireworks and noise reactivity is just 
above the suggestive threshold with much “background 
noise”, as visualized on the Manhattan plots (Fig. 1). It is 
however notable that the two traits in question were both 
associated with the same region, and this region contains 
several genes with a potential effect on the studied traits. 
The results are not significant according to strict Bonfer-
roni thresholds. Studies have argued that the traditional 
GWAS significance levels, using the number of tested 
SNPs, are too conservative in canine GWAS studies due 
to long LD and closely linked SNPs [48, 53]. Karlsson 
et al., [53] suggest that p-values < 2 × 10− 05 (depending on 
breed) may be an alternative to correct for the number of 
haplotype-blocks. The top SNPs passed the significance 
threshold when we used less strict criteria based on aver-
age LD of 1 Mb, 2400 blocks and p-values < 2 × 10− 05. The 
study is likely to be underpowered, and an increase in 
sample size would be preferable.

One of the genes in the candidate region, CTNNA2 
(Catenin alpha 2) (Fig. 2), has been thought to be involved 
in bipolar disorder, a disease with a component of anxi-
ety. The CTNNA2 gene encodes a catenin protein which 
is associated with several human psychiatric disorders 
with components of anxiety, including bipolar disorder 
[54] and schizophrenia [55]. The CTNNA2 gene is pro-
posed as a candidate gene by Tang et al. (2014) in canine 
compulsive disorder in Doberman pinchers, a condition 
closely linked to anxiety [38, 56].

LRRTM1 (Leucine-rich repeat transmembrane neu-
ronal 1) is a small protein coding gene with only 1568 
base pairs. LRRTM1 is a nested gene within the bounds 
of the CTNNA2 gene. The LRRTM1 gene has previously 
been related to claustrophobia-like behavior in LRRTM1-
deficient mice [57], and schizophrenia in humans 
[58–60].

Classification of noise reactive dogs is challenging, as a 
number of environmental factors influence the develop-
ment and expression of the traits. The owners’ abilities 
to perform an “objective” and correct classification will 
vary, which may be a challenge as each dog has a differ-
ent owner [61, 62]. Fear of fireworks might be present 
from early puppyhood but could also be a result of pre-
vious experiences in the dog’s life, like reactions to the 

smell of smoke, flashing lights, and other environmental 
factors. It has also been suggested that some noise-reac-
tive dogs are suffering from physical pain in the ears or 
changes in auditory response [3, 63]. In general, however, 
owner-based questionnaires are considered an acceptable 
method for collecting behavioral phenotypes [64–67].

In a previous study [68], we found a correlation 
between the fireworks/loud noise scores and the number 
of fear-related behaviors observed by the owners. Dogs 
with scores 1 showed no fear-related behaviors, while 
dogs with scores 4 and 5 showed on average > 3 fear-
related behaviors. None of the dogs with a score of 4 or 
5 showed less than one fear-related behavior. The same 
study found that owners were consistent in their scor-
ing of the same dog over time and that dogs with an ini-
tial score of 1 (controls) very rarely are reclassified to a 
score > 1.

Older poodles have been found to show stronger or 
more signs of fear than younger dogs [68] and we, there-
fore, had special attention to age in cases and controls. 
Approximately 40% of the fearful standard poodles 
showed signs of fear before they were 1 year old, the 
other 60% showed such signs, on average, before 3.9 years 
of age, with the median age of onset at 3. For this study, 
data and DNA-samples, were primarily collected from 
older dogs. This was done to obtain a relatively equal 
average age in cases and controls and to minimize the 
risk of false negatives in the control group. The average 
age of controls was 6.8 (fireworks) and 7.2 (noise), and 
the average age of cases was 8.2 for both traits. Thirteen 
dogs younger than 3 years, with a well characterized con-
trol-phenotypes, were included in the control group but 
removing these 13 controls did not affect the result, nei-
ther did including age as a covariate.

With our material, it is difficult to differentiate if fear 
of fireworks and noise reactivity are two distinct bio-
logical traits, but the two traits are shown to have a high 
correlation in standard poodles [68]. The two traits may, 
at least partly, be two different traits with some com-
mon risk loci. All the dogs that are described as very or 
extremely fearful of loud noises (cases) are also found to 
be very or extremely fearful of fireworks. Only about 50% 
of all dogs included as cases (score 4 or 5) for the fear 
of fireworks trait are also classified as cases in the noise 
reactivity trait. The majority of the dogs that are included 
as firework fear cases, and not included as noise reactiv-
ity cases, have a score of 2 or 3 on noise reactivity, but 
13 dogs are included as firework case (score 4 or 5) and 
noise controls (score 1) (Fig. 4). It, therefore, seems that 
many of the firework cases could be reacting to the noise 
regardless of its origin (noise reactive), while some react 
exclusively or more severely to fireworks (fearful of fire-
works). This could be explained if some of the reactivity 
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to firework is caused by other stimuli, like flashing lights 
or the smell of gunpowder. If so, this suggest that fear of 
noise and fear of fireworks are, at least to some extent, 
two different traits, which are very hard to distinguish. 
That would also make it likely that many dogs are affected 
by both traits, reacting both to the loud noises and to 
other factors involved with firework fear, which compli-
cates the phenotyping further. To distinguish between 
the two traits an appropriate material of dogs with fear 
of firework but not for noise reactivity would be needed. 
Unfortunately, only 13 firework cases in our material 
were without noise reactivity (score = 1). This was insuf-
ficient to distinguish the two traits in the analysis. We 
exploratively also analyzed the 82 firework cases that 
did not reach the inclusion criterium as noise reactivity 
cases, against the 219 firework controls, but in this analy-
sis, the signal on CFA17 disappeared.

Phenotypes were collected from owner-based ques-
tionaries, where the dogs were scored from 1 (not fearful) 
to 5 (very fearful). To increase the likelihood of identify-
ing associated loci, we maintained a maximum contrast 
between observed phenotype in cases and controls. 
Accordingly, dogs with a score of 2 or 3 were not included 
in the study (n = 111). Several recent studies [2, 42, 43] 
have included all dogs with scores > 1 as cases. One advan-
tage of such classification is a significant increase in the 
number of dogs analyzed, but the disadvantage is a smaller 
contrast between cases and controls where owners’ ability 
to correctly classify the dogs’ behavior may be a challenge. 
By including all dogs with scores > 1 it is possible that the 
statistical power could be increased somewhat.

One study by Zapata [44] found an associated region 
of non-social fear on CFA18 in a study on 11 different 
breeds. Another study by Sarviaho (2019) [42],found an 
association of noise reactivity in an area on chromosome 
20 in German shepherd dogs. Our study does not repli-
cate those results in standard poodles. This could be due 
to different causal variants between the two dog breeds 
but also differences in the allele frequency and LD struc-
ture may affect the results.

Conclusion
Using material from standard poodles and owner-based 
records, we have estimated medium and low genomic 
heritabilities for fear of fireworks and noise reactivity, 
respectively. The significant medium genomic heritability 
for fear of fireworks may provide helpful information for 
genomic selection of breeding animals in future breed-
ing programs, which may in turn reduce the prevalence 
of these behavior traits. We have also identified an inter-
esting region on CFA17, which harbors genes that have 
been shown to be involved in several psychiatric traits 
with anxiety components in humans. As in human stud-
ies, it has been challenging to identify strongly associated 
loci, and further research is needed to validate the sug-
gested associated region.

Materials and methods
Questionnaires
Data on behavior traits in Norwegian standard poodles 
were collected from web- and telephone-based question-
naires. The surveys were performed in collaboration with 

Fig. 4  Distribution of cases (score 4 + 5) and controls (score 1) for noise reactivity (NR) and firework fear (FF) in the 400 standard poodles included 
in the GWAS. Dogs with scores 2 or 3 are not included
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the Norwegian poodle club (NPC) and the Norwegian 
Kennel Club (NKC).

The first survey (2014) had a set of questions regard-
ing behavior and fearfulness, including fear of fireworks 
and noise reactivity. The second and third surveys (2017) 
were performed as an initial telephone survey followed 
by an online survey repeating the questions about fear 
of fireworks and noise reactivity. Finally, a fourth and 
fifth online questionnaire (2020 and 2022) with the same 
questions about fear of fireworks and loud noises was 
sent to owners that had not participated in the earlier 
studies. In all five surveys, the dog owners were asked to 
indicate 1) their dogs’ fear of fireworks and 2) their dogs’ 
reactivity to loud noises, including thunder and gun-
shots, on a 1 to 5 Likert scale: “Does your dog show signs 
of fear when exposed to firework noises?” 1 = No signs, 
2 = Some signs, 3 = Obvious signs, 4 = Strong signs, 
5 = Very strong signs. A translation of the relevant ques-
tions (from Norwegian) is included as supplementary 
Table 1.

Included dogs
Dogs with a score of 1 (no fear) were included as controls, 
and dogs with a score of 4 or 5 (fearful, very fearful) were 
included as cases. The mean age of all dogs was 7.4 years. 
The mean age of controls was 6.8 (fireworks) and 7.2 
(noise), with 6 being the median. Thirteen of the included 
controls were between 2 and 3 years old. The mean age of 
the cases was 8.2 for both traits, with a median of 7. The 
youngest included case was 1 year old. Some dogs had 
scores from more than one study. If the dog had more 
than one observation, and those scores deviated, the 
score from the newest online questionnaire was selected. 
An overview of the distribution of the selected cases and 
controls is given in Fig. 4.

DNA samples were collected using DNA Genotec™ 
Performagene PG-100 buccal swabs or EDTA blood col-
lected by a veterinarian. All materials were gathered in 
accordance with the Norwegian National Committee for 
Research Ethics in Science and Technology’s (NENT) 
guidelines for research ethics in science and technol-
ogy (2007). Extraction of DNA was done in accordance 
with Performagene 0.5 mL purification protocol using the 
PG-100 kit (buccal swabs) or Omega Bio-tek - E.Z.N.A® 
Blood DNA Mini Kit (blood). A total of 400 dogs were 
genotyped with the 230 K Illumina HD Canine SNP-
Array (Neogen Genomics, Lincoln, NE, USA).

Quality control
A genotyping quality control (QC) was performed. Mark-
ers with a minor allele frequency threshold (MAF) less 
than 0.05 and a call rate < 95% were excluded from the 

analyses, as well as markers failing the Hardy- Weinberg 
equilibrium exact test with a level of < 10− 6 in controls 
and < 10 − 10 in the cases. Samples with a genotyping rate 
below 95% and a heterozygosity rate above three stand-
ard deviations from the mean were removed. In addition, 
a control for duplicates and a gender check to identify 
potential sample mix-ups were performed. After quality 
control, 145,725 SNPs remained for the noise reactivity 
dataset and 145,723 SNPs in the firework datasets. Three 
hundred eighty-five dogs remained in both datasets, 
including 150 cases and 212 controls for the firework 
phenotype and 72 cases and 200 controls for the noise 
reactivity phenotype (categorical trait).

Heritability estimates
The SNP-based heritability was calculated in GCTA. A 
genetic relationship matrix (GRM) was calculated based 
on all the autosomal SNPs in the dataset. The GRM was 
included in a bivariate genomic restricted maximum 
likelihood (GREML) analysis to estimate the variance 
explained by the autosomal markers in the dataset using 
the model,

y = μ + g + e, where y is a vector of one of the two phe-
notypes (fear of fireworks and noise reactivity), μ is the 
mean term (fixed effect), g is the random genetic effect, 
and e is the residual error [69]. The model was tested 
without the youngest controls (n = 13).

Genome‑wide association analyses
The association analyses were performed using a mixed 
linear model in GCTA [69], including 145,097 autosomal 
markers where noise reactivity and fear of fireworks were 
used as dependent categorical variables, and a relation-
ship matrix was included as a random effect to correct 
for relationship and population structure. Initial model 
testing showed limited effects of potential covariates like 
age, sex, coat color, and questionnaire. Manhattan plots 
and QQ-plots were created using R with the QQ-man 
package [70].
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