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Abstract 

Landslides in mountainous areas are one of the most important natural hazards and potentially cause severe dam‑
age and loss of human life. In order to reduce this damage, it is essential to determine the potentially vulnerable 
sites. The objective of this study was to produce a landslide vulnerability map using the weight of evidence method 
(WoE), Radial Basis Function Network (RBFN), and Support Vector Machine (SVM) for the N’fis basin located on the 
northern border of the Marrakech High Atlas, a mountainous area prone to landslides. Firstly, an inventory of histori‑
cal landslides was carried out based on the interpretation of satellite images and field surveys. A total of 156 historical 
landslide events were mapped in the study area. 70% of the data from this inventory (110 events) was used for model 
training and the remaining 30% (46 events) for model validation. Next, fourteen thematic maps of landslide causative 
factors, including lithology, slope, elevation, profile curvature, slope aspect, distance to rivers, topographic moisture 
index (TWI), topographic position index (TPI), distance to faults, distance to roads, normalized difference vegetation 
index (NDVI), precipitation, land use/land cover (LULC), and soil type, were determined and created using the avail‑
able spatial database. Finally, landslide susceptibility maps of the N’fis basin were produced using the three models: 
WoE, RBFN, and SVM. The results were validated using several statistical indices and a receiver operating characteristic 
curve. The AUC values for the SVM, RBFN, and WoE models were 94.37%, 93.68%, and 83.72%, respectively. Hence, we 
can conclude that the SVM and RBFN models have better predictive capabilities than the WoE model. The obtained 
susceptibility maps could be helpful to the local decision-makers for LULC planning and risk mitigation.
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Introduction
Landslides are considered one of the most significant 
geological and geomorphological events threatening 
the sustainability of environmental quality, especially 
in mountainous areas. Landslide events are accelerated 
as a result of the complex integration between physical 
factors and human activities (Zhang et al. 2022). Land-
slides are determined as an occurrence or sequence of 
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occurrences where a rock mass and debris fall or flow 
down a slope (Silalahi et  al. 2019). Landslides lead to 
life loss, the depletion of natural resources, and the 
destruction of infrastructure (Guzzetti 2005; Var-
nes 1978; Bourenane et  al. 2016; Rahman et  al. 2022). 
Compared to other physical disasters, like earthquakes, 
floods, and volcanoes, landslides are much more fre-
quent and influential (Abdo HG 2022).

Recently, landslides have attracted attention since 
representing the most prevalent hazard worldwide 
related to damaging society and the economy (Nefeslio-
glu et al. 2008; Shahabi et al. 2014). Moreover, govern-
ments around the world are trying to find and develop 
safeguards to manage the landslides risk. The spatial 
prediction mapping of landslide susceptibility is one of 
the most effective methods for maintaining slope stabil-
ity. Landslide susceptibility mapping is the spatial dis-
tribution of the possibilities of landslide occurrences in 
a specific location supported by statistical methods and 
local causative geo-environmental parameters (Wang 
et al. 2015). In this regard, landslide susceptibility eval-
uation and mapping are important tools in landslide 
risk management, assisting authorities, practitioners, 
and decision-makers in developing a more sustainable 
and appropriate land use and risk mitigation strategy, 
including the implementation of surveillance and warn-
ing systems (Roccati et al. 2021).

Many approaches have been globally developed to 
assess landslide susceptibility mapping. Recently, sta-
tistical methods based on the use of geographic infor-
mation systems (GIS) and remote sensing (RS) data 
have become popular in the assessment of landslide 
susceptibility, such as fuzzy logic and the analytical 
hierarchical processes (FAHP) (Abdı et  al. 2021); cer-
tainty factor (CF) (Soma and Kubota 2018); logistic 
regression (LR) (Aditian et al. 2018a); index of entropy 
(IoE) (Wang et  al. 2016a, b); multi-criteria decision 
analysis (MCDA) (Nsengiyumva et  al. 2018); statisti-
cal index (SI) (Zhang et al. 2016), frequency ratio (FR) 
(Chen et al. 2016; Abdo HG 2022), certainty factor (CF) 
(Kanungo et  al. 2011), and the information value (IV) 
(Manchar et al. 2018).

Moreover, among probabilistic methods, machine 
learning techniques have become popular in recent 
years. Machine learning is an artificial intelligence 
discipline that effectively overcomes the constraints 
of data-dependent bivariate and multivariate statisti-
cal methods (Park et al. 2019). They are recommended 
because they do not require prior elimination of 
anomalies, data manipulation, or statistical assump-
tions. These algorithms automatically identify inter-
actions between landslides and causal causes. Several 

studies have found that these strategies produce more 
accurate predictions than standard statistical methods 
(Pourghasemi and Rahmati 2018).

These data-driven techniques are based on artificial 
intelligence algorithms (AIA) that use a high repeti-
tion rate of modelling processes, so allow analysis and 
predict information by learning from training datasets 
(Ghasemian et  al. 2022). Various machine learning 
models were employed to map landslide susceptibil-
ity, such as artificial neuronal networks (ANNs) (Wang 
et  al. 2016a, b; Pham et  al. 2017a, b; Aditian et  al. 
2018a), fuzzy logic (FL) (Shahabi et  al. 2015), neuro-
fuzzy (NF) (Dehnavi et  al. 2015; Chen et  al. 2019), 
random forest (RF), decision tree (DT) (Tien Bui et al. 
2016), maximum entropy (ME) (Park 2015), support 
vector machine (SVM) (Dou et al. 2019); general linear 
model (GLM) (Pourghasemi and Rahmati 2018), ada-
boost (AB) (Micheletti et  al. 2014), multivariate adap-
tive regression splines (MARS) (Conoscenti et al. 2015), 
and the group method of data handling (GMDH) model 
(Jaafari et al. 2022a, b).

In Morocco, N’fis basin is considered one of the 
areas most exposed to natural hazards, as many stud-
ies indicated (Gourfi and Daoudi 2019; Meliho et  al. 
2020; Karmaoui et  al. 2021). In this regard, the slopes 
of N’fis basin are exposed to severe geomorphological 
hazards due to the influence of a combination of physi-
cal and human geographical factors (Igmoulan et  al. 
2022). Landslide is one of the most frequent types of 
slope material movement in the study area. The spatial 
conducted investigations indicate the seriousness of the 
spatial consequences of the landslide events, especially 
on the lives and infrastructure. Thus, landslide suscep-
tibility mapping is among the most important proce-
dures for managing this acute spatial challenge.

Based on the issue discussed above, the principal 
goals of the present study are to produce landslide sus-
ceptibility maps using SVM, RBFN, and WoE models 
and to compare their performances for the N’fis basin 
in Morocco. The principal difference between the cur-
rent assessment and the described techniques in the 
aforementioned publications is that three used models 
have never been explored for landslide modelling in 
the high Atlas region. Also, the performance compari-
son of these models is not found in the literature, thus 
enhancing the research values in this study. These con-
tributions, however, provide a significant contribution 
to the scientific community. In addition, these landslide 
susceptibility maps delineate areas vulnerable to land-
slide phenomena, allowing planners to select appropri-
ate locations for future development projects.
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Literature review: Morocco context
In Morocco, several studies presented an assessment 
of the spatial susceptibility of landslides, which consti-
tuted a critical research advance in terms of data, tools, 
methods, and accuracy of results. In this regard, these 
studies have gained importance in landslide threat miti-
gation in mountainous areas. Field studies, including 
geological and topographical assessments, formed a solid 
basis for assessing the landslide risk in several regions in 
Morocco) Rouaia and Jaaidi 2003; El Khattabi and Car-
lier 2004). Similarly, Elmoulat et  al. (2021) reported the 
effectiveness of a Mass movement susceptibility map-
ping method in landslide modelling on a large scale in the 
Tétouan province. Furthermore, El Jazouli et  al. (2022) 
determined the liquid limit values (28% and 56%) and the 
mean plasticity index of the units (13%–24%) as a result 
of the significant effect of precipitation intensities and 
unconsolidated soil characteristics in increasing landslide 
events in the high basin of Oum Er Rbia in the Middle 
Atlas Mountain. The integration of bivariate statistical 
methods and geographic information system (GIS) has 
been used in many landslide vulnerability studies. 
Boualla et al. (2019) utilized GIS matrix method (GMM) 
to produce a spatial sensitivity map of landslides in the 
Safi region, West Morocco. Also, Bousta and Ait Brahim 
(2018) presented a spatial assessment of landslides using 
the Weights of evidence method in the Tangier area that 
witnesses a high intensity of landslide events. Elmoulat 
and Ait Brahim (2018) confirmed the high quality of a 
WoE method in mapping a landslide susceptibility map 
in the Tetouan-Ras-Mazari area (Northern Morocco). 
Es-Smairi et al. 2022 demonstrated that the information 
value (IV) method has achieved the highest accuracy 
compared to the statistical index (SI), weighting factors 
(WF), and evidential belief function (EBF) models in 
the spatial analysis of landslide hazard in the Rif chain 
(northernmost Morocco). The landslide susceptibil-
ity mapping of a physically based (PB) method has been 
improved in Al Hoceima, Northern Morocco using the 
Monte Carlo (MC) method backed with sensitivity analy-
sis (SA) (Rahali 2019).

The coupling between the Analytic Hierarchy Pro-
cess (AHP) method and GIS with diverse spatial data 
sources produced enhanced spatial outputs related to 
the landslide vulnerability in the mountainous regions of 
Morocco, such as the peninsula of Tangier, Rif-Northern 
Morocco (Brahim et  al. 2018), Oum Er Rbia high basin 
(El Jazouli et  al. 2019), Oued Laou watershed (Sem-
lali et  al. 2019), parts of the Rif chain, northernmost 
Morocco (Es-smairi et  al. 2021), and the Province of 
Larache (El Hamdouni et  al. 2022). Furthermore, Ozer 
et al. (2020) presented the first application of hierarchical 
fuzzy inference systems (HFIs) in expert-based landslide 

susceptibility mapping in a data-scarce region in the cen-
tral part of the Rif Mountains (Morocco). Benchelha et al. 
(2019a, b) compared between logistic regression (LR) 
and multivariate adaptive regression spline (MarSpline) 
methods in landslide susceptibility mapping in Oudka, 
Northern Morocco, and the result indicated that the 
MarSpline model is a better model than the LR model.

Recently, a few studies have attempted to investigate 
landslide susceptibility using the integration between 
artificial intelligence algorithms (AIA) and GIS in 
response to global advances in this field. Machichi et al. 
(2020) demonstrated that the artificial neural network 
(ANN) method has achieved the best performance in 
assessing the landslide susceptibility in the Rif, North of 
Morocco compared to the logistic regression (LR). Simi-
larly, landslide susceptibility maps were produced by 
using multilayer perceptron (MLP) and ANN methods 
in the Mediterranean Rif coastal zone of Morocco (Har-
mouzi et  al. 2019). It can be noted, however, that there 
is a considerable research gap in assessing landslide sus-
ceptibility using the integration between AIS and GIS 
in Morocco. On the other hand, this study is the first 
comparative evaluation between SVM, RBFN, and WoE 
models at the national level, thus improving the quality of 
demarcation of potential landslide areas in an area scarce 
with geographical data like the study area. Moreover, 
addressing the landslide susceptibility mapping perfor-
mance using SVM algorithm represents the first contri-
bution to the Moroccan context.

Study area
The N’fis basin is located in the centre of the Western 
High Atlas of Morocco. It is a mountainous area char-
acterized by slope instability due to climatic, geological, 
and geomorphological features. Landslide incidents are 
the most prominent patterns of slope instability in the 
study area, which cause a threat to the life of the popu-
lation, infrastructure, and spatial development. Thus, it 
is important to construct a reliable spatial prediction of 
landslide susceptibility within the framework of a safe 
and sustainable spatial planning process. Geographi-
cally, the N’fis basin extends between 7°55’ W and 8°40’ 
W longitude, and 30°52’ N and 31°25’ N latitude, with 
an area of approximately 1712 km2. Geologically, the 
N’fis watershed is part of the High Atlas of Marrakech. 
It includes several lithological facies that range from 
Palaeozoic to Quaternary (Michard et  al. 2008). The 
southern margin is dominated by primary age rock, 
primarily shales linked with limestone bars, magmatic 
rock, Permo-Triassic sandstones, and clays (Hollard 
et  al. 1985). The mechanical and chemical alteration 
of these hard formations relatively allows the develop-
ment of very slim skeletal soils and zonal brown soils. 
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The northern part of the study area is made up of lime-
stone and marl from the Upper Cretaceous and Plio-
Quaternary periods (Fig. 1). The N’fis river originates in 
the southwestern part of the Atlas Mountains and flows 
northward over a length of 80 km passing along several 
villages. The altitude ranges from 641 to 4164  m.a.s.l, 
with an average altitude and slope of 1860  m and 22 
degrees, respectively. The climatic features in the study 
basin is arid to semi-arid, with an annual average tem-
perature of roughly 18.6  °C, a maximum of 47.5  °C in 
July, and a minimum of 7.5 °C in January. However, the 
annual precipitation is 375  mm. March and April are 
the highest monthly rainfall, while July and August are 
the lowest.

Material and methodology
The process of landslides susceptibility mapping in the 
study area included the following stages: (a) digitizing 
the current landslide events and division into training 
and test datasets, (b) mapping the causative factors lay-
ers, (c) mapping landslide susceptibility using spatial 
calibration between training dataset and driving factors 
using SVM, RBFN, and WoE models, and d) evaluation 
of accuracy mapping using the test dataset. However, 
Fig. 2 shows the flowchart implemented in this study.

Landslide inventory map
Mapping the spatial distribution of historical landslide 
events is considered a critical step in forecasting land-
slide-prone zones (Carrara et al. 1995; Abdo et al., 2022). 
Many significant features, however, can be extracted 
from inventory map, like sites of current landslide events, 
landslides pattern, and motivations of landslides (Tien 
Bui et al. 2019). Inventorization of landslides is a system-
atic evaluation of the current distribution, extent, types, 
and patterns of landslides in the area under investigation 
using related methods (Tseng et al. 2015; Manchar et al. 
2018). Based on fieldwork and interpretation of Google 
Earth satellite images, 156 landslide events were deter-
mined in order to construct the landslide inventory map 
in the N’fis basin. In this study, the landslide inventory 
map was constructed using the random sampling method 
(RSM) (Hong et al. 2018). A percentage of 70% of land-
slides were randomly determined as a training dataset, 
while the rest of the percentage (30%) were used for the 
model validation goals. These ratios are the most com-
monly used in the recent literature (Pourghasemi and 
Rahmati 2018; Wang et al. 2020a, b) (Fig. 3).

Predisposing factors
In this assessment, fourteen causative factors were 
selected to map the landslide susceptibility in the study 

Fig. 1  Geographical location of the N’fis basin
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area, including slope, aspect, elevation, topographic 
wetness index (TWI), topographic position index (TPI), 
curvature, distance to rivers, distance to roads, Nor-
malized Difference Vegetation Index (NDVI), Land use/
Land cover (LULC), soil type, lithology, and rainfall. 
The thematic maps of the different geomorphological 
factors were produced using several using a digital ele-
vation model (DEM) with a spatial resolution of 12.5 m. 
This DEM is provided by ALOS PALSAR. The ALOS 
mission was initiated on January 24, 2006, and ended 
operations on April 22, 2011. The Japanese govern-
ment approved the ALOS mission, with the overarch-
ing goal of ensuring the continuation of data utilized 
for regional observation and environmental monitor-
ing. The PALSAR sensor is one of ALOS’ three devices 
(Wang et al. 2020a, b; Jaafari et al. 2022a, b; Abdo HG 
2020; Nasir et al. 2022). In addition, the geological map 
of Morocco has been used to construct the distance to 
fault and lithologic maps. NDVI and the LULC maps 
were produced based on multispectral images (sen-
tinel 2). However, the soil map was obtained by refer-
ring to the works of Mtaiau (2002) (Table. 1). All of the 

aforementioned parameters were combined in a GIS-
based system and saved in a raster grid format with a 
resolution of 12.5/12.5 m (Fig. 4).

Landslide causatives factors importance
The evaluation of the significance of the predisposing 
factors is one of the objective procedures in the stud-
ies of mapping landslides susceptibility as a result of the 
restriction of the mutual influence of those factors in 
creating the state of landslide (Pham et al. 2018; Hossein-
alizadeh et  al. 2019). In the present study, the Informa-
tion gain ratio (IGR) method was adopted to assess the 
contribution of different factors to landslide occurrence. 
Increasing the IGR values indicates the significant influ-
ence of the factor for the landslide model, and vice versa.

Landslide susceptibility indicators
Weights of evidence (WoE)
The WoE technique is a bivariate method that takes many 
variables into consideration and is typically used to esti-
mate the landslide event occurrence based on the train-
ing dataset (Song et  al. 2008). Many landslide scholars 

Fig. 2  Flowchart of the developed methodology
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have commonly devoted WoE method to landslide sus-
ceptibility mapping (Batar and Watanabe 2021; Kontoes 
et  al. 2021). Moreover, it is a data-driven strategy that 
employs a log-linear variation of Bayesian analysis. The 
WoE technique is established on the basis that future 
landslide events will take place under impacts similar to 
those contributing to prior landslides.

When an adequate training dataset inventory is avail-
able, WoE uses prior and posterior (predicted) probability 

to evaluate the relative relevance of evidentiary elements. 
WoE method is applied by calculating two basic parame-
ters: negative weight (W−) and positive weight (W+). Each 
landslide causative factor (B) is weighted according to the 
presence or absence of the landslide events locations (A) 
using Eqs. 1 and 2 (Bonham-Carter 1991):

(1)W+ = ln
P{B/A}

P
{

B/A
} ,

Fig. 3  Inventory map and examples of landslides in the N’fis basin

Table 1  Data sources used in the current study

Factors Data source Resolution/Scale Date of 
acquisition

Elevation, Slope angle, Distance to stream, Dis‑
tance to faults, TWI, TPI, Curvature, Slope aspect

DEM downloaded from:
https://​vertex.​daac.​asf.​alaska.​edu

12.5 m 2018

Distance to roads, NDVI, LULC Satellite images downloaded from the site:
https://​scihub.​coper​nicus.​eu

B02 - B03
B04 - B08

10 m 2019

B05 - B06 - B07 
B12 - B08A—B11

20 m

B01 - B09 - B10 60 m

Soil type Soil map (Mathieu 2002) 2002

Lithology Geologic map (Marrakech 1/500000) 1/500000

Rainfall Rainfall data (Tensift Basin Hydraulic Agency) – 2018

https://vertex.daac.asf.alaska.edu
https://scihub.copernicus.eu
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Fig. 4  Landslide conditioning factor A slope, B elevation, C aspect, D curvature, E distance to roads, F distance to rivers, G lithology, H rainfall, I 
NDVI, J land use, K distance to faults L TWI, M soil type, N TPI
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where P is the probability of the percentage, ln is the nat-
ural logarithm, W- is the negative weight, and W + is the 
positive weight. ( B ) is the absence of the landslide causa-
tive factor, (B) is the presence of the landslide causative 
factor, 

−

(A) is the absence of the landslide event location, 

(2)W− = ln
P
{

B/A
}

P
{

B/A
} ,

and A is the presence of the landslide event location 
(Chen et  al. 2016). In this sense, a positive weight indi-
cates the presence of a landslide-causing factor, and its 
size indicates a favourable spatial correlation between 
these two inputs. However, a negative weight denotes a 
negative spatial association and the lack of the landslide 
causative factor at the landslide site.

Fig. 4  continued
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Support vector machine (SVM)
The support vector machine (SVM) is considered among 
the novel machine learning algorithms (MLA) proposed 
by Vapnik (1995). SVM relies on non-linear transforma-
tions of variables in higher dimensional feature space 
(Oh and Pradhan 2011; Tien Bui et al. 2018; Yousefi et al. 
2022). SVM is an accurate simulation method used for 
classification and regression based on statistical learn-
ing theory (Hong et  al. 2017). In the first step of appli-
cation, like most MLAT models, SVM must be learned 
by a training dataset, then the trained model will be used 
to assess the issue of the test dataset (Brenning 2005). 
Two key concepts perform as the foundation of the SVM 
approach, which handles discriminative issues. The first 
one is a hyperplane for optimum linear separation that 
divides the data models. The second one involves trans-
forming the original non-linear data models using ker-
nel functions into the most suitable data model (Yao 
et al. 2008). The set of separable linear training vectors xi 
(i = 1, 2,…, n) with two classes, represented by yi =  ± 1, 
is needed for the two-class SVM model. The SVM goal 
is to find an n-dimensional hyperplane that discriminates 
between the two classes. The two classes are separated in 
n dimensions by the largest deviation that can be math-
ematically reduced using Eq. 3 (Yilmaz 2009):

 with the following condition:

where w is the normal separator hyperplane, b is a scal-
able datum, and (.) signifies a multiplication operation. 
The following is obtained using Lagrangian coefficients of 
cost:

where �i is the Lagrangian multiplier. Equation 6 can be 
minimized by using the w and b ratios as a standard. A 
variable ξi can be used as a weak meaning (slack variables 
ξi ), in which case Eq. 7 becomes

Radial basis function network (RBF)
The radial basis function (RBF) is a receptive-field neural 
network model that is applied to deal with multivariate 

(3)
1

2
‖w‖2

(4)yi((w.xi)+ b) ≥ 1,

(5)L =
1

2
�W�2 −

n
∑

i=1

�i

(

yi((wxi)+ b)− 1
)

,

(5)yi((w.xi)+ b) ≥ 1− ξi,

(6)L =
1

2
�W�2 −

1

υn

n
∑

i=1

ξi.

interpolation problems (He et  al. 2019). Subsequently, 
RBF technique has been used in landslide detection over 
many areas (Powell 1992; Zeybek and Şanlıoğlu 2020). A 
K-means clustering algorithm is the basis of the RBF net-
work model. It is efficient in solving non-linear problems 
(Rumellhart 1986). The principle of RBF model is relatively 
simple, fundamentally based on a radial function. Initially, 
it imports the data into the input layer without any com-
putation. Then, it processes the non-linear problem of the 
hidden layer neuron, and finally, it sends the results to the 
linear output layer. The RBF network is characterized by 
a single hidden layer, but there is no hidden layer in the 
model. The activation function in the hidden layer can be 
as follows: f: Rn → R, if the model is well trained. The basic 
function commonly used by researchers in RBF networks is 
the Gaussian one, which can be written as (Lei et al. 2020)

where Ci ∈ Rn indicates the centre of the basis func-
tion. fi di ∈ R is the radius of the first hidden layer node. fp is 
the hidden node vector.

Validation of landslide susceptibility maps
Statistical validation is employed to assess and compare the 
implementation and quality of performance of machine 
learning algorithms in mapping landslide susceptibility. In 
the current evaluation, the receiver operating character-
istics (ROC) curve with the area under curve (AUC) was 
developed to assess the performance of the three models 
used and to validate the generated landslide susceptibility 
maps. On the x-axis is the false-positive rate (specificity), 
while on the y-axis is the real positive rate (sensitivity). Fur-
thermore, the performance of the modelling techniques 
used was evaluated using some statistical measures. Each 
model probability was compared to historical landslide 
locations to create a confusion matrix that yields true nega-
tive (TN), true positive (TP), false negative (FN), and false 
positive (FP) (Park et al. 2019):

(7)fi(x) = fi
(

e
−�xp−ci�

di

)

, i = 1, 2, . . . ., n,

(8)Y = Wtfp,

(9)Specifity =
TN

FP + TN
,

(10)Sensitivity =
TP

FN + TP
,

(11)Accuracy =
TN + TP

FP + TP + FN + TN
,



Page 10 of 20Naceur et al. Geoscience Letters            (2022) 9:39 

Results and analysis
Assessment of landslide causatives factors importance
The IG approach was employed to assess the quantita-
tive impact of each landslide conditioning factor in the 
creation of landslide events. However, the removal of 
conditioning factors with zero predictive value is rec-
ommended by Chen et al. (2017). All fourteen landslide 
factors showed positive predictive capacity ratings, as 
illustrated in Fig. 5. The slope has the highest predictive 
capability with average merit (AM) value of 0.098. How-
ever, the rest of conditioning factors have less predictive 
capabilities i.e. distance to roads (0.07), distance to riv-
ers (0.069), lithology (0.054), altitude (0.051), precipita-
tion (0.048), soil type (0.046), TWI (0.032), NDVI (0.029), 
aspect (0.018), TPI (0.016), curvature (0.009), LULC 
(0.005), and distance to faults (0.004). Additionally, AG 
analysis indicated that all motivation factors have a posi-
tive contribution, therefore can be included in the imple-
mented landslide modelling.

Application of landslide susceptibility models
In the present study, two machine learning models (SVM 
and RBFN) and one bivariate statistical model (WoE) 
were applied to assess the landslide susceptibility at 
the N’fis watershed. After testing the importance of the 
variables by the IG method, fourteen causative factors 
were used as inputs to the landslide modelling process. 
The outcomes of the WoE analysis, however, are shown 
in Table  2. The spatial correlation between landslide 
events and each class of causative factors was measured 
using the contrast values (C). High values of C indicate 

(12)Precision =
TP

FP + TP
.

a positive effect between the class of each factor and the 
occurrence of landslides. The landslide susceptibility 
value obtained using the WoE model ranges from 0.014 
to 0.978, which was reclassified into five classes using the 
Natural Breaks method in ArcGIS 10.4: very low (0.014–
0.195), low (0.195–0.334), moderate (0.334–0.516), high 
(0.516–0.679), and very high (0.679–0.978) as shown in 
Fig. 6.

TensorFlow was used in this assessment to build the 
SVM model. SVM ideal parameters were determined 
through a number of trial and error procedures. How-
ever, the degree is 3, the gamma is the reciprocal of the 
number of features, the kernel function coefficient is 0.5, 
and the polynomial kernel function was chosen as the 
kernel function. The computed LSI values using the SVM 
model ranged from 0.013 to 0.987. The landslide suscep-
tibility map was created by converting these values into a 
raster format in the GIS environment as Fig. 7 shows. The 
landslide susceptibility map was categorized into five cat-
egories of SVM model ranging: very high (0.755–0.987), 
high (0.630–0.755), moderate (0.378–0.630), low (0.235–
0.378), and very low (0.013–0.235). Using the Natural 
Break method in GIS, the spatial zone of very high, high, 
medium, low, and very low susceptibility assigned as 
7.69%, 17.18%, 29.48%, 25.75%, and 19.9%, respectively.

The RBFN model was built using the landslide train-
ing dataset. The Weka software ten− fold cross− valida-
tion procedure not only decreases model variability but 
also eliminates the problem of overfitting throughout the 
modelling process as suggested by several studies (Wang 
et al. 2020a, b). The parameters used in the RBFN model 
are as follows: the clustering seed is 1, the maximum 
number of iterations is − 1, the number of clusters is 2, 
the minimum standard deviation is 0.1, and the ridge is 
1.0E−  8. The landslide susceptibility index values cal-
culated by the RBFN model ranged from 0.015 to 0.971. 
These values were reclassified into five classes: very high 
(0.638–0.932), high (0.434–0.638), moderate (0.252–
0.434), low (0.110–0.252), and very low (0.005–0.110) 
based on the Natural Breaks method. The very low class 
has the largest area (11.58%), followed by low (24.36%), 
moderate (31.14%), high (22.87%), and very high (10.05%) 
as Fig. 8 depicts. Figure 9, in this context, shows graphi-
cally the proportional distribution of the susceptibil-
ity classes obtained by the three models applied in this 
assessment.

Further, the visual analysis revealed similar spatial dis-
tributions of landslide susceptibility classes in the three 
maps produced in this evaluation. The southeastern part 
of the study area shows a very high susceptibility to land-
slides. The areas along with the rivers in most parts of the 
N’fis basin are also vulnerable to landslides. These maps 
also show a low to very low susceptibility to landslides in 

Fig. 5  Predictive capabilities of the fourteen landslide conditioning 
factors
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Table 2  WoE weights for the different classes of each parameter based on landslide occurrences

Factor Class Number of 
pixels in class

Percentage of 
domain (PD)

Number of 
landslide 
pixels

Percentage of 
landslide (PL)

W +  W− C

Elevation 669–1000 1,272,189 11,609 330 0.485 − 1.381 0.052 − 1.433

1000–1400 1,456,731 13,294 16,076 23,640 0.251 − 0.055 0.307

1400–1800 1,969,797 17,976 7769 11,425 − 0.198 0.034 − 0.232

1800–2200 2,492,537 22,746 8532 12,547 − 0.260 0.054 − 0.314

2200–2600 1,904,152 17,377 12,212 17,958 0.014 − 0.003 0.017

2600–3000 1,283,162 11,710 10,039 14,763 0.101 − 0.015 0.116

3000–3400 411,264 3753 5285 7772 0.319 − 0.019 0.337

3400–3800 128,853 1176 5094 7491 0.819 − 0.029 0.848

3800–4146 39,502 0360 2665 3919 1.064 − 0.016 1.080

Aspect Flat 238,676 2178 424 0.624 − 0.545 0.007 − 0.552

North 685,146 6252 5883 8651 0.742 − 0.011 0.753

Northeast 1,311,145 11,965 6248 9188 − 0.116 0.014 − 0.129

East 1,142,489 10,426 3563 5240 − 0.300 0.025 − 0.325

Southeast 1,374,238 12,541 5514 8109 − 0.191 0.022 − 0.212

South 1,270,892 11,598 7680 11,294 − 0.012 0.002 − 0.013

Southwest 1,249,359 11,401 6615 9728 − 0.070 0.008 − 0.078

West 1,363,696 12,445 10,578 15,555 0.697 − 0.016 0.713

Northwest 1,612,963 14,719 14,325 21,066 0.556 − 0.034 0.590

Slope 0–5 877,640 8009 283 0.416 − 1.287 0.035 − 1.322

5–10 949,345 8663 773 1137 − 0.884 0.035 − 0.919

10–15 924,563 8437 1879 2763 − 0.487 0.026 − 0.513

15–20 1,223,898 11,169 4479 6587 − 0.231 0.022 − 0.253

20–25 1,521,999 13,889 7442 10,944 − 0.104 0.015 − 0.119

25–30 1,908,976 17,421 11,495 16,904 − 0.014 0.003 − 0.016

30–35 1,750,461 15,974 14,846 21,832 0.236 − 0.031 0.268

35–40 1,108,049 10,112 13,325 19,595 0.289 − 0.049 0.338

40–80 693,256 6326 13,480 19,823 0.501 − 0.068 0.569

Distance to river 0–100 3,038,244 27,726 23,082 33,943 0.788 − 0.039 0.727

100–200 2,629,077 23,992 17,277 25,407 0.024 − 0.008 0.032

200–300 2,067,878 18,871 12,082 17,767 − 0.027 0.006 − 0.033

300–400 1,480,579 13,511 8056 11,847 − 0.058 0.008 − 0.066

400–500 930,448 8491 5441 8001 − 0.026 0.002 − 0.029

500–600 494,119 4509 1766 2597 − 0.241 0.009 − 0.250

 > 600 317,842 2900 298 0.438 − 0.823 0.011 − 0.834

Distance to Faults 0–100 579,171 5285 2954 4344 − 0.086 0.004 − 0.090

100–200 571,586 5216 2666 3920 − 0.125 0.006 − 0.131

200–300 555,729 5071 2712 3988 − 0.105 0.005 − 0.110

300–400 538,959 4918 3318 4879 − 0.004 0.000 − 0.004

400–500 510,991 4663 4471 6575 0.150 − 0.009 0.159

500–600 475,154 4336 4134 6079 0.148 − 0.008 0.156

600–700 445,860 4069 3220 4735 0.066 − 0.003 0.069

700–800 422,393 3855 3065 4507 0.068 − 0.003 0.071

800–900 401,590 3665 2323 3416 − 0.031 0.001 − 0.032

 > 900 6,456,754 58,922 39,139 57,556 − 0.012 0.017 − 0.028
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Table 2  (continued)

Factor Class Number of 
pixels in class

Percentage of 
domain (PD)

Number of 
landslide 
pixels

Percentage of 
landslide (PL)

W +  W− C

NDVI − 1.0 308,723 2817 8542 12,561 − 0.058 0.046 − 0.102

0–0.2 3,585,799 32,723 27,524 40,475 0.592 − 0.053 0.645

0.2–0.3 2,497,976 22,796 11,117 16,348 0.146 0.035 0.111

0.3–0.4 1,397,659 12,754 5132 7547 − 0.229 0.025 − 0.255

0.4–0.5 903,324 8243 3753 5519 − 0.175 0.013 − 0.188

0.5–0.7 1,241,592 11,330 5496 8082 − 0.148 0.016 − 0.163

0.7–1 1,023,114 9337 6438 9467 − 0.006 0.001 − 0.007

Curvature concave 7,305,932 12,561 13,597 14,328 0.080 − 0.011 0.91

flat 58,471,399 54,302 54,210 64,191 0.959 − 0.009 0.968

convex 43,631,245 33,137 20,048 21,481 − 0.052 0.024 − 0.076

Lithology Hercynian granite 291,252 2658 686 1009 − 0.422 0.007 − 0.430

Lower Cambrian 1,805,221 16,474 16,978 24,967 0.181 − 0.047 0.228

Granite PK III 161,417 1473 0 0.000 0.000 0.006 − 0.006

PK III 1,487,143 13,571 21,237 31,230 0.365 − 0.100 0.464

Triassic 1,184,184 10,806 7184 10,564 0.710 − 0.001 0.711

Middle Cambrian 3,899,874 35,589 21,405 31,477 − 0.054 0.028 − 0.082

Visean 205,846 1878 59 0.087 − 1.338 0.008 − 1.346

Paleocene 147,493 1346 0 0.000 0.000 0.006 − 0.006

Cretaceous 174,341 1591 415 0.610 − 0.418 0.004 − 0.422

Eocene 663,642 6056 38 0.056 − 2.038 0.027 − 2.065

Miocene–Pliocene 66,174 0,604 0 0.000 0.000 0.003 − 0.003

Pliocene 29,686 0,271 0 0.000 0.000 0.001 − 0.001

Quaternary 194,812 1778 0 0.000 0.000 0.008 − 0.008

Miocene 647,102 5905 0 0.000 0.000 0.027 − 0.027

Distance to roads 0–100 721,332 6583 8055 11,845 0.257 − 0.025 0.282

100–200 650,787 5939 5050 7426 0.098 − 0.007 0.105

200–300 589,638 5381 3793 5578 0.016 − 0.001 0.016

300–400 542,723 4953 3465 5095 0.012 − 0.001 0.013

400–500 503,998 4599 3000 4412 − 0.018 0.001 − 0.019

 > 500 7,949,709 72,546 44,639 65,644 − 0.045 0.103 − 0.148

TPI −97–15 171,619 1,566 2260 3323 0.330 ‡0.008 0.338

−15–7 1,205,423 11,000 11,019 16,204 0.169 − 0.026 0.195

−7–− 3 1,723,329 15,726 13,873 20,401 0.113 − 0.025 0.138

−3–1 3,223,516 29,417 15,204 22,358 − 0.120 0.042 − 0.162

1–6 2,931,384 26,751 13,808 20,305 − 0.121 0.037 − 0.158

6–12 1,320,244 12,048 8340 12,264 0.007 − 0.001 0.008

12–104 382,672 3492 3498 5144 0.169 − 0.008 0.177

Soil rankers 1,875,895 17,119 9891 14,545 − 0.072 0.013 − 0.085

rendzine 498,491 4549 1617 2378 − 0.283 0.010 − 0.293

Brown soil 3,526,990 32,186 16,797 24,701 − 0.116 0.046 − 0.162

fersiallitic soil 892,431 8144 0 0.000 0.000 0.037 − 0.037

sandy soil 879,257 8024 4396 6465 − 0.095 0.007 − 0.102

skeletal soil 2,839,452 25,912 35,301 51,912 0.303 − 0.188 0.491

soil on tertiary formations 445,671 4067 0 0,000 0.000 0.018 − 0.018
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Table 2  (continued)

Factor Class Number of 
pixels in class

Percentage of 
domain (PD)

Number of 
landslide 
pixels

Percentage of 
landslide (PL)

W +  W− C

TWI  < 4.20 582,243 5313 5073 7460 0.148 − 0.010 0.158

4.2–5 2,333,240 21,292 14,498 21,320 0.000 0.000 0.000

5–5.75 2,904,133 26,502 16,724 24,593 − 0.033 0.011 − 0.045

5.75–6.5 2,027,508 18,502 12,200 17,941 − 0.014 0.003 − 0.017

6.5–8.5 1,958,107 17,869 14,663 21,563 0.082 − 0.020 0.102

8.5 <  1,152,956 10,521 4844 7123 0.370 − 0.016 − 0.386

LULC water 24,042 0,219 0 0,000 0.000 0.001 − 0.001

dense vegetation 1,964,037 17,923 14,840 21,823 0.085 − 0.021 − 0.106

medium to low vegetation 5,461,797 49,842 24,228 35,628 − 0.148 0.110 − 0.258

stony ground 1,326,975 12,109 20,785 30,565 0.405 − 0.103 0.508

bare earth 2,181,336 19,906 8140 11,970 0.223 − 0.041 0.264

Precipitation  < 300 569,470 5197 6329 9307 0.255 − 0.019 − 0.274

300–350 1,222,198 11,153 8588 12,629 0.054 − 0.007 − 0.061

350–400 2,418,710 22,072 17,731 26,074 0.072 − 0.023 0.095

400–450 2,771,891 25,295 15,085 22,183 − 0.058 0.018 − 0.076

450–500 984,840 8987 3193 4695 0.283 − 0.020 0.303

500–550 447,141 4080 7116 10,464 0.413 − 0.030 0.443

550–600 775,859 7080 1348 1982 0.555 − 0.023 0.578

 > 600 1,768,078 16,135 8612 12,664 0.706 − 0.018 0.724

Fig. 6  Landslide susceptibility map using WoE model
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Fig. 7  Landslide susceptibility map using SVM model

Fig. 8  Landslide susceptibility map using RBFN model
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the northern part of the basin featured by gentle slopes. 
These results highlight the importance of the slope and 
distance to the river factors in the creation of landslide 
events which corresponds to the GI method outcome.

Validation and comparison of the models
The quantitative measurement of the accuracy of land-
slide susceptibility maps produced by the different clas-
sification models is a fundamental step (Luo et al. 2018). 
Moreover, the resulting landslide susceptibility maps will 
have no practical significance without validation of a 
landslide susceptibility model (Pham et al. 2017a, b). For 
this reason, the ROC and other statistical indices were 

used to evaluate the predictive performance of the mod-
els applied in this study. Using the training dataset, the 
AUC values for the WoE, SVM, and RBFN models were 
83.72%, 94.37%, and 93.68%, respectively. The same rank-
ing was obtained using the validation data with a little 
increase in the AUC values. In fact, the SVM model still 
has the best performance (94.60%), followed by RBFN 
(93.30%), and finally WoE (87.68%) (Fig.  10). However, 
the landslide susceptibility map developed with the SVM 
model is the best performing one followed by the map 
produced by the RBF model, while the WoE model is the 
least performing.

The performance of the three models was also evalu-
ated using several statistical indices (Table 3). The SVM 
model has the best performance, with the highest values 
of sensitivity (0.999), specificity (0.990), precision (0.997), 
and accuracy (0.987). With the RBFN model, we obtained 
a slightly lower performance than the SVM model. In 

Fig. 9  Distribution of landslides in each landslide susceptibility 
category

Fig. 10  Analysis of the ROC curve of different landslide models using training and validation dataset

Table 3  Statistical indices of different prediction models

Sensitivity Specificity Precision Accuracy

Training data WoE 0,660 0,927 0,815 0,839

SVM 0,996 0,973 0,992 0,990

RBFN 0,990 0,916 0,981 0,976

Validation data WoE 0,706 0,916 0,829 0,839

SVM 0,996 0,937 0,982 0,983

RBFN 0,980 0,921 0,972 0,965
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this assessment, the WoE model is the least performing 
model with the lowest values of statistical performance 
indices.

Discussion
In Morocco, the landslides incidence is accelerating in 
mountainous areas due to the complex spatial integra-
tion of climate change, LULC change, and the pressure 
of human activities (El Hamdouni et  al. 2022). Hence, 
there is an urgent need to conduct more accurate studies 
assessing landslide susceptibility with enhanced spatial 
outcomes. This accuracy is based on criteria of adequate 
data quality, appropriate modelling methods, and effec-
tive causative factors (Ayalew et al., 2005). In this study, 
a comparison performance of the WoE, RBFN, and SVM 
models was constructed in delineating the spatial suscep-
tibility of landslides in N’fis basin with a total of 156 land-
slide events.

Evaluation of the correlation between historical land-
slide events and causal factors is a crucial step in land-
slide susceptibility modelling. This procedure is used to 
select the appropriate factors, thus improving the per-
formance of the models used. In the current study, IG 
analysis was used to enhance the modelling process. 
With fourteen factors considered as motivating factors 
for landslides, the results of the IG analysis indicated that 
the slope, distance to road, and distance to river factors 
were the most important in creating landslide status with 
AM values of 0.098, 0.07, and 0.069, respectively. These 
results are consistent with the studies of Yu et al. (2019), 
Zhang et  al. (2019), and Abedini et  al., (2018). This can 
be justified by the intense mountainous geomorphologi-
cal characteristics of the study area with an elevation of 
more than 4000 m.a.s.l. Steep slopes, which reach many 
locations more than 40 degrees, increase the potential 
landslide occurrences. Despite the importance of physi-
cal factors in creating the current stability of slope mate-
rials, landslide events are closely linked with human and 
economic factors that are very important in mountain 
watersheds (Lei et al. 2020; Saha et al. 2021).

One of the bivariate model merits is its flexible applica-
tion because there is no need for training and parameter 
modification (Magliulo et al. 2009; Chen et al. 2020). In 
this evaluation, the SVM model achieved the best perfor-
mance in producing a spatial susceptibility landslide map. 
In this regard, despite the flexibility of using bivariate 
statistics models, the machine learning algorithms pro-
vide the best performance due to the possibility of deter-
mining the best parameters involved in the modelling 
process, analysing the relationship between the driving 
factors and removing variance from the training dataset 
(Abedini et al. 2019a, b). Thus, the SVM model provided 
a reliable performance with a high accuracy rate that 

allowed us to reduce the limitations of this study. These 
investigations reveal that the occurrence of landslides is 
closely associated with geo−  ecological factors (Huang 
et al. 2022). Moreover, the application of machine learn-
ing models, such as SVM and RBFN in this study, is rela-
tively complex and requires data transformation. Despite 
this complexity, these models are recommended for 
assessing landslide susceptibility due to their high accu-
racy compared to the bivariate statistical model (Chen 
et al. 2020).

In this regard, the indicators of evaluating accuracy and 
performance proved the high potential of the three meth-
ods in mapping the landslide susceptibility in the study 
area. Despite this, those indicators reported that the 
SVM model was the most high quality in comparison to 
the WOE and RBFN model. Furthermore, many landslide 
susceptibility scholars have confirmed the high efficiency 
of the SVM model in evaluating landslides. Abedini et al. 
(2019a, b) reported that the SVM was more precise than 
the other models. Similarly, Tien Bui et al. (2012) stated 
that the SVM model outperformed landslide risk assess-
ment compared to decision tree (DT) and Naïve Bayes 
(NB) algorithms. The same result was found in a study 
conducted by Ballabio and Sterlacchini (2012).

SVM has the merit of having non-linear kernel func-
tions which deal with the non-linear association between 
landslide events and causative factors (Zhao and Zhao 
2021). Furthermore, the SVM model application pro-
vided an optimal level of landslide vulnerability classifica-
tion due to the ability to accurately separate the training 
dataset points of landslides and non-landslides (Kong 
et al., 2021). The RBFN has the features of unique global 
approximation, linear association of output significances 
in the network structure, reasonable classification capac-
ity, and quick training rate (Kim et  al. 2019). However, 
WoE provided an acceptable performance in mapping 
landslide susceptibility despite the collinearity between 
motivating factors and landslide events that affected the 
model performance. However, the three models showed 
remarkable consistency in the predictive ability of the 
training dataset and that of the verification dataset, 
which indicates that these models have achieved practical 
and reliable spatial results in mapping landslide suscepti-
bility in the study area.

The three models applied confirmed that the eastern 
and southeastern regions were the most vulnerable to 
landslide events. However, this result is consistent with 
the observations of the extensive fieldwork carried out in 
the study area. In this respect, these areas are character-
ized by extreme elevation (< 4000 m), steep slopes (< 40°), 
intense rainfall storms, low vegetation density, fragile 
rock formations, dense fissures and faults, and rapidly 
topsoil eroding. These characteristics make these areas 
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highly prone to landslides, therefore should be included 
in mitigation and maintenance priorities (Mohammed 
et al. 2020).

In this regard, the diversity of data sources and the 
spatial resolution of the variables are the main certain 
uncertainty and limitations of this study. For example, 
the data resolution of DEM, LULC, lithology, and soil 
types was not consistent (Table. 1). Several studies indi-
cate that choosing the appropriate spatial resolution 
remains a challenge in the context of advances in land-
slide modelling studies (Wang and Brenning 2021; Huang 
et  al. 2022). However, these limitations are common in 
areas with scarce geographical data, such as the study 
area. All the thematic layers were resampled at a 12.5 m 
resolution in order to conduct this study. The absence of 
data of some important parameters, such as soil texture, 
soil depth, and water table depth, remains also among 
the main limitations of the current study. Despite these 
limitations and in light of the results of performance 
evaluation, the results of this study can be considered 
objectively efficient in improving the quality of spatial 
outputs related to landslide prediction at the national 
level.

Finally, the three implemented methods demonstrated 
sufficient performance for landslide susceptibility map-
ping. Nevertheless, the SVM model achieved suitable 
performance. Hence, it can be utilized to evaluate and 
create more reliable landslide susceptibility maps for 
appropriate landslide risk management. Overall, the 
outcomes of this study can introduce very valuable and 
critical knowledge for local decision-makers and LULC 
planners to mitigate and manage the high and very land-
slide susceptibility areas in the N’fis basin.

Conclusion
The identification of landslide-prone areas is an impor-
tant procedure for LULC planning and developing land-
slide mitigation techniques. The aim of this study is to 
conduct a comparative evaluation of landslide suscep-
tibility mapping using SVM, RBFN, and WoE models in 
the N’fis river basin, Morocco. An inventory map of 156 
landslide events was produced and divided into 70% as a 
training dataset and 30% as a test dataset. Moreover, 14 
causative factors, i.e. slope angle, elevation, slope aspect, 
LULC, TWI, curvature, lithology, distance to faults, dis-
tance to roads, TPI, rainfall, distance to rivers, NDVI, and 
soil type, were mapped using a different source database. 
These factors were spatially calibrated with the training 
dataset using the three models in order to map the land-
slide susceptibility in the study area.

The three maps produced were reclassified into five 
classes, i.e. very low, low, moderate, high, and very high. 
The high and very high areas are located in the eastern and 

southeastern parts of the basin, characterized by high alti-
tudes and steep slopes. The maps obtained were validated 
by ROC and statistical indices, which showed that the SVM 
method is the most suitable performing (AUC = 94.60%), 
followed by RBFN (AUC = 93.30%), while the WoE model 
remains the least performing (AUC = 87.68%). The findings 
of this study showed that machine learning methods, such 
as SVM and RBFN, have improved the simulation maps of 
landslide susceptibility at the national level.
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