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Abstract 

The losses and damage caused by landslide are countless in the world every year. However, the existing approaches 
of landslide susceptibility mapping cannot fully meet the requirement of landslide prevention, and further excava-
tion and innovation are also needed. Therefore, the main aim of this study is to develop a novel deep learning model 
namely landslide net (LSNet) to assess the landslide susceptibility in Hanyin County, China, meanwhile, support vector 
machine model (SVM) and kernel logistic regression model (KLR) were employed as reference model. The inventory 
map was generated based on 259 landslides, the training dataset and validation dataset were, respectively, prepared 
using 70% landslides and the remaining 30% landslides. The variance inflation factor (VIF) was applied to optimize 
each landslide predisposing factor. Three benchmark indices were used to evaluate the result of susceptibility map-
ping and area under receiver operating characteristics curve (AUROC) was used to compare the models. Result 
demonstrated that although the processing speed of LSNet model is the slowest, it still significantly outperformed its 
corresponding benchmark models with validation dataset, and has the highest accuracy (0.950), precision (0.951), F1 
(0.951) and AUROC (0.941), which reflected excellent predictive ability in some degree. The achievements obtained in 
this study can improve the rapid response capability of landslide prevention for Hanyin County.
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Instruction
Landslide is defined as the special geological phenom-
enon that is threatening to mankind triggered by human 
activities or natural factors. Under the dual background 
of human activities and natural transmutations, the 
occurrence rate of landslides in the world increased 
rapidly (Sun et al. 2020). Depending on the latest statis-
tical report of Ministry of Natural Resources of China 
(http://​www.​mnr.​gov.​cn/), in total 6,181 geological haz-
ards occurred in 2019, during that year, 211 people were 
killed and direct economic loss valued at 397 million 

dollars. Due to complex terrain, tectonic development 
and human activities, there are more than 230,000 poten-
tial geological hazards in China and landslides account 
for 53.50% of it. Therefore, the prevention of landslide 
development in China is crucial. In the face of increas-
ingly serious landslide threats, the development of disas-
ter prevention and mitigation work can effectively reduce 
the threat posed by landslides. In order to plan and con-
struct the city safely and effectively, and to carry out the 
work of disaster prevention and mitigation successfully, it 
is necessary to quantitatively assess the landslide suscep-
tibility on the regional scale.

Over the past years, various techniques and meth-
ods for forecasting the landslides have been applied to 
landslide susceptibility assessment (LSA). At first, with 
the help of historical landslide data and the geological 
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environment background, the scope of landslide predic-
tion was directly delineated, but this method relies heav-
ily on experience, resulting in low reliability of the results 
(Guzzetti et  al. 2012; Youssef and Pourghasemi 2021). 
With the development of geographic information system 
(GIS) and satellite remote sensing technology within each 
subject area, the more commonly used solutions can be 
summarized as a few steps. The first step of LSA is to col-
lect the development characteristics and spatial distribu-
tion features of historical and hidden danger landslides 
(Pradhan and Lee 2010). Then the predisposing factors 
of landslide occurrence are selected from the geological 
and environment background. Subsequently, the linear 
or non-linear mapping relationship between predispos-
ing factors and the degree of landslide susceptibility is 
analyzed by using evaluation model (qualitative or quan-
titative), and the contribution rate of each landslide 
predisposing factor is determined. In the end, some tech-
niques of analysis and comparison are used to choose the 
suitable model for the study area (Carrara et al. 1995).

In principle, the evaluation models used in LSA could 
be crude categorized as two classes: statistical model 
and machine learning model. Usually, the statistical 
models were conjugated to GIS for spatial variety pre-
diction of landslide disaster. The frequently used mod-
els are index of entropy (IOE) (Constantin et  al. 2011; 
Youssef et al. 2015), analytical hierarchy process (AHP) 
(Kayastha et al. 2013), frequency ratio (FR) (Umar et al. 
2014; Razavizadeh et  al. 2017), certainty factor (CF) 
(Fan et  al. 2017; Li and Zhang 2017), logistic regres-
sion (LR) (Pourghasemi et al. 2013; Aditian et al. 2018) 
and evidential belief function (EBF) (Carranza 2015; 
Li and Wang 2019). As the predictive ability of statis-
tical model is still deficient and with the development 
of information technology, machine learning models 
could be a better alternative to solve the susceptibility 
assessment problem, such as artificial neural networks 
(ANN) (Aditian et  al. 2018; Polykretis and Chalkias 
2018; SOMA et  al. 2019), support vector machines 
(SVM) (Bui et al. 2016; Pandey and Pourghasemi 2020), 
adaptive neuro-fuzzy inference systems (ANFIS)(Agh-
dam et al. 2017), decision trees (DT) (Pham et al. 2016), 
fuzzy logic (FL) (Saadoud et  al. 2018) and multivari-
ate adaptive regression spines (MARS) (Conoscenti 
et al. 2014). Due to data quality, factor selection, model 
parameter adjustment and other factors, some low 
accuracy, over fitting, and under fitting problems often 
appear (Bui et  al. 2018). In order to solve these prob-
lems, hybrid model was developed in recent years, 
such as reduced error pruning trees (REPT) (Pham 
et al. 2019), kernel logistic regression model integrated 
with fractal dimension (KLRbox-counting) (Zhang et  al. 
2019), support vector regression model integrated with 

gray wolf optimization algorithm (SVR-GWO) (Balo-
gun et  al. 2021), adaptive neuro-fuzzy inference sys-
tem model integrated with satin bowerbird optimizer 
algorithms (ANFIS-SBO) (Chen et  al. 2021). However, 
these machine learning models still cannot avoid some 
disadvantages, for example, (1) It still requires a lot of 
prior knowledge and erection; (2) the existing network 
cannot fully extract potential landslide features; (3) the 
models are sensitive to missing data, and prone to fall 
into local optima.

Compared with machine learning, deep learning (DL) 
does not need to manually construct and select feature 
layers when dealing with object features, and at the same 
time, deep learning accepts a larger sample size, which is 
gradually applied in various fields. For example, Panahi 
(2020) used convolutional neural networks and recur-
rent neural networks to predict the probability of flash 
flood (Panahi et al. 2020); Kumar (2020) used deep learn-
ing model to complete the prediction of ground water 
depth (Kumar et  al. 2020); Benzekri (2020) employed 
the deep learning model to construct an early forest 
fire detection system (Benzekri et  al. 2020). In general, 
DL model performed a satisfactory ability of classifica-
tion and regression. The main reason is that DL is com-
pletely a data-driven feature learning method, and has 
multi-level non-linear operations, which can abstractly 
represent classification features from a large amount of 
data, and combines gradient transfer method to opti-
mize its end-to-end network structure (Zhu et al. 2020). 
Recently, more and more DL models have been succes-
sively applied in the field of LSA (Xiao et al. 2018; Huang 
et al. 2020; Li et al. 2021), among the different DL mod-
els, convolutional neural network (CNN) plays a sig-
nificant role in landslide recognition and prediction, for 
example, Wang (2019) applied three novel CNN architec-
tures in LSA, which achieved higher prediction accuracy 
than conventional methods (Wang et  al. 2019); Sameen 
(2020) developed a DL-based technique for LSA through 
a 1-dimensional CNN, which performed better than 
ANN and SVM (Sameen et  al. 2020); Fang et  al. (2021) 
constructed four heterogeneous ensemble-learning tech-
niques combining with CNN, RNN, SVM, and LR, the 
final results also showed that the DL model performed 
best (Fang et al. 2021).

However, these previous studies have some shortcom-
ings, for example, in the process of building DL model, 
each convolutional layer will bring different prediction 
effects, the construction of multi-channel networks is 
ignored for landslide predisposing factor. Moreover, due 
to China’s vast territory and diverse geological environ-
ment, there is still a lack of databases and studies related 
to landslides, and more reasonable, reliable and more 
accurate DL models still need to be explored.



Page 3 of 16Zhang et al. Geoscience Letters            (2022) 9:26 	

Therefore, this study proposed a novel deep learning 
network named LSNet composed of multiple convo-
lutional layers to predict the landslide susceptibility in 
Hanyin County, Shaanxi Province, China. The patches 
of landslide predisposing factor maps were used as the 
input data to train the LSNet, meanwhile the LSI was 
regarded as the output to predict the landslide suscep-
tibility. In addition, the support vector machine model 
(SVM) and kernel logistic regression model (KLR) 
were employed to compare with LSNet. The primary 
difference here between this study and the literature 
mentioned is that approaches existed in this paper are 
seldom used and compared in landslide susceptibility 
assessment, especially LSNet and KLR. Another point 
is that the three models were first applied in Hanyin 
County and LSNet with multiple channels was estab-
lished combined with the data structure representing 
the landslide, with the aim to improve the accuracy of 
LSA in the study area. Finally, all the results may help 
the government to make efficient decisions about land-
slide prevention and provide prevention references for 
landslide risk.

Sample description of study area
Hanyin County belongs to the hilly area in southern 
Shaanxi Province, the geographical coordinates are 
32°68’-33°09’north latitude and 108°11’-108°44’east 
longitude (Fig. 1). The study area is about 51 km wide 
from east to west, 58 km long from north to south, and 
covers an area of about 1347 Km2. The climate type of 
study area is continental tropical monsoon climate and 
the temperature varies greatly. According to the local 
meteorological statistics, the mean annual precipitation 
in the past 50 years is about 920 mm, and the rainfall in 
the northern region is significantly less than that in the 
southern region. The water resources in the study area 
are very abundant, and there are 4 rivers in total, all of 
which belong to Yangtze River system. There are three 
types of groundwater in the study area, including loose 
rock pore water, carbonate fissure water, and bedrock 
fissure water.

The geomorphology of study area is dominated by low 
and middle mountains, with valleys, hills and basins, and 
the area of mountains accounts for 87%. The exposed 
strata and main lithology in the study area are shown in 
Table 1. Since the geotectonic location of the study area is 
located in the core zone of the Qinling microplate, there 
are many faults and folds in this area. In fact, there are a 
total of 5 faults that have been proven. Besides, according 
to the historical records, there have been 16 earthquakes 
in the study area, with an average magnitude of 4, but 
these earthquakes did not cause major damage.

Data preparation
Landslide inventory
Before carrying out the LSA, it is critical to verify about 
the information of landslides in the study area. Landslide 
inventory is to integration of landslide boundaries, loca-
tions, types and so on, which is the subsequent basis of 
data analysis and model construction. Based on the his-
torical landslide data (SBGMR 1989; PRC 2020), remote 
sensing image (Cloud 2020), literatures (Liu and Huang 
2006) and field survey, a total of 267 landslide locations 
were identified from 1989–2020 as the reference. These 
landslide locations were then imported into the GF-2 
remote sensing images to delineated landslide boundary 
in ArcGIS software. In order to generate the landslide 
inventory map of study area (Fig. 1), all landslide bound-
aries were converted into polygons and resampled with 
the resolution of 30 m × 30 m. Figure 2 shows the prepa-
ration process of landslide inventory map.

Data preparation
In order to prepare the input dataset for model con-
struction, 267 landslide samples were separated into two 
parts according to the ratio of 7/3 (Zhao and Chen 2020). 
Among them, 187 landslide samples were used as the 
training dataset to train the model, and the remaining 80 
landslide samples were applied as the validation dataset 
to finish the validation purpose.

Analysis and quantification of landslide predisposing 
factors
There are no fixed guidelines for selecting the predispos-
ing factors for LSA. After the comprehensive analysis 
of regional geo-environment characteristics and previ-
ous researches (Zhou and Fang 2015; Wang et  al. 2020; 
Wu et al. 2020), we proposed altitude, slope angle, slope 
aspect, normalized difference vegetation index (NDVI), 
distance to rivers, distance to roads, distance to faults, 
mean annual precipitation (MAP) and lithology as the 
landslide predisposing factors.

Among them, altitude, slope angle, slope aspect are 
commonly used terrain factors, which can describe the 
influence of terrain on landslide with multi-dimension. 
For instance, altitude can affect the topographic proper-
ties, vegetation distribution and temperature differences 
at different heights. Slope angle is regarded as one major 
impact factor affecting instability and deformation of 
landslides, for example, the larger the slope angle, the less 
stable the slope is.

NDVI is a commonly used to indicate the vegetation 
coverage condition and it ranges from -1 to 1. Nega-
tive value expresses that there is water, snow and cloud 
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Fig. 1  The study area a location and landslide inventory map; b forest destruction caused by landslide; c road damage caused by landslides

Table 1  The main lithology information of the study area

Geological age Symbol Main lithology

Quaternary Q Sandy clay, clay rock

Tertiary E Clay rock, siltstone, glutenite

Middle Devonian D2 Limestone, calcium schist

Lower Devonian D1 Calcium schist, calcium sandstone, granite

Silurian S Phyllite and siliceous rock, sandstone

Ordovician O Argillaceous limestone, carbonaceous schist, quartzite

Cambrian Є Limestone, slate, phyllite

Senian Z Limestone, quartzite, schist
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coverage. Positive value expresses that the earth coverage 
is vegetation, and the larger the coverage extent of the 
vegetation lead to higher NDVI positive value.

At present, it is generally believed that the mechanism 
of landslide occurrence is the increase of pore water pres-
sure in slope compositions by using the rainwater infiltra-
tion and accumulation during the rainy period. The high 
pore water pressure will lead to the increase of the effec-
tive load stress and the decrease of the shear strength 
of slope components, which are main triggering factors 
caused landslide. Therefore, MAP also occupies vital sta-
tus of the landslide occurrence.

Rivers can affect the hydrogeology characteristics of 
slopes, and rivers usually corrode the toe of slope, which 
may decrease the anti-slide force. In mountainous area, 

it is common that numerous of landslide hazards are 
triggered by road constructions. Besides, in areas with 
frequent tectonic movements, the dislocation of faults 
can also cause landslide occurrence. Hence, distance 
to rivers, distance to roads, and distance to faults were 
regarded as predisposing factors in this study.

The lithology of the slope is the material founda-
tion of the landslide. Some slopes are made up of hard 
rocks, some of which are made up of soft rocks, and 
some of them are made up of soil. Because of the differ-
ence between the lithologies, their shear strength varies. 
Often, slopes made of hard rocks do not easily fall, while 
slopes material of soft rocks or soil are easier to be desta-
bilization deformation.

Since the original attribute data of each predisposing 
factor are very different, the frequency ratio (FR) is intro-
duced to unify the dimension of each predisposing factor. 
The calculation process of FR value is shown in Eq. (1):

where Samij stands for the percentage of landslides in 
each landslide predisposing factor class, and Areij is the 
area percentage of each landslide predisposing factor 
class (Siahkamari et al. 2017).

Additionally, in order to calculate the FR value, it is 
necessary to classify the predisposing factors, and the 
data sources, resolution and classification method of 
each predisposing factor are listed in Table 2.

Methodologies
The main research contents include 4 parts: (1) using the 
data that are already available to complete the landslide 
inventory; (2) using FR value to quantify the landslide 

(1)FR = Samij
/

Areij,

Fig. 2  The preparation process of landslide inventory map

Table 2  The information and data source of landslide predisposing factors

Landslide predisposing factors Original format Resolution Classification method Data source

Altitude (m) Grid 30 m × 30 m natural break (Jenks) Extracting from DEM image (http://​www.​gsclo​ud.​cn/)

Slope angle ( ◦) Grid 30 m × 30 m natural break (Jenks) Extracting from DEM image (http://​www.​gsclo​ud.​cn/)

Slope aspect Grid 30 m × 30 m natural break (Jenks) Extracting from DEM image (http://​www.​gsclo​ud.​cn/)

NDVI Grid 30 m × 30 m natural break (Jenks) Generating by GF-2 remote sensing images obtained 
from Xi’an Satellite Measurement and Control Center

Distance to rivers (m) Vector 30 m × 30 m Equal interval Generating by regional water system obtained from the 
local government

Distance to roads (m) Vector 30 m × 30 m Equal interval Generating by regional traffic maps obtained from the 
local government

Distance to faults (m) Vector 30 m × 30 m Equal interval Extracting from geological maps with 1:500,000 scale 
obtained from the local government

MAP (mm/year) Vector 30 m × 30 m Equal interval Extracting from rainfall observation data from 2010 to 
2021 obtained from the local government

Lithology Vector 30 m × 30 m Custom interval Extracting from geological maps with 1:500,000 scale 
obtained from the local government

http://www.gscloud.cn/
http://www.gscloud.cn/
http://www.gscloud.cn/
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predisposing factor maps, and partitioning dataset; (3) 
using the factor maps that are already quantified by FR 
to train the SVM model and KLR model, moreover using 
the original factor maps to train the LSNet model; (4) 
producing LSM corresponding to each model, assess-
ing the result accuracy, and comparing the prediction 
performance of each model. The flowchart of this study 
is shown in Fig. 3. The techniques used in this study are 
described as follows.

Factor optimization method
Since the assumption of machine learning modeling is 
that the variables are independent of each other, it needs 
to detect whether there is strong correlation between the 
factors. This strong correlation relationship is called mul-
ticollinearity which may cause the over-fitting or under-
fitting problems (Hong et  al. 2018). In this study, the 
variance inflation factor (VIF) and tolerances (TOL) were 
applied to reflect the multicollinearity problem, which 
can be calculated by constructing a linear regression 
model based on the training dataset. When VIF > 10 and 
TOL < 0.1, it indicates that the predisposing factor has 
a multicollinearity problem and needs to be eliminated, 
vice versa (Pham et al. 2019).

Support vector machine model (SVM)
The basic principle of SVM is to search the optimal 
separating hyperplane that can maximize the interval 
between positive and negative samples in training dataset 

(Wang and Brenning 2021). Initially, SVM model was 
used as the supervised learning algorithm to solve binary 
classification problem, while the non-linear classifica-
tion problem can be solved after introducing the kernel 
function. Therefore, the SVM model was applied in many 
researches about landside susceptibility assessment. In 
addition, there are three parameters namely penalty fac-
tor (C0), non-sensitive loss function ( ε ), and kernel func-
tion parameter ( γ ) that need to be adjusted appropriately 
in the process of constructing the SVM model (Xie et al. 
2021). The main steps of SVM model construction can be 
described as below.

At first, the landslide predisposing factors are defined 
as the dataset of instance label pairs (si, ti, i = 1, 2, …, n), 
where si stands for the input data, ti is the output classes 
(landslide and non-landslide), and n is the number of 
training samples (Kumar et  al. 2017). The training sam-
ples are mapped in to a n-dimensional hyperplane by 
using the RBF kernel function which can be defined as:

Then mathematical expression of the n-dimensional 
hyperplane L needs to satisfy the following condition:

where w denotes for the norm of normal hyperplane, 
and b is the constant. The maximum interval between 
vector and hyperplane can be derived by applying the 

(2)K
(

si, sj
)

=

(

−γ
(

si − sj
))

, γ > 0.

(3)tj
(

w · sj + b
)

+ ε ≥ 1,

Fig. 3  The flowchart of the study
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Lagrangian multiplier (Abedini et  al. 2019), and cost 
function can be expressed as:

Kernel logistic regression model (KLR)
In statistical learning, when there are phenomena such 
as non-linear estimation, non-normal estimation, and 
uneven variance, it may cause invalid estimation by using 
the ordinary regression method (Chen et al. 2018). These 
problems were overcome after the introduction of logis-
tic regression, and logistic regression is widely used to 
solve binary classification problem. However, the struc-
ture of original logistic regression model is relatively sim-
ple, the flexibility is relatively low, and it still has defects 
in dealing with non-linear classification problems (Chen 
et al. 2019). While the kernel function can help to solve 
these problems effectively in constructing logistic regres-
sion model. Therefore, the hybrid model, namely kernel 
logistic regression is created. In order to be consistent 
with the SVM model above, the RBF kernel function is 
determined to build KLR model. The expression of KLR 
model is as follows:

where pi is the probability of landslide occurrence, ki 
stands for the i th row of K(si, sj), and α is a constant for 
the intercept (Thai and Indra 2018).

Landslide net model (LSNet)
The deep learning has been widely used in the field of 
remote sensing image processing, including change 
detection, land use classification, image registration and 
so on. The deep belief networks, convolutional neu-
ral network (CNN), and auto coder are the three most 
commonly used network models in deep learning. The 
operating principle of these networks is to stack mul-
tiple layers within the model, and use the output of the 
previous item as the input of the next item, so that the 
features of each layer in the network can be converted 
into higher-dimensional features (Bui et al. 2020). Among 
them, the CNN has robust feature extraction capabilities 
and has been successfully applied in the field of image 
processing.

LSNet is a multi-layer feedforward neural network, the 
advantage of which is that it can process large-scale data 
in the form of multiple arrays from the local and global 
input data. The structure of LSNet is consist of multiple 
layers, which are related to each other through a set of 
learnable weights and biases. The local and global-scale 

(4)L = 1/2w2
− C0

n
∑

i=1

ε.

(5)pi
(

t = 1
∣

∣ki
)

=

1

1+ e−(ki+α)
,

features can be captured by these convolutional blocks 
using scanning of the entire image. Meanwhile, the pool-
ing layer and rectified linear unit (ReLU) layer are used 
for generalization to improve the non-linear fitting ability 
of the network (Li et al. 2021). Additionally, each convo-
lutional layer contains feature maps obtained by multiple 
convolution kernels, and these feature maps share the 
node weights of the convolution kernels, so features can 
be extracted from different parts (Fig. 4). Specifically, the 
main operation performing in CNN can be generalized as 
follows:

where Ol−1denotes the input feature map in lth layer, Wl 
and bl, respectively, represent the weight and deviation of 
input feature layer convoluting by linear convolution, and 
σ is a non-linear function outside the convolution layer.

Assessment and comparison method
Result assessment method
In order to assess the accuracy of classification result 
and compare the performance of each model, statisti-
cal indexes are purposed to finish this work. A matrix 
(Table 3) is constructed by true positive (TP), false posi-
tive (FP), true negative (TN), and false negative (FN) 
calculating from training dataset (Pham et  al. 2021). 
The accuracy and precision are calculated according to 
Eqs. (7) and (8) for accuracy assessment, meanwhile, the 
consistency of the results is verified with F1. The calcula-
tion process is as follows:

Model comparison method
In this study, the work of model comparison is purposed 
to carry out from three indicators including the running 
speed of the model, the classification ability for landslide 
and non-landslide, and the generalized performance of 
the model. Among them, based on the validation dataset, 
the running speed of the model is quantitative expressed 
by time, and the sensitivity and specificity are, respec-
tively, used to reflect the classification ability for landslide 
and non-landslide (Eqs. (9) and (10)) (Yanar et al. 2020). 
Additionally, the receiver operating characteristics curve 

(6)Ol
= poolp

(

σ

(

Ol−1
∗Wl

+ bl
))

,

(7)Accuracy =
TP + TN

TP + TN + FP + FN
,

(8)Precision =

TP

TP + FP
,

(9)1 =

2 ∗ precision ∗
TP

TP+FN

precision+
TP

TP+FN

.
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(ROC) is used for assessing the generalized performance, 
and in general, the larger the area under ROC curve 
(AUROC), the stronger the generalization ability of the 
model (Dang et al. 2020):

Results
The quantification results of FR for landslide predisposing 
factors
In this study, the FR value was employed to quantify each 
landslide predisposing factor according to the classifica-
tion result. It can be observed from Table 4 that the inter-
val of Tertiary from the lithology factor has the highest 
FR value (FR = 2.32), followed by the range of < 100 from 
the distance to roads factor (FR = 1.85), and the range 

(10)Sensitivtiy =
TP

TP + FN
,

(11)Specificity =
TN

TN + FP
.

of 278–548 from the altitude factor (FR = 1.81). On the 
contrary, the lowest FR value appears in both the 1432–
2107 interval of the altitude factor (FR = 0.00) and the flat 
interval of the slope factor (FR = 0.00).

The optimization result of landslide predisposing factors
The VIF and TOL values of each landslide predispos-
ing factor were calculated based on the quantified land-
slide predisposing factors, and the calculation results are 
shown in Table  5. As can be seen from the results, the 
largest VIF value and the smallest TOL value appear 
in NDVI (VIF = 1.433, TOL = 0.698), followed by the 
altitude (VIF = 1.293, TOL = 0.773) and the aspect 
(VIF = 1.268, TOL = 0.789). By contrast, the distance 
to roads has the smallest VIF value and the largest TOL 
value (VIF = 1.019, TOL = 0.981). Since the VIF and TOL 
values of all landslide predisposing factors are not inside 
the critical range (VIF > 10 and TOL < 0.1), all factors are 
retained and used to prepare the dataset.

Based on the optimized landslide predisposing fac-
tors, the training and validation datasets were prepared 
according to aforementioned partition principle. Subse-
quently, the training dataset was used as the input data to 
implement the following three models.

Implementation of SVM model
In this study, the training dataset was used to construct 
the SVM model. Since the parameters of RBF kernel 
function are significant for model construction, the 

Fig. 4  The structure schematic diagram of landslide net (LSNet)

Table 3  Discriminant matrix of statistical indexes

Samples Predicted label

Landslide Non-landslide

True label Landslide True positive (TP) True negative (TN)

Non-landslide False positive (FP) False negative (FN)
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Table 4  The FR calculation result for each class of landslide predisposing factors

Landslide predisposing factors Classes Areij (%) Samij (%) FR

Altitude (m) 278–548 32.00 57.98 1.81

548–781 31.06 28.02 0.90

781–1075 17.68 11.67 0.66

1075–1432 12.33 2.33 0.19

1432–2107 6.93 0.00 0.00

Slope angle ( ◦) 0.0000–9.6093 19.68 30.35 1.54

9.6093–17.3502 27.24 31.91 1.17

17.3502–24.8241 26.64 24.12 0.91

24.8241–33.6327 18.95 10.51 0.55

33.6327–67.7992 7.49 3.11 0.42

Slope aspect Flat 0.06 0.00 0.00

North 10.71 8.17 0.76

Northeast 11.81 11.28 0.96

East 15.32 19.84 1.30

Southeast 12.82 12.84 1.00

South 11.01 14.01 1.27

Southwest 11.43 7.78 0.68

West 14.37 16.34 1.14

Northwest 12.47 9.73 0.78

NDVI −0.0983–0.1717 7.26 5.45 0.75

0.1717–0.2410 19.94 12.06 0.60

0.2410–0.3030 28.86 31.13 1.08

0.3030–0.3698 28.81 35.02 1.22

0.3698–0.5308 15.13 16.34 1.08

Distance to rivers (m)  < 100 7.19 8.56 1.19

100–200 5.48 6.23 1.14

200–300 5.16 7.39 1.43

300–400 4.94 7.78 1.57

 > 400 77.22 70.04 0.91

Distance to roads (m)  < 100 6.30 11.67 1.85

100–200 5.39 8.17 1.51

200–300 4.82 7.78 1.62

300–400 4.50 6.23 1.38

 > 400 79.00 66.15 0.84

Distance to faults (m)  < 1000 11.60 19.46 1.68

1000–2000 10.87 12.84 1.18

2000–3000 9.77 11.67 1.19

3000–4000 8.88 9.73 1.10

 > 4000 58.87 46.30 0.79

Lithology Quaternary 18.02 28.40 1.58

Tertiary 3.69 8.56 2.32

Middle Devonian 9.46 1.95 0.21

Lower Devonian 2.40 1.95 0.81

Silurian 4.49 1.95 0.43

Ordovician 2.38 1.17 0.49

Cambrian 25.54 14.40 0.56

Senian 33.99 36.19 1.06
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tenfold cross-validation method was used to search the 
most suitable parameter set (C0,γ ). The optimized param-
eter set is (241, 0.02). Then run the trained SVM model in 
the python platform, and adjust the output range of the 
model to 0.000–1.000 which also represents the LSI. In 
the end, the natural break (Jenks) method was used to 
divide the LSI into five ranges which, respectively, repre-
sent the very low susceptibility area (0.0899–0.2084), low 
susceptibility area (0.2085–0.4646), moderate susceptibil-
ity area (0.4647–0.6228), high susceptibility area (0.6229–
0.7893) and very high susceptibility area (0.7894–0.9224), 
furthermore the LSM was generated by converting these 
areas to image in ArcGIS software (Fig. 5).

Implementation of KLR model
The construction progress of KLR model is similar to 
the SVM model. For the purpose of comparison, the 
parameter set (C0,γ ) was consistent with that of the SVM 
model. Subsequently, the training dataset was used as 
the input data for KLR model construction in the python 
platform, and the output range of the LSI was adjusted 
to 0.000–1.000. Finally, the LSI was divided into five 
ranges by using the natural break (Jenks) method. These 
five ranges, respectively, represent the very low suscep-
tibility area (0.0145–0.2459), low susceptibility area 

(0.2460–0.3695), moderate susceptibility area (0.3696–
0.5161), high susceptibility area (0.5162–0.6974) and very 
high susceptibility area (0.6975–0.9983), moreover the 
LSM corresponding to KLR model was generated in Arc-
GIS software (Fig. 6).

Implementation of LSNet model
The LSNet was coded using tensorflow 2.0 under the 
python environment, and running on a personal com-
puter with Intel(R) Core(TM) i7-7700  k CPU, RTX 
3080Ti GPU, 32  GB RAM, and the Windows 10 oper-
ating system. The LSNet had multi-layer structure, 
the size of input window was designed as 224 × 224. 
In fact, many researchers in image processing have 

Table 4  (continued)

Landslide predisposing factors Classes Areij (%) Samij (%) FR

MAP (mm/year)  < 800 12.03 7.39 0.61

800–850 22.39 19.84 0.89

850–900 31.01 39.69 1.28

900–950 14.82 10.12 0.68

950–1000 3.37 5.06 1.50

 > 1000 16.39 17.90 1.09

Table 5  The VIF and TOL values of each landslide predisposing 
factor

Landslide predisposing 
factors

VIF Tolerances (TOL)

Altitude 1.293 0.773

Slope angle 1.032 0.969

Aspect 1.268 0.789

MAP 1.044 0.958

Lithology 1.103 0.907

Distance to rivers 1.148 0.871

Distance to faults 1.078 0.928

Distance to roads 1.019 0.981

NDVI 1.433 0.698

Fig. 5  Landslide susceptibility map of study area derived by SVM 
model
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demonstrated that the size of the data input has little 
effect on the task objective. Based on the data of multi-
ple channels we input, the data size of 224 has already 
covered the entire area of Hanyin County. In theory, 
the context relationship of this range can fully meet the 
needs of LSA. In addition, we also used 96, 128, 196, 

224, 256 image blocks to conduct experiments, respec-
tively. The results show that the size of the input data 
has no obvious effect on the test accuracy.

AlexNet can implement more than 1000 categories of 
classification. In contrast, the landslide susceptibility 
mapping is a binary classification problem, which does 
not require deep network design. For this reason, in 
this study, the size of input layer in convolution kernel 
of LSNet was set to 5 × 5, the size of the convolution 
kernel for the other layers was set to 3 × 3, the number 
of feature maps for each layer was set to 64, 128, 128, 
256, 256, respectively. At the same time, a pooling layer, 
non-linear activation function ReLU and batch normal-
ized BN were set after each convolutional layer. Based 
on computer graphics vision, all other parameters of 
the LSNet were empirically optimized, for instance, 
the learning rate and epoch are set as 0.0001 and 600 
to learn the depth features through back propagation. 
Subsequently, the number of neurons in the fully con-
nected layers was set to 1024, 256, 128, 2, respectively 
(Table  6). Since the classical network, VGG and UNet 
have proved the validity of 3 × 3 convolution kernel and 
64,128,256,1024 feature image parameters in various 
regression and classification tasks. Therefore, on the 
basis of these parameters, we design a network struc-
ture with multiple channel inputs and fuse them at the 
end of the network. In particular, we use the hyperpa-
rameter search method to obtain the fully connected 
layers and training parameters of the multi-channel 
fusion structure, such as learning rate, batch size and 
epoch. Finally, softmax was used to estimate the prob-
ability of landslide occurrence to output confidence, 
namely LSI.

Fig. 6  Landslide susceptibility map of study area derived by KLR 
model

Table 6  The architecture of LSNet

Layer Feature map Feature map Size Kernel Size Stride Activate

Input 224 × 224 × 3 ReLU

1 2 × CNN 64 224 × 224 × 64 3 × 3 1 ReLU

Max pooling 64 112 × 112 × 64 3 × 3 2 ReLU

2 2 × CNN 128 112 × 112 × 128 3 × 3 1 ReLU

Max pooling 128 56 × 56 × 128 3 × 3 2 ReLU

3 2 × CNN 256 56 × 56 × 256 3 × 3 1 ReLU

Max pooling 256 28 × 28 × 256 3 × 3 2 ReLU

4 2 × CNN 512 28 × 28 × 512 3 × 3 1 ReLU

Max pooling 512 14 × 14 × 512 3 × 3 2 ReLU

5 2 × CNN 512 14 × 14 × 512 3 × 3 1 ReLU

Max pooling 512 7 × 7 × 512 3 × 3 2 ReLU

6 FC – 25,088 – – ReLU

7 FC – 1024 – – ReLU

8 FC – 256 – – ReLU

9 FC – 128 – – SoftMax
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Similarly, the output range of LSI for LSNet was 
adjusted to 0.000–1.000, and, respectively, represents 
the very low susceptibility area (0.0045–0.2021), low 
susceptibility area (0.2022–0.3458), moderate sus-
ceptibility area (0.3459–0.4814), high susceptibility 
area (0.4815–0.8033) and very high susceptibility area 
(0.8034–0.9972) (Fig. 7).

Assessment of the results
The result of accuracy assessment
After mapping the LSMs of these three models, it is 
necessary to assess the quality of results. In this study, 
the matrix has been organized based on the valida-
tion dataset, then the accuracy, precision, and F1 val-
ues for each LSM were calculated (Table 7). As shown 
in Table 7, the LSNet model gets the highest accuracy 
value and precision value (accuracy = 0.950, preci-
sion = 0.951), by contrast, the SVM model gets the 
lowest accuracy value and precision value (accu-
racy = 0.825, precision = 0.850), while the performance 
of the KLR model is moderate. From the value of F1, 
the LSNet also gets the highest value (F1 = 0.951), fol-
lowed by the KLR model and SVM model, which is also 
consistent with the ordering of accuracy and precision 
values.

The result of model comparison
In order to compare the running speed, classification 
and generalization performance, the run time, sensitiv-
ity, specificity and AUROC values were introduced to 
finish this work. As the results shown in Table 7, the larg-
est sensitivity and specificity values belong to the LSNet 
model, indicating that the LSNet model has the best 
landslide and non-landslide classification abilities among 
these three models. On the contrary, the smallest sen-
sitivity and specificity values belong to the SVM model, 
indicating that the landslide and non-landslide classifica-
tion abilities of SVM model are the weakest among these 
three models.

For AUROC values (Fig.  8), the LSNet model also 
obtains the largest AUROC value (AUROC = 0.941), fol-
lowed by the KLR model (AUROC = 0.899) and SVM 
model (AUROC = 0.835), and the results show that the 
LSNet model has the best generalization ability.

Fig. 7  Landslide susceptibility map of study area derived by LSNet 
model

Table 7  Calculation results of statistical indexes for landslide 
susceptibility mapping

Parameters SVM KLR LSNet

TP 34 36 39

TN 32 36 37

FP 6 6 2

FN 8 2 2

Accuracy 0.825 0.900 0.950

Precision 0.850 0.857 0.951

F1 0.829 0.900 0.951

Sensitivity 0.810 0.947 0.951

Specificity 0.842 0.857 0.949

Fig. 8  The ROC curves of each landslide susceptibility model based 
on validation dataset
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Lastly, we measured the running speed of each model, 
the results show that the running speed of the SVM 
model (32  s) and the KLR model (27  s) are relatively 
close, while the running speed of the LSNet model (107 s) 
is significantly slower than the first models.

Discussion
In this paper, we show the progress and results of land-
slide susceptibility mapping based on SVM model, KLR 
model, and LSNet model in Hanyin County, Shaanxi 
Province, China. In terms of the model performance, 
although the classification accuracy of the three mod-
els is higher, the accuracy of LSNet and other statistical 
indexes are higher than that of SVM and KLR, which fully 
shows that the LSNet performs best in the study area.

Since both SVM and KLR are developed based on sta-
tistical theory, the quality of input data and the adjust-
ment of model parameters in the process of model 
construction may affect the final result. Before prepara-
tion of input datasets, three classification methods, i.e., 
natural break (Jenks), equal interval, and custom interval 
were all used to grade FR-quantified landslide predis-
posing factors. However, the classification methods and 
results of landslide predisposing factors are inevitably 
affected by human factors, which may lead to over-fitting 
or under-fitting (Yacine and Pourghasemi 2019). For this 
reason, it is necessary to deeply analyze the impact of 
classification methods on data quality. Besides, this study 
only used two machine learning models for compari-
son, therefore, more models should be added for refer-
ence in subsequent research, so that the advantages and 
disadvantages of deep learning and machine learning in 
landslide susceptibility mapping can be more compre-
hensively compared.

In contrast, as a deep learning model, the input data 
of LSNet is a complete remote sensing image contain-
ing all the information. In order to distinguish land-
slide and non-landslide from image data, not only the 
objects in the image patch need to be characterized 
as landslides, but also need to accurately and reliably 
represent the contextual information of the landslide 
space background. The advantage of LSNet is to derive 
the category of the object at the image block level, and 
learn the spatial distribution through the CNN network 
with hierarchical representation, and finally obtain 
the probability of each object’s category through mul-
tiple fully connected layers and softmax. It is different 
from machine learning in principle, and its specific 
advantages include: (1) LSNet can classify based on 
object blocks in a deep learning network of convolu-
tional structure, and output the category probability; 
(2) LSNet uses the CNN model to learn the internal 
and overall spatial information of the object block to 

represent the contextual spatial semantic information 
of the category. LSNet represents the probability of 
the category at the object block level, which can avoid 
pixel-level misfits and improve the accuracy of classi-
fication (Dimililer et  al. 2021). (3) LSNet can directly 
read remote sensing images without destroying the 
data structure, and can obtain richer and multi-source 
data sets, making the trained model robust. Interest-
ingly, the running time of LSNet is significantly longer 
than that of SVM and KLR, which may be limited by 
the hardware performance of the computer, result-
ing in slower calculations. Nevertheless, this does not 
mean that the LSNet is not a state-of-the-art model and 
other studies have reached similar conclusions in their 
researches. However, since the occurrence of landslides 
is affected by multi-source factors, the characteristics 
of the landslides themselves are also very complex and 
cannot be described solely by human-represented fea-
tures. Therefore, we try our best to use deep learning 
methods that are completely data-driven. In addition, 
in this study, the final network architecture of LSNet 
was determined by gradually increasing the ablation 
experiments, and at the same time, an LSNet with mul-
tiple channels was established combined with the data 
structure representing the landslide, which could well 
fulfill the requirements of LSA. Furthermore, because 
other network structures are generated based on their 
respective research objects and purposes, although we 
cannot conduct experiments on these networks one by 
one, we have designed a network structure that matches 
the confidence of the current landslide research. We 
have also demonstrated the effectiveness and accuracy 
of LSNet in our experiments.

On the other hand, as a black box model, DL cannot 
intuitively reflect the spatial distribution features of 
landslides in the study area during data preparation. On 
the contrary, in machine learning modeling, because 
FR is used to quantify the graded landslide predispos-
ing factors, the spatial distribution of the landslide 
under the conditions of each predisposing factor can be 
intuitively reflected from the quantified results (Zhang 
et al. 2020). For instance, from the view of distance to 
rivers and roads, as the distance from roads and riv-
ers increase, the FR value decreases, indicating that the 
closer to the river and the road, the more landslides are 
distributed. This is because the exposed rock and soil 
in study area have low mechanical strength, the surface 
is easily weathered and eroded, and the joints and fis-
sures are very developed. Moreover, due to the scour-
ing action from the river and excavation of the slope 
toe during road construction, the original stress struc-
ture of the slope was destroyed, which resulted in the 
instability of the slope and generated a large number 
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of potential landslides. This consistent with the phe-
nomenon we observed in the field, and is similar to the 
results of geological hazard studies in similar areas of 
the study area (Wang et al. 2016; Liu et al. 2020).

Conclusion
Landslide susceptibility mapping is a key step for land-
slide prevention work. This study used Hanyin County, 
Shaanxi Province, China as the study area to complete 
the work of landslide susceptibility mapping by build-
ing the LSNet model, SVM model, and KLR model, and 
generated the LSM. Then various statistical indexes were 
applied for the accuracy assessment, and the ROC curves 
was employed to compare the performance and clas-
sification ability of the models. In summary, the main 
conclusions are as follows: (1) in the process of dataset 
preparation and parameter adjustment, the machine 
learning model will inevitably be affected by human fac-
tors, resulting in unstable classification results. However, 
LSNet can overcome human interference and generate 
objective classification results. (2) LSNet can avoid the 
problems of over-fitting and under-fitting. The classifi-
cation accuracy in the study area is high, moreover the 
generalization is stronger than the SVM model and the 
KLR model. The LSNet can be promoted and used in the 
study area.

This study introduced the construction method of 
LSNet model in detail, and compared the performance 
of LSNet model (deep learning), SVM model (machine 
learning), and KLR model (hybrid model), which 
enriched the landslide database of the study area and can 
provide reference for the application of deep learning 
model in landslide prevention in the future. Furthermore, 
the results of this study can improve the efficiency of 
landslide prevention for government decision-making in 
similar study areas, which is conducive to rapid response 
of landslide warning. Comprehensive risk assessors and 
land use planner can benefit from our study findings. 
Additionally, the proposed approach is an innovative 
method that may also help other scientists to develop 
landslide susceptibility maps in other areas, but also as an 
approach that could be used in geo-environmental prob-
lems besides natural hazard assessments.
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