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Abstract 

Large devastating events such as earthquakes often display frequency–magnitude statistics that exhibit power-law 
distribution. In this study, we implement a recently developed method called earthquake nowcasting (Rundle et al. 
in Earth Space Sci 3: 480–486, 2016) to evaluate the current state of earthquake hazards in the seismic prone Sulawesi 
province, Indonesia. The nowcasting technique considers statistical behavior of small event counts between succes-
sive large earthquakes, known as natural times, to infer the seismic progression of large earthquake cycles in a defined 
region. To develop natural-time statistics in the Sulawesi Island, we employ four probability models, namely exponen-
tial, exponentiated exponential, gamma, and Weibull distribution. Statistical inference of natural times reveals that (i) 
exponential distribution has the best representation to the observed data; (ii) estimated nowcast scores (%) corre-
sponding to M ≥ 6.5 events for 21 cities are Bau-bau (41), Bitung (70), Bone (44), Buton (39), Donggala (63), Gorontalo 
(49), Kendari (27), Kolaka (30), Luwuk (56), Makassar (52), Mamuju (58), Manado (70), Morowali (37), Palopo (34), Palu 
(62), Pare-pare (82), Polewali (61), Poso (42), Taliabu (55), Toli-toli (58), and Watampone (55); and (iii) the results are 
broadly stable against the changes of magnitude threshold and area of local regions. The presently revealed station-
ary Poissonian nature of the underlying natural-time statistics in Sulawesi brings out a key conclusion that the seismic 
risk is the same for all city regions despite their different levels of cycle progression realized through nowcast scores. 
In addition, though the earthquake potential scores of the city regions will be updated with the occurrence of each 
small earthquake in the respective region, the seismic risk remains the same throughout the Sulawesi Island.
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Introduction
Sulawesi is one of the four Greater Sunda Islands in Indo-
nesia which has high seismicity. Earthquake sources in 
these regions come from tectonic processes on land and 
sea, fault systems in the middle, and subduction zone in 
the north (Cardwell et  al. 1980; Mc Caffrey & Sutardjo 
1982; Mc Caffrey 1982; Silver et  al. 1983; Walpersdorf 
et  al. 1998; Stevens et  al. 1999; Gomez et  al. 2000; Hall 
2009). Many destructive events in the Sulawesi prov-
ince have occurred in the vicinity of the major cities that 
often knit together to form a global hub of economic and 

industrial activity (Cipta et al. 2017). In recent years, the 
entire island has observed a rapid growth of urban popu-
lation and infrastructure development as an outflow of 
worldwide economic empowerment and industrial revo-
lution. However, the fear of large damaging earthquakes 
looms over the Sulawesi region which is surrounded by 
a network of active fault lines and has many seismic non-
resistant traditional structures (Widiyanto et  al. 2019; 
Omira et al. 2019).

The seismicity in the Sulawesi area is so high that it 
has experienced 25 major earthquakes (Mw ≥ 7.0) dur-
ing a span of about 50  years (1969–2020). The latest of 
them is the 28th September 2018 Mw7.5 “supershear” 
Sulawesi earthquake occurring in the northern part of 
the Palu–Koro fault that has not been well studied before 
(Bao et al. 2019). This earthquake was categorized as one 
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of the deadliest earthquakes in 2018 as it was accompa-
nied by an unusual tsunami caused by the unexpectedly 
large vertical component of the fault slip (Bao et al. 2019; 
Ulrich et al. 2019). Liquefaction was observed in the Palu 
city which sits at the end of the bay surrounded by a river 
delta (Bradley et al. 2019). Similar to the September 2018 
Sulawesi earthquake, other disastrous events may also 
occur along the less studied geological faults that pass 
through the major cities (Cipta et  al. 2017). Therefore, 
it is imperative to evaluate the current level of seismic 
hazards for all populous cities in the Sulawesi province 
for a nationwide disaster preparation and mitigation. In 
light of this, the present study develops a statistical, data-
driven nowcasting approach (viz. Rundle et  al. 2016) to 
estimate the contemporary state of earthquake progres-
sion in several regions of the Sulawesi Island. As in finan-
cial nowcasting, the earthquake nowcasting technique 
seeks to define the current state of hazard, rather than to 
produce a forecast of future years. Since the basic stress 
variables that define the current state of the earth’s crust 
are fundamentally unobservable (Scholz 2019), one seeks 
to find proxy variables that can be used to estimate the 
current state of hazard,  thus to provide some form of 
useful information for policymaking (Rundle et al. 2016, 
2018, 2019a; b).

The nowcasting method in seismology has evolved 
from the understanding that in a dynamic, non-lin-
ear, power-law behaving earthquake system (similar 
to typhoons, landslides, market economy crashes), the 
distribution of events can be broadly aligned in a fre-
quency–magnitude spectrum where the large magnitude 
events are usually preceded by several smaller events 
(Rundle et  al. 2016, 2018, 2019a; b). This method has 
found significant applications in economics (e.g., growth 
nowcast, inflation nowcast, market-stress nowcast), 
meteorology (e.g., thunderstorm nowcast), and politi-
cal sciences (e.g., electoral campaign nowcast) where 
the interest is to assess the uncertain current state in 
view of the data of immediate past, present, or very near 
future. The nowcasting technique in seismology utilizes 
the key idea of natural times (e.g., Varotsos et al. 2011), 
the interevent small earthquake counts braced by succes-
sive large earthquakes in a specified region, rather than 
the usual calendar or clock times to elucidate the present 
state of earthquake system through earthquake cycle. It 
is built upon the assumption that the underlying seismic-
ity statistics in local regions is embedded in a homoge-
neous larger region from which the seismicity statistics 
will be developed. This assumption seems reasonable in 
light of the ergodic dynamics in the statistical physics of 
seismicity, in which the statistics of smaller regions over 
longer times are considered to be similar to the statistics 
of broader regions over large spatial domains and longer 

periods (Tiampo et al. 2003; Holliday et al. 2016). Under 
this setup, the nowcasting method describes the seismic 
progression of a region in terms of earthquake potential 
score (EPS) measured through the cumulative probabil-
ity for the current event counts (Rundle et al. 2016, 2018; 
Pasari, 2019b). The method has been successfully applied 
to several seismogenic cities such as Ankara, Dhaka, 
Islamabad, Kolkata, Lima, Manila, New Delhi, Taipei, 
Tokyo, Los Angeles and San Francisco (Rundle et  al. 
2016; Pasari 2019b, 2020; Pasari et al. 2021a, b, c; Pasari 
and Sharma 2020; Bhatia et al. 2018).

The method of earthquake nowcasting is conceptu-
ally different from earthquake forecasting which looks 
ahead in time. Nowcasting technique, unlike forecasting, 
is applicable for a dataset involving dependent as well 
as independent events (Rundle et  al. 2016). Nowcasting 
often enables a systematic ranking of cities as to their 
current exposure to the earthquake hazard, whereas fore-
casting deals with several probability measures for long-
term planning and preparation (Rundle et al. 2016, 2018). 
The nowcasting method may provide a fast and sophisti-
cated alternative means to understand the current state 
of progress of a regional fault system, which is otherwise 
traditionally determined from direct or indirect, physical 
or remote observation of a tectonic stress regime (Scholz 
2019).

Study area and earthquake data
Geology and tectonics
Split by the equator, the study area encompasses a quad-
rangle bounded by the geographical limits 115°–130° E 
and 10° S–5° N (Fig. 1). Due to the inherent setting from 
the ongoing trio-convergence between the north moving 
Australian plate, south-southeast moving Eurasia plate 
and the west moving Pacific plate, the Sulawesi island 
and its contiguous areas exhibit an exceedingly com-
plex seismotectonic pattern (Silver  and Smith 1983; Sil-
ver et al. 1983). The tectonic process, mainly the drifted 
collision of the three plates, started since the Mesozoic 
era when it experienced a spreading exposure in the 
northwestern part of several microcontinent fragments 
derived from the Australian continent (Audley-Charles 
et al. 1988). The relentless tectonic process in a number 
of episodes eventually constitutes a triple junction—a 
unique, unusual K-shape of the Sulawesi island with four 
characteristic arms (Monnier et  al. 1995; Katili 1978). 
The convergence zone of this tri-junction accommodates 
a composite domain of accretionary complexes, micro-
continental fragments, melange terrains, island arcs and 
ophiolites (Hall 2012). The stratigraphic development 
of Sulawesi is mainly controlled by the successive accre-
tion from the east of oceanic and microcontinental mate-
rial (Wilson et al. 2000; Bosence and Wilson 2003). As a 
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consequence, the K-shaped Sulawesi Island is considered 
to be a response to the post-collision rotation of the cur-
vatures of four arms originally being convex to being con-
cave (Monnier et al. 1995).

Sitting in the central part of Indonesia archipelago, 
Sulawesi Island is one of the most enigmatic areas with 
its geological formation, process and structure (Silver  
and Smith 1983; Silver et  al. 1983; Monier et  al. 1995; 
Wakita et  al. 1996; Villeneuve et  al. 2002; Hall 1996, 
1998,2002,2009). Under the influence of Australia–
Philippine plate convergence, the Sulawesi domain 

persistently collides with the Eurasian plate. The tec-
tonic collision is accommodated by subduction at the 
north Sulawesi trench and by the motions along the 
Palu–Koro and Matano faults at the southwestern and 
southern domains (Walpersdrof et  al. 1998; Socquet 
et al. 2006; Bellier et al. 2006). One of them forms the 
southern margin of the Celebes Sea (Walpersdorf et al. 
1998). Associated with the tectonic collisions, there 
was development of NNW–SSE trending Palu–Koro 
left-lateral transcurrent fault, along which the part of 
eastern Sulawesi has moved northwards with regard to 

Fig. 1  Topography of the Sulawesi island including general tectonics and major cities
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western Sulawesi. Opening of pull-apart basins, such 
as lakes of Poso, Matano and Towuti, Palu depression 
and other tectonic features are evident as a result of 
recent transtensional movements during the Quater-
nary period continuing to the present time. Several dis-
astrous events along the Palu–Koro and nearby major 
faults reveal that the system is probably active (Hall 
2009).

Tectonically, the Sulawesi Island, due to enormous 
external pressure, deforms continuously. Such pres-
sure comes from the Flores Sea in the southern part 
and activates Palu–Koro, Walanae and Banggai–Sula 
fault (Jaya and Nishikawa 2013). External pressure from 
Banda Sea in the eastern to central part activates Matano, 
Batui, Lawanoppo and Kolaka fault, whereas the pres-
sure from Sulawesi Sea in the northern part activates 
North Sulawesi subduction and Gorontalo fault. Pres-
sure from North Maluku subduction plate from north-
east often causes large earthquakes and volcanoes in 
North Sulawesi area. These ongoing tectonic phenomena 
in the Sulawesi island produce four major transcurrent 
faults, namely the Sorong–Matano fault, Palu-Koro fault, 
Walanae sinistral fault, and the Gorontalo dextral fault 
(Watkinson et  al. 2011; Watkinson and Hall 2017). The 
pathways of these active faults exhibit high earthquake 
and tsunami potential in the study region.

Several earthquakes located in the sea floor have tsu-
nami potential. The extent of the tsunami size is often 
influenced by steep subsurface topography of the sea-
bed and coast (Hamzah et al. 2000). Both southern and 
northern Sulawesi have witnessed disastrous tsuna-
mis (Baeda 2011). In the southern part, stretched from 
Majene to Mamuju or from Palu to Toli-toli, tsunamis 
occur due to earthquakes in the intersection of Paternos-
ter fault and Makassar Strait normal fault or in the inter-
section of Palu–Koro fault and Makassar Strait fault. In 
the northern part, tsunamis occur in Gorontalo, Luwuk-
Banggai and Kendari-Wawoni-Buton areas due to events 
located in the intersections of Gorontalo fault and North 
Sulawesi subduction, Gorontalo fault and North Maluku 
subduction, and Lawanoppo fault and Wawoni thrust 
(Watkinson et al. 2011; Watkinson and Hall 2017). Areas 
that have been hit by tsunami since 1967 are Majene-
Pinrang in 1967, Palu in 1968 and 2018, Mamuju in 1969, 
Donggala in 1996, Toli-toli in 2000 and Luwuk-Banggai 
in 1999 and 2000. Exploring the nowcasting technique, 
which provides a surrogate way to determine the cur-
rent progress of an earthquake cycle in a fault system 
thus appears to be an interesting task to indirectly assess 
earthquake/tsunami hazards in the Sulawesi Island 
(Rundle et al. 2016). However, it may be noted that in a 
nowcasting analysis, the entire large geographic region 
is assumed to be a single driven threshold system to 

develop nowcast scores for several local regions embed-
ded in the large region.

Earthquake data
To develop nowcasting technique, we prepare an earth-
quake catalog (1969–2020) of instrumental data mainly 
from the compilation of two global catalogs, namely the 
Advanced National Seismic System (ANSS) comprehen-
sive catalog (http://​www.​ncedc.​org/​anss/​catal​og-​search.​
html) and the International Seismological Centre (ISC) 
catalog (http://​www.​isc.​ac. uk/iscbulletin/search/cata-
logue/). Both ANSS and ISC (Reviewed ISC Bulletin) 
are reliable sources of earthquake data. To maintain the 
consistency of data sources, we used “magnitude author” 
NEIC (National Earthquake Information Center) in the 
ISC search. For the recent data (January to November, 
2020), we use the regional Meteorological, Climatologi-
cal, Geophysical Agency of Indonesia (BMKG) catalog. 
As the BMKG network comprising 162 broadband seis-
mometers is locally maintained, recent events have been 
directly adopted from this catalog, without any possible 
magnitude alignment between BMKG and others. A pic-
torial summary of earthquake data is provided in Fig. 2, 
whereas the entire dataset is provided as Additional file 1.

In the analysis, we consider magnitude 4.5 as the 
threshold of small earthquake events (also, the magni-
tude completeness threshold) and 200 km as the thresh-
old of maximum focal depth, since deep-seated oceanic 
earthquakes often exhibit weaker signal and are generally 
less damaging (Rundle et al. 2016; Pasari 2019b). During 
January 01, 1969 to November 21, 2020, a total of 17,082 
events (4.5 ≤ M ≤ 7.9) have occurred in the study region 
providing 87 earthquake cycles of M ≥ 6.5 events. The 
associated earthquake interevent counts (natural times) 
will be used to develop the natural-time statistics. Recall 
that nowcasting analysis via natural-time statistics does 
not require declustering of dependent events, such as 
foreshocks and aftershocks (Rundle et al. 2016).

Procedure and results
Nowcasting method comprises three major steps in suc-
cession: tabulation of natural times (interevent counts 
between large events), performing statistical inference, 
and computation of earthquake potential score (now-
cast scores). While tabulation of natural time essentially 
requires the description of “large” and “small” events in 
a specified homogenous region, the statistical inference 
involves probability model description, parameter esti-
mation, and model performance analysis. Knowing the 
data-derived seismicity statistics of natural times, we use 
mathematical cumulative distribution function (CDF) 
of the best-fit probability distribution to calculate earth-
quake potential score (EPS) for a number of selected 

http://www.ncedc.org/anss/catalog-search.html
http://www.ncedc.org/anss/catalog-search.html
http://www.isc.ac
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Fig. 2  Pictorial summary of earthquake data (1969–2020) that are used for the present nowcasting analysis; subplots highlight several 
characteristics of the catalog, including epicentral distributions on map, cross section views of hypocentral depth, magnitude of completeness, and 
occurrence time of large earthquakes in the study region
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cities. These EPS scores, as “thermometer” readings, pro-
vide a snapshot of the current progression of a city in its 
earthquake cycle of large events.

Let A be the geographical area of a broad seismically 
active region and A1,A2,A3, · · · ,An be the geographi-
cal areas of the n number of selected cities in a way 
that A1 ⊂ A,A2 ⊂ A,A3 ⊂ A, · · · ,An ⊂ A . Also, let 
Mσ andM� , respectively, denote the magnitude of the 
small and large earthquake events in a sense that “large” 
events have the potential to cause human death or nota-
ble destruction to society. The value of Mσ is usually 
guided by the data-completeness threshold in the fre-
quency–magnitude relationship (Scholz 1990; Rundle 
et  al. 2016), whereas the value of M� is decided based 
on the extent of damages in a city. Once Mσ andM� 
are decided, we define natural time (say, X) as the inter-
spersed small event counts between two successive 
large events. It is obvious that natural time (X) exhibits 
randomness.

For the present study with 1969–2020 catalog, we con-
sider Mσ = 4.5 andM� = 6.5 . This yields a random 
sample of natural times {X1,X2, · · · ,X87} to infer under-
lying seismicity statistics in the Sulawesi region. While 
the sample range of interevent counts varies from 1 to 
1034, other descriptive statistics such as mean, median, 
standard deviation and skewness turn out to be 192, 
145, 189 and 2, respectively. Thus, the observed dataset 
reveals asymmetry with a skew towards right, having 
sample mean higher than sample median. The histogram 
of the observed natural time counts is shown in Fig. 3.

The nowcasting approach or the natural-time statistics 
is independent to the background seismicity rate (a) as 
long as the Gutenberg–Richter  b‐value (slope in fre-
quency–magnitude relation) is close to a constant. To 
illustrate, let the cumulative number of small earthquake 
counts be Nσ

(

= 10a−bMσ

)

 and cumulative number of 
large event counts be N�

(

= 10a−bM�

)

 . Then, using the 
Gutenberg–Richter law, it is found that 
Nσ = 10b(M�−Mσ )N� . The number of small earthquakes, 
N  , that occur between two large earthquakes can then be 
obtained by setting N� = 1 (Luginbuhl et  al. 2018b). 
Thus, N = 10b(M�−Mσ ). As a consequence, N  is inde-
pendent to the background seismicity rate (a) and it 
scales exponentially with the difference of magnitudes 
M� and Mσ (Rundle et al. 2016). As a consequence, it is 
reasonable to consider exponential distribution and its 
primary variants gamma, Weibull, and exponentiated 
exponential in developing the mathematical cumulative 
distribution function (CDF) and associated earthquake 
potential score (EPS) computation.

These time-dependent, time-independent, and expo-
nentiated class of probability distributions (see Tables  1 

and 2) have noteworthy applications in statistical seis-
mology (e.g., Pasari and Dikshit 2014a, b, 2015a, b, 
2018; Pasari 2015, 2018, 2019a, b). For estimating model 
parameters, we use the method of maximum likeli-
hood that involves maximizing a likelihood function for 
a given data. We also employ a surrogate Fisher Infor-
mation Matrix (FIM) based approach coupled with 
Cramer–Rao lower bound theorem to compute para-
metric uncertainties (see, Pasari 2015; Pasari and Dikshit 
2015a, b). After parameter estimation, the performance 
of the studied distributions is analyzed on the basis of 
two popular goodness-of-fit measures: Akaike informa-
tion criterion (AIC) value and Kolmogorov–Smirnov 
(K–S) distance. While AIC is founded on information 
theory and is designed to prioritize a number of distri-
butions based on the relative amount of discrepancy (lost 
information) from the true distribution, the K–S test is 
a non-parametric procedure that prioritizes candidate 
distributions based on the vertical distances between the 
empirical cumulative distribution function and the math-
ematical CDF of the assumed distribution (Johnson et al. 
1995). Parameter estimation and model selection results 
are presented in Tables  1 and 2. Measures of K–S and 
AIC statistics suggest that exponential distribution has 
the best fit to the observed natural times in the Sulawesi 
region. This means that the underlying natural-time seis-
micity statistics in Sulawesi Island exhibits a stationary 
Poissonian process having the memoryless property.

Earthquake potential score: illustration for cities
Once the natural-time statistics of the larger region 
(A) is derived, we define earthquake potential score 
(EPS) for a circular city region (Ai, i = 1, 2, · · · , n) as 
EPS ≡ P{X ≤ n(t)}; n(t) is the number of small earth-
quake counts at (calendar) time t since the last large event 
within the city circle. Notice that EPS is a monotonically 
non-decreasing function which retunes to 0 immediately 
after the completion of an earthquake cycle.

For the present analysis, we compute nowcast values 
or EPS scores for 21 cities in the Sulawesi region using 
the best-fit mathematical (exponential) CDF formula. 
These cities are Palu, Makassar, Manado, Kendari, 
Bitung, Gorontalo, Palopo, Bau-bau, Luwuk, Toli-toli, 
Pare-pare, Poso, Bone, Kolaka, Buton, Watampone, 
Polewali, Donggala, Taliabu, Mamuju, and Morowali. 
Centered at the city center, a circle of radius 300  km 
defines the city region (Ai, i = 1, 2, · · · , 21) (Fig.  3). 
Assuming that the natural-time statistics of A and Ai 
are the same, the EPS scores are nothing but the expo-
nential CDF value evaluated for the current number 
(as on 21 November, 2020) of small event counts n(t) . 
A demonstration of the EPS score for the Palu city is 
provided in Fig. 3. The computed nowcast scores, as on 
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Fig. 3  Histogram of natural time counts is shown along with a demonstration of EPS computation. The dark-green bars are the histograms of 
the number of small earthquakes (4.5 ≤ M < 6.5) between the large earthquakes (M ≥ 6.5). The purple step-function is the empirical distribution 
function derived from the histogram values. The dashed blue curve is the best-fit exponential distribution for the present natural time data. Just 
for demonstration, we show the black solid circle that corresponds to the number of small earthquakes as on November 21, 2020 since the last 
large earthquake in Palu region. The thermometer-like red bar represents the Earthquake Potential Score (EPS) showing the progression of the 
earthquake cycle in Palu as on November 21, 2020. However, as the seismicity in Sulawesi exhibits stationary Poisson process, the current level of 
seismic hazard (risk) is the same for the entire region

Table 1  Probability distributions and results of statistical inference of natural times

MLE maximum likelihood estimation, AIC Akaike information criterion, K–S Kolmogorov–Smirnov

Distribution Density function (t > 0) Statistical inference

MLE AIC K–S

Exponential (best-fit) 1

α
e
− t

α α̂ = 191.9540 1090.7625 0.0567

Gamma 1

Ŵ(β)
t
β−1

αβ
e
− t

α α̂ = 231.1659
β̂ = 0.8304

1093.8716 0.0888

Weibull β

αβ
t
β−1

e
−( t

α )
β α̂ = 191.0590

β̂ = 0.9888
1092.7447 0.0596

Exponentiated exponential αβ
(

1− e
−αt

)β−1
e
−αt α̂ = 197.3369

β̂ = 0.9580
1092.6662 0.0617
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November 21, 2020, are summarized in Table  3. The 
table also lists the city-center coordinate, population, 
date of last large event, and the current count of small 
earthquakes for each circular-city region. At this junc-
ture, it is important to emphasize that although the EPS 
scores provide a valid measure of the current levels of 
seismic progression of the 21 city regions, these meas-
ures are totally irrelevant to the current level of seis-
mic hazard (risk) in Sulawesi because the underlying 

natural-time seismicity statistics has turned out to be a 
stationary Poisson process.

Table  3 highlights that EPS for Pare-pare is about 82 
percent; Manado and Bitung have an EPS of about 7%; 
Palu, Makassar, Luwuk, Toli-toli, Watampone, Polewali, 
Donggala, Taliabu, and Mamuju have an EPS between 
50 and 6%, and other cities have lesser EPS. This means, 
for example, that Palu is about 62% through its cycle for 
6.5 magnitude or greater earthquakes, while Pare-pare 

Table 2  Asymptotic standard deviations and 90% CI of model parameters

1 For the exponentiated exponential model, the parametric uncertainties cannot be computed as the trigamma function  ψ ′(β − 1) is not defined for β̂ < 1 (see Pasari 
and Dikshit 2015, 2015a, 2015b; Pasari 2018)
2 For the computation of asymptotic standard deviation and 90% confidence interval of the model parameters, we followed a surrogate approach of Fisher 
Information Matrix and associated Cramer–Rao lower bound theorem (see Pasari and Dikshit 2015, 2015a, 2015b; Pasari 2018)

Model1 Parameter values Asymptotic standard deviation2 Confidence interval2 (90%)

Lower Upper

Exponential α̂ 191.9540 σα̂ 20.5796 158.1006 225.8074

Gamma α̂ 231.1659 σα̂ 39.2204 166.6483 295.6835

β̂ 0.8304 σ
β̂

0.1068 0.6547 1.0061

Weibull α̂ 191.0590 σα̂ 21.9706 154.9174 227.2006

β̂ 0.9888 σ
β̂

0.0825 0.8531 1.1245

Table 3  Nowcast values for M� ≥ 6.5 earthquakes as on November 21, 2020 in the Sulawesi area with Mσ = 4.5 and R = 300 km

These EPS scores represent the current level of seismic progression of each city region in its cycle of large earthquakes. However, as mentioned before, due to the 
stationary Poisson process in Sulawesi, these EPS scores do not have any relevance to the associated seismic risk in the study region

City City center Date of last large 
event

Magnitude of last 
large event

Current small event 
count

EPS (%), with 90% CI

Lat (°N) Long (°E)

Bau-Bau − 5.5071 122.5969 2/19/2005 6.5 100 41 (36–47)

Bitung 1.4404 125.1217 11/14/2019 7.1 229 70 (64–77)

Bone − 4.7443 120.0665 2/19/2005 6.5 113 44 (39–51)

Buton − 5.3096 122.9888 2/19/2005 6.5 96 39 (35–46)

Donggala − 0.4233 119.8352 9/28/2018 7.5 189 63 (57–70)

Gorontalo 0.6999 122.4467 4/12/2019 7.0 128 49 (43–55)

Kendari − 3.9985 122.5130 4/12/2019 7.0 60 27 (23–32)

Kolaka − 3.9947 121.5827 4/12/2019 7.0 69 30 (26–35)

Luwuk − 0.9388 122.7928 4/12/2019 7.0 157 56 (50–63)

Makassar − 5.1477 119.4327 2/23/1969 6.9 140 52 (46–59)

Mamuju − 2.4920 119.3250 9/28/2018 7.5 165 58 (52–65)

Manado 1.4748 124.8421 11/14/2019 7.1 232 70 (64–77)

Morowali − 2.6987 121.9018 4/12/2019 7.0 88 37 (32–43)

Palopo − 3.0016 120.1985 4/12/2019 7.0 80 34 (30–40)

Palu − 0.8679 119.9047 9/28/2018 7.5 186 62 (56–69)

Pare-pare − 4.0096 119.6291 2/23/1969 6.9 329 82 (77–88)

Polewali − 3.4155 119.3367 5/29/2017 6.6 180 61 (55–68)

Poso − 1.3950 120.7538 4/12/2019 7.0 106 42 (37–49)

Taliabu − 1.8268 124.7741 4/12/2019 7.0 152 55 (49–62)

Toli-toli 0.8768 120.7580 9/28/2018 7.5 165 58 (52–65)

Watampone − 4.5388 120.3250 2/19/2005 6.5 155 55 (50–62)
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is about 82% of the way through its cycle. The estimated 
90% CI of the EPS values is also mentioned in Table  3. 
However, as mentioned above, the information of dif-
ferent levels of cycle progression has no relevance to the 
current state of seismic hazards in the Sulawesi Island, as 
the underlying stationary Poisson process is memoryless. 
Therefore, the seismic risk is the same in time and space 
throughout the entire Sulawesi province.

Sensitivity testing
Although nowcasting technique inevitably provides a 
surrogate tool to examine the current progression of 
earthquake cycle of large events, numerical EPS val-
ues are often influenced by the selection of magnitude 
thresholds (Mσ ,M�) and geographical areas (A,Ai) . 
Therefore to perform a sensitivity testing, we vary small 
earthquake magnitude Mσ from 4.0 to 5.0 and circular 
city radius (R) from 250 to 350 km. The associated results 
are pictorially depicted in Fig. 4. Although the change in 
small magnitude threshold Mσ affects the EPS values by 
5%–15% in the study region, the results are fairly stable 
against the changes of magnitude threshold and area of 
local regions (Pasari and Sharma 2020).

Discussion and summary
The present paper provides an application of a relatively 
new technique, known as earthquake nowcasting (Run-
dle et  al. 2016), to evaluate the current progression of 
earthquake cycles at different cities of Sulawesi region 
through the concepts of natural time. The nowcast scores 
may characterize the contemporary state of earthquake 
hazard in a geographical region. In this method, the key 
idea is to derive the seismicity statistics of a large defined 
area and then apply the same to the regional areas. The 
process requires constructing cumulative distribution 
function for natural times obtained from a sequence of 
earthquake cycles in the defined geographic region. In 
effect, natural times, counts between major events, act 
as a measure of stress–strain accumulation between 
large earthquakes in a specific region. There are at least 
three advantages of this approach. First, the method 
inherently accounts for the possible contribution from 
dependent events as natural time count is unaffected 
when aftershocks dominate, when background seismic-
ity dominates, and when both contribute. Second, statis-
tics of natural times remains unaltered with the changes 
of background seismicity rate as long as b-value remains 
constant. Third, the nowcast score—a measure of the 
current progression of earthquake cycle, often enables a 
systematic ranking of cities based on their current expo-
sure to the seismic risk in a rapid, efficient and reproduc-
ible way. However, we re-emphasize that in the Sulawesi 
region, as the underlying natural-time statistics exhibits a 

stationary Poissonian process, the EPS values are totally 
irrelevant to the current level of earthquake hazards that 
is the same throughout the study region.

As noted earlier, the method of earthquake nowcasting 
requires an assumption that the b-value is homogenous 
in space and time (e.g., Rundle et al. 2016, 2018). To ver-
ify this basic assumption, we estimated b-values (using a 
least-squares approach) for 21 sub-catalogs correspond-
ing to the circular city regions, as summarized in Table 4. 
The frequency–magnitude statistics of these city-circle 
sub-catalogs demonstrate that the b-value estimates are 
largely homogenous in space and time.

In addition to computational advances (e.g., Rundle 
et  al. 2018), improvements of the nowcasting idea in 
seismology have taken place in two predominant direc-
tions—to strengthen the foundation of nowcasting in 
light of the ergodicity dynamics of statistical physics 
coupled with information theory (e.g., Holliday et  al. 
2016; Rundle et  al. 2016, 2018, 2019a) and to explore 
applicability of nowcasting for anticipating the occur-
rence of induced seismicity (e.g., Luginbuhl et al. 2018a, 
b), global seismicity (e.g., Luginbuhl et  al. 2018c; Run-
dle et al. 2019a, b) and global tsunami risk (e.g., Rundle 
et al. 2019a, b). In order to support the presumptions in 
nowcasting analysis, Rundle et al. (2003, 2012, 2018) have 
used several concepts like percolation, ergodic property 
and phase transitions of statistical mechanics of complex 
dynamical threshold systems (Tiampo et al. 2003). Efforts 
are also made to generalize nowcasting into forecasting 
through a Weibull projection (e.g., Holliday et al. 2016) or 
based on the knowledge of the current state of the system 
and the assumptions of the probability distributions (e.g., 
Perez-Oregon et  al. 2020). Recently, Rundle & Donnel-
lan (2020), through some machine learning algorithms of 
the seismicity clustering patterns of aftershock sequences 
and seismic swarms, have further extended the applica-
tion of nowcasting method for regional fault characteri-
zation in Southern California.

To summarize, the nowcast scores of 21 cities in 
Sulawesi provide a snapshot evaluation of the extent 
of cycle progression in a nice 0–100% scale of extreme-
ness. However, the presently revealed stationary Poisso-
nian nature of the underlying natural-time statistics in 
the study region indicates that the current state of earth-
quake hazard (risk) is the same for all city regions despite 
their different levels of cycle progression at current time. 
In addition, though earthquake potential scores of the 
city regions will be updated with the occurrence of each 
small earthquake in the respective city region, the seismic 
risk remains the same throughout the Sulawesi Island. 
Therefore, the present nowcasting analysis in Sulawesi 
fails to produce a space–time variant risk assessment as 
sought by engineers, city planners or policymakers.
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Fig. 4  Sensitivity testing of nowcast scores for different cities in Sulawesi region. The first subplot demonstrates the circular city region for the 
Palu city corresponding to a radius of 250 km, 300 km, and 350 km. Current number of small event counts since the last major earthquake in each 
circular city region are shown in the lowermost panel. These EPS values, however, bear no information of the current level of earthquake hazards 
due to the stationary Poissonian nature of the underlying natural-time statistics
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