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Abstract 

This study aimed to identify the factors, which affect the continuance of mobile 
learning. The study has looked at epistemological, social, and security risk factors 
based on Magsayo (Interact Technol Smart Educ 20(2):177–208) and how they affect 
the perceived functional benefits (PFB) and perceived learner value (PLV). Further locus 
of control and self-efficacy are two personal factors that are investigated in the study 
to understand mobile learning acceptance continuance. 260 respondents of the study 
were students and professionals from India who have used mobile for learning. Based 
on previous research, hypotheses were formulated and tested empirically by build-
ing a model using smart PLS structure equation modeling. It was observed that epis-
temological, security risk and social factors did affect the computer self-efficacy 
and locus of control of the learners. Epistemological and social factors do contribute 
to developing PFB and PLV leading to higher mobile learning acceptance continu-
ance. PFB and PLV also showed mediating effects. Based on Magsayo’s (2023) previous 
work, the study has a unique contribution in showing that epistemological and social 
factors along with security risk do help in developing PFB and PLV leading to higher 
mobile learning acceptance continuance. These findings can help us understand ways 
to the development of mobile learning content and context for higher impact.

Keywords:  Mobile learning acceptance continuance, Epistemological, Social, Security 
risk, Perceived functional benefits, Perceived learner value

Introduction
Recent COVID-19 has encouraged many people to learn online as it provides a lot of 
flexibility by using appropriate technology as suggested by Ched (2020). Mobile learn-
ing is catching up fast due to time constraints and the amount of flexibility needed by 
the learner. Many countries including India have improved their connectivity and avail-
ability of Wi-Fi on mobiles. The use and acceptability of mobile phones have gone to the 
grassroots in India. When discussing mobile learning is defined as "using mobile tech-
nologies to facilitate learning’’ (Hwang & Tsai, 2011) and as “any educational provision 
where the sole or dominant technologies are handheld or palmtop devices”(Park et al., 
2012). There is a lot of research work done to understand mobile learning concerning 
readiness (Camilleri & Camiller, 2019) and acceptance of this platform for learning (Mit-
tal & Alayo, 2020), and the intention to learn (Watjatrakul, 2016). The uncertainty of a 
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continuance of the pandemic has proposed many advantages for this mode of learning 
yet not much research has occurred in this area (Crompton & Burke, 2018).

As expected, many theories have been used in the context of mobile learning 
(M-Learning) i.e., technology acceptance model (TAM), the theory of planned behavior 
(TPB), personality theories, mobile service acceptance model (MSAM), mobile innova-
tion resistance (MIR), use and gratification theory (UGT), unified theory of acceptance 
and use of technology (UTAUT) and task-technology fit (TTF). Studies have based 
their work either on one or a combination of these theories to explain various aspects of 
mobile learning M-Learning like usefulness, enjoyment, innovation, social aspects, and 
personality traits. Still, there is a need to understand and develop a more holistic model 
for M-learning, which would focus on mobile learning adoption and continuance. The 
areas to look into could be the perceived value put on M-learning (Crompton & Burke, 
2018) and the individual factors like the locus of control and computer self-efficacy. Age 
and gender differences may also play important role in adopting mobile learning (Wang 
et al., 2009).

In the context of mobile learning, many theoretical frameworks have been applied like 
the technology acceptance model (TAM) (Bagozzi, 2007; Poong et  al., 2017; Qashou, 
2021; Saroia & Gao, 2019; Shortfuzzaman et al., 2019) and other used TAM along with 
Hofstede model (Bojorquz et al., 2016), TTF (Leong et al., 2018) and TPB (Hsia, 2014). 
UTAUT has also been used extensively to understand mobile learning (Fagan, 2019; 
Kumar & Bervell, 2019; Sidik & Syafar, 2020). Some studies have used UGT (Hashim 
et al., 2015) and TBP (Fatima et al., 2019) while others have focused on MIR (Kim et al., 
2017) and MSAM (Almaiah, 2020; Hamidi & Chayoshi, 2018).

All these studies have some common factors that emerged from their research like 
the functional benefits aspects of using mobile learning, which includes usefulness, 
performance expectancy, etc. Others have explored the affective aspect like enjoyment, 
hedonic motivation, and affective need for a learner. But few have seen the social influ-
ence aspect look into social needs, image, norms, etc. Other less explored aspects may 
be the security risk (perceived security) and epistemic curiosity (Learning new technol-
ogy). These factors may be very relevant for a learner while learning through mobile 
learning. The perceived learner value aspect of how a learner perceives and put value is 
yet another factor that may need to be investigated to understand how it affects mobile 
adoption in learners. Some studies have looked into the factors like learners’ recom-
mendations (Briz-Ponce, 2017) and attitudes (Fatima et  al., 2019; Hashim et  al., 2015; 
Qashou, 2021; Yeap et al., 2016) and their effect on user intention to adopt M-learning. 
Personality traits like the locus of control and computer self-efficacy may play a critical 
role in the relationship between perceived learner value and mobile adoption and medi-
ate or moderate the relationship and hence need to be investigated. Mittal and Alavi 
(2020) developed a teachers’ mobile learning acceptance questionnaire, which found 
nine factors like perceived usefulness, ease of use, self-enhancement, a technological 
barrier, constructive belief, attitude, and intention to measure the acceptance of the use 
of mobile in higher education. Self-enhancement and constructive belief were the two 
new factors identified in the study.

Magsayo (2023) conducted the study and showed that the locus of control moderated 
the relationship between perceived learner value and perceived functional benefit and 
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mobile learning acceptance continuance. When dealing with specific aspects of mobile 
learning, they could only find the security risk to be significant in the given model built. 
The current research has extended the work of Magsayo (2023) and added computer 
self-efficacy along with internal locus of control as personality traits along with per-
ceived functional benefit (PFB) and perceived learner value (PLV) to understand mobile 
acceptance continuance. Further, the study included epistemological and social factors 
as the antecedent of mobile learning and found they significantly affect both PLB and 
PLV. The study has raised the following research questions to understand the anteced-
ents of intention to continue M-learning (mobile learning).

RQ1: Do epistemological, social, and security risk factors affect internal factors (locus 
of control and computer self-efficacy) leading to higher perceived functional benefits 
(PFB) and perceived learner value (PLV)?

For answering RQ1, hypotheses H1(a, b, c and d), H2(a, b, c and d), and H3(a, b, c and 
d) were suggested and tested through direct effect.

RQ2: Does locus of control and computer self-efficacy affect perceived functional ben-
efits (PFB) and perceived learner value (PLV) and mediate the relationship between epis-
temological, social, and security risk factors and PFB and PLV?

For answering RQ2, hypotheses H4(a and b) and H5(a and b) were suggested, and the 
mediation effect was tested through indirect effect.

Literature review
Perceived learner value in M‑learning

Perceived learner value (PLV) shows how a learner perceives the value gained from 
their learning experience when using Mobile learning. This construct can be related to 
Luttrell and Richard’s (2011) concept of how learners in higher education value their 
education and this may be caused due by different factors like first their enjoyment or 
satisfaction due to higher engagement levels. Second, its utility to achieve their long-
term and short-term goals, and third, their overall learning from the M-learning module. 
The fourth perceived cost of losing other activities when engaging in learning activi-
ties and the fifth is the external expectations like family and friends’ expectations that a 
learner is fulfilling by taking up mobile learning. PLV may relate to the cognitive aspect 
of using M-learning as a learning mode and it may facilitate learning by providing cor-
rect and quality information to add value (Hashim et al., 2015). PLV can also be related 
to its relevance and compatibility in education during academics (Saroia & Gao, 2019).

Perceived functional benefit in M‑learning

Perceived function benefits (PFB) refer to the functional requirements a product or ser-
vice offers, which may include cost, time, performance, and efficiency provided by tech-
nology over face-to-face teaching (Almaiah et al., 2020; Bashir et al., 2020). M-learning 
use (utilitarian) includes usefulness, performance expectancy, and the advantage of 
using technology, and its relation to the adoption of M-learning has been studied by 
many researchers (Bohm & Constantine, 2016; Cheng, 2015). Another functional ben-
efit could be the flexibility gained using M-learning (Bere & Rambe, 2016) and its ben-
efit to the learner in terms of completion of their tasks on time, improved productivity, 
and becoming more useful (Al-Adwan et al., 2018; Shukla, 2021; Venkatesh et al., 1996). 
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PFB can then be related to the amount of academic performance enhanced using mobile 
learning (Davis, 1989). Several studies have shown that functional benefits do affect 
directly (Hao et al., 2017; Pramana, 2018) and indirectly (Fatima et al., 2019; Yeap et al., 
2016) the overall mobile learning adoption.

Personal factors

i.	 Locus of control

Factors that affect mobile learning performance include the internal locus of control 
linked to self-management, autonomy, and innovativeness. learners who require auton-
omy or are internally driven may more often opt for mobile learning (Masrek & Samadi, 
2017) as they will have the freedom to choose the process of learning as per their needs 
(Bohm & Constantine, 2016; Yeap et al., 2016). Any learner’s high innovativeness is also 
internally controlled and can be a crucial factor for M-learning adoption (Iqbal & Bhatti, 
2017; Kim et al., 2017; Milosevic et al., 2015), especially in the informal learning process 
(Karimi, 2016). Locus of control influences ease of use, usefulness, and behavior con-
trol leading to a higher intention for learning by using mobile (Hsia, 2014). Hence, these 
studies lead us to see the importance of personal characteristics as a factor influencing 
the learner to learn through M-learning. It is shown that learners with an internal locus 
of control would have higher chances of mobile learning adoption continuance,

	 ii.	 Computer self-efficacy

In an Information Technology (IT) context, computer self-efficacy is the individual’s 
capacity to use a computer in a different situation (Compeau & Higgins, 1995) and it’s 
the assessment of one’s ability to perform complex tasks on the computer (Compeau & 
Higgins, 1995). Hence, computer self-efficacy decides the perception of individual ease 
of use of IT (Hayashi et al., 2004; Roca et al, 2006). Self-efficacy theory can be used to 
explain this effect (Bandura et  al., 1977; Bandura, 1985) as self-efficacy is nothing but 
individual confidence to take up any specific task including learning by using a computer 
(Barling & Beattie, 1983). When applied in an e-learning context, learners with high 
computer self-efficacy will be more interested in trying e-learning and facing difficulties 
while using e-learning while those with low computer self-efficacy may find it difficult to 
cope with any complex task and lose interest quickly and may not continue e-learning 
Compeau & Higgins, 1995) modes including M-learning. Research has shown that com-
puter self-efficacy does affect the perceived ease of use of e-learning (Gong et al., 2004; 
Ong & Lai, 2006; Terzis & Economides, 2011). Hence, we can propose that computer 
self-efficacy does affect the perceived functional benefits.

Environmental factors

i.	 Perceived epistemic curiosity

Perceived epistemic curiosity is defined as the "drive to know" as given by the theory 
of human curiosity (THC) by Berlyne (1954). Further, Litman and Spielberger (2003) 
described it as the tendency of an individual to try new ideas, search for solutions to 
problems and understand the underlying phenomenon. In the context of an online 
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game, it could be an activity that leads to the experience of learning new things, strat-
egies, and trends (Koo, 2009). It may be referred to as any service that increases curi-
osity and helps in achieving satisfaction by acquiring new knowledge (Sheth et  al., 
1919). Hence, perceived epistemic curiosity maybe some part of enjoyment or play-
fulness (Hwang & Fu, 2019; Karimi, 2016). This is further supported by findings that 
mobile phone usage in class is related to acquiring new knowledge (Olufadi, 2015), 
and the use of advanced technology like M-learning may lead to higher curios-
ity among learners (Abdullah et al., 2017; Deng et al., 2004). Still, there is a need to 
understand this aspect in various settings and consider moderators who help in the 
relationship between epistemic curiosity and mobile adoption among learners.

Hence, the perceived epistemic curiosity of the learner may lead to higher per-
ceived function value benefits and learner value as it may add to generate new ideas 
quickly as a lot of information is available very quickly through M-learning. This can 
help the learners to acquire new, convenient, and effective ways of getting knowledge 
about the topic of their interest and can also be extended to mobile learning adoption 
(Crompton et al., 2022; Fatima et al., 2019; Thongsri et al., 2018, 2019; Shukla, 2021). 
We propose that epistemic curiosity will lead to higher self-efficacy and locus of con-
trol leading to higher perceived function benefits and learner value:

H1a  Perceived epistemic curiosity of learners affects Computer Self-Efficacy toward 
mobile learning among learners.

H1b  Perceived epistemic curiosity among learners affects the locus of control toward 
mobile learning among learners.

H1c  Perceived epistemic curiosity of learners affects perceived functional benefit 
toward mobile learning among learners.

H1d  Perceived epistemic curiosity of learners affects Perceived learner value toward 
mobile learning among learners.

	 ii.	 Perceived security risks

Perceived security risk suggests the learner’s perception of data security and privacy 
are in place for any electronic transaction like online authentication needed as identity 
proof (Almaiah et al., 2020). It may also be related to the process adopted by mobile 
learning systems to safeguard learners’ personal information from any cyber-attack 
(Almaiah et  al., 2020). This may be relevant for M-learning for creating passwords 
and privacy issues related to privacy and integrity (Jia et al., 2012). This determina-
tion can also be related to gaining trust from learners regarding the privacy and secu-
rity aspects of the system and it is seen from findings that a low level of perception 
about security risk may lead to a lower level of mobile learning usage (Al-Adwan et al, 
2018). Security risk has a direct relationship with the intention to use M-learning (Al-
Adwan et al., 2018; Almaiah et al., 2020; Hamidi &Chvosshi, 2018) and indirect effect 
(Nikou & Economides, 2017; Obiria & Kimwele, 2017). Hence, security risks may lead 
to lower mobile adoption among learners. The research has shown either positive or 
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negative links between security risk and intention to use M-learning through ease 
of use and usefulness (Nikou & Economides, 2017; Sabah, 2016) or perceived value. 
Security risk can negatively impact mobile adoption continuance and hence following 
relations have been proposed:

H2a  Perceived Security Risk of learner affects Computer Self-Efficacy toward mobile 
learning among learners.

H2b  Perceived Security Risk of learner affects the locus of control toward mobile 
learning among learners.

H2c  Perceived Security Risk of learner affects Perceived functional benefit toward 
mobile learning among learners.

H2d  Perceived Security Risk of learner affects Perceived learner value toward mobile 
learning among learners.

	iii.	 Perceived social influence

Perceived social influence generally occurs at three levels due to compliance with 
some groups, identification leading to self-satisfying relationships, and internaliza-
tion by finding it rewarding internally (Kelman, 1958). Other studies have related to 
how "important others" view you when adopting new technology like mobile learning 
(Venkateash et al., 2003). Hence social norms and images and lectures’ expertise and 
acceptance of mobile learning do influence students adopting M-learning (Badwelan 
et al., 2016; Milosevic et al., 2015). The learner would adopt M-learning much faster 
when this medium of learning can help achieve their interaction and social needs 
(Hashimi et al., 2015). The learner may be forced to use mobile learning when he/she 
is made to learn through technology-enabled learning platforms (Kumar & Bervell, 
2019), or the usage of M-learning becomes critical as performance becomes high by 
using M-learning (Fagan, 2019).

Many studies (Padilla-Melendez et al., 2008; Pramana, 2018; Sanchez-Prieto et al., 
2019; Shukla, 2021; Sidik & Syafar, 2020; Yeap et al., 2016) have shown that perceived 
social influence does affect M-learning adoption due to acceptance by the peer group 
due to popularity leading to high-status symbol. These may be linked to identifica-
tion and internalization with similar others and a positive effect is seen on mobile 
adoption. Others have seen indirect effects through usefulness and ease of use (Fagan, 
2019; Nikou & Economides, 2017; Pramana, 2018). Hence, the following relationship 
can be proposed:

H3a  Perceived social influence of the learner affects computer self-efficacy toward 
mobile learning among learners.

H3b  Perceived social influence of a learner affects the locus of control toward mobile 
learning among learners.
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H3c  Perceived social influence of the learner affects perceived functional benefit 
toward mobile learning among learners.

H3d  Perceived Social Influence of learner affects Perceived learner value toward 
mobile learning among learners.

Computer self‑efficacy and mobile learning adoption

Computer self-efficacy can be explained through social cognitive theory (SCT), which 
states that any individual is affected by self-efficacy that decides if they will take up 
a task, the amount of effort they will put and the level of persistence they will show-
case while doing that task (Bandura, 1977). Hence, computer self-efficacy will decide 
the completion of learning using the computer. A learner with high computer self-
efficacy may use the computer to complete a complex task and feel good about hav-
ing high computer competence as this may also lead to higher intrinsic motivation 
(Deci, 1975; Deng et al., 2004). This may hold good even in the E-learning context as 
it showcases computer mastery. Previous studies have shown that computer self-effi-
cacy does affect the intention to use e-learning (Hu et al., 2003; Tung & Chang, 2008), 
and hence the following hypothesis is proposed:

H4a  Computer Self-Efficacy of learner affects Perceived functional benefit among 
mobile learner.

H4b  Computer Self-Efficacy of learner affects Perceived learner value among mobile 
learner.

Locus of control and mobile learning adoption

Individuals who are high on internal locus of control are always looking for relevant 
and critical information to complete any task and they are willing to explore new 
technology or methods to improve their knowledge gain leading to higher outcomes 
(Leftcourt, 1982; Spector, 1982). Many studies have highlighted the link between 
internal locus of control and mobile learning adoption (Fatima et al., 2019; Kim et al., 
2017; Kumar & Bervelle, 2019; Qashou, 2021; Sidik & Syaafar, 2020) and showed the 
relationship between self-efficacy, personal characteristics, innovativeness, and other 
features linked to an internal locus of control affecting the mobile learning intentions. 
Hsai (2016) has seen the positive effect of internal locus of control on ease of use, use-
fulness, and behavioral control on the intention to use e-learning. Hence, the study 
proposes that locus of control may affect perceived functional benefit and perceived 
value leading to higher mobile adoption, and the following hypotheses are proposed:

H4c  Locus of control of the learner affects Perceived functional benefit among mobile 
learners.



Page 8 of 20Kashive and Phanshikar ﻿Smart Learning Environments           (2023) 10:34 

H4d  Locus of control of the learner affects Perceived learner value among mobile 
learners.

Perceived functional benefits and mobile learning adoption

The perceived functional benefit refers to the level of usefulness, performance, and effi-
ciency perceived by the user, and a positive direct link is seen between perceived func-
tional benefit and learner intention to use e-learning (Almaiah, 2020; Fagan, 2019; Hao 
et al., 2017; Hsia, 2016; Kim et al., 2017; Kumar & Bervell, 2019; Leong et al., 2018; Pra-
mana, 2018; Qashou, 2021; Sabah, 2016; Sanchez-Prieto et al., 2019; Saroia & Gao, 2019; 
Shukla, 2021; Sidik & Syafar, 2020; Thongsri et al., 2018)., some researchers have shown 
an indirect effect through other factors like attitude and mobile learning resistance 
(Briz-Ponce et al., 2017; Fatima et al., 2019; Qashou, 2021; Saroia & Gao, 2019). Hence, 
the following hypothesis can be proposed:

H5  Perceived functional benefit is positively related to the Mobile Learning adoption 
among mobile learners.

Perceived learner value and mobile learning adoption

Perceived learner value can be referred to as the learner’s ability to focus more on the 
study and achieve a high level of success (Luttrell & Richard, 2011). Learners perceive 
high value from learning when they are more engaged or involved in learning compared 
to the traditional way of learning (Gallarza et al., 2017). Thus, learners with higher per-
ceived learner value will be associated with a higher level of mobile adoption.

H6  Perceived learner value is positively related to Mobile Learning adoption among 
mobile learners.

Fig. 1  Conceptual model for mobile learning adoption



Page 9 of 20Kashive and Phanshikar ﻿Smart Learning Environments           (2023) 10:34 	

Research model

The above comprehensive literature review and proposed hypothesis lead to the pro-
posed conceptual model as shown in Fig.  1. The conceptual model is created by 
hypothesizing the various relationships between environmental and personal factors 
and perceived learner value and perceived functional benefit and their effect on over-
all mobile learning adoption continuance. Furthermore, the conceptual model is tested 
empirically by structural equation modeling (SEM) using Smart PLS.

Research design
Samples and procedure

The data was collected from 260 students and professionals residing in India who have 
ever learned through mobile. For data collection, 45 min slots were taken for a batch of 
30 respondents. The aim and objective of the study were explained to the participants, 
and they were promised to maintain complete anonymity. It was explained to them 
that this study and its results will be solely used for academic purposes and to enhance 
understanding of the intention to use mobile for learning. The forms were circulated in 
hard copy and only 180 responses were received. Further Google form was created and 
circulated to working professionals and data was collected from 80 respondents.

The questionnaire had two sections that first captured the demographic profile of 
respondents concerning their gender, age, qualification, occupation, years of experience, 
designation, and the number of hours spent on mobile learning in a week.

The second section consisted of specific questions related to M-learning. The mobile 
learning adoption was captured by perceived learner value and perceived functional 
benefit. These factors were further tested for their effect on environmental factors like 
epistemic curiosity, social influence, and security risk. and personal factors like the locus 
of control and self-efficacy.

It was observed that out of 260 respondents, 54.6% were male and 45.4% were female. 
The age-wise distribution was 74.6% from the age group between 20 and 25  years, 
11% between 26 and 30 years, and 15% above 31–40 years. Education wise 2.3% were 
diploma, 45.4% were graduates and 52.3% were postgraduates. The sample consisted of 
30.4% professionals and 69.6 students, with 70% having 0–3 years of experience and 30% 
having 4–7 years of experience.72% were from the junior level and 28% were from the 
middle level. When asked about the number of hours spent in a week learning on mobile 
platforms 61.9% spent 2–5 h while 38.1% spent between 6 and 10 h.

Measures

Perceived epistemic curiosity (PEC) was adapted from the various scales available in pre-
vious literature (Liu et al., 2010; Fatima et al., 2019; Shukla, 2021; Thongsri et al., 2018). 
Four items were used to measure PEC with sample item as “I find using mobile learning 
allows experimenting with new ways to access and share information”.

Perceived security risk (PSR) was adapted from the various scales available in previous 
literature (Almaiah, 2020; Hamidi & Chavoshi, 2018; Nikou & Economides, 2017; Sabah, 
2016). PSR was measured using four items and sample items as “When I use mobile 
learning, it will prevent associating with a high potential data loss”.
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Perceived social influence (PSI)) was adapted from the various scales available in pre-
vious literature (Briz-Ponce et  al., 2017; Pramana, 2018; Sanchez-Prieto et  al., 2019; 
Shorfuzzaman et al., 2019; Shukla, 2021; Sidik & Syafar, 2020). PSI was again measured 
by four items and a sample item as "I find that using mobile learning gains a status sym-
bol (i.e.popularity)".

Computer self-efficacy was measured by four items adapted from Compeau and Hig-
gins (1995) and Hsia et al., 2014 study. SE was measured through four items and a sam-
ple item as “When I use mobile learning, I learn if there was no one around to tell me 
what to do as I go”. Locus of control was measured using a five-item adapted from (Hsia 
et al., 2014). The sample items used as “When I make plans, I am almost certain that I 
can make them work” and “It is impossible for me to believe that chance or luck plays an 
important role in my life”.

The perceived learner value (PLV) scale was based on (Gallarza et  al., 2017; Luttrell 
& Richard, 2011). PLV was measured with four items and sample items as “I find using 
mobile learning… “allows me to get more involved with my learning activities” and 
“increases interest in studying anytime, anywhere necessary”.

Perceived functional benefit (PBF) was adapted from (Al-Adwan et al., 2018; Badwelan 
et al., 2016; Hassan et al., 2015; Shukla, 2021). PBF was measured by four items and sam-
ple items as “I find that using mobile learning... “improves academic performance” and 
“accomplishes learning activities more quickly”.

Mobile learning adoption continuance (MLAC) was based on the scales (Almaiah, 
2020; Kim et al., 2017; Kumar & Bervell, 2019; Leong et al., 2018). MLAC was measured 
by four items and sample items as “I intend to continue using mobile learning in the 
future” and “I prefer to continue using mobile learning over other mediums”.

Fig. 2  Smart PLS-SEM model for Mobile Learning Adoption model
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Results
The Smart PLS-SEM model was built as shown in Fig.  2, for the mobile adoption 
model. As per Hair et al., 2017) partial least square modeling (PLS-SEM) is most suit-
able for the situation where there is a need to develop. It is an appropriate method for 
complex and novel models. Hence, many researchers suggest that PLS-SEM can be 
used for theory generation rather than for theory confirmation (Urbach & Ahlemann, 
2010). some others have suggested using it for testing moderation and mediation 
effects for complex models (Fassot et al., 2016). The advantage of PLS-Sem is that it 
does not need the usual assumption of normality and can be applied to small samples 
as it is based on covariance (Hair et al., 2014). As the current study is testing different 
antecedents of M-learning adoption and added a completely new construct to test the 
M-learning continuance with mediation effect PLS-SEM methods were adopted.

As the study has used a self-reporting survey as a method to gather the data from 
the respondent’s testing of common methods, bias becomes important. Firstly con-
cerning confidentiality for data collection, the responses were taken anonymously. 
Secondly, each construct was measured through multiple items loaded separately on 
different constructs, and the reliability and discriminate validity of the items were 
tested.

Lastly, all the items were loaded on a common method latent variable and it was 
seen that items did unload on a single factor when tested for the Harman single-fac-
tor (Podsakoff et al., 2003) and there was no convergent found. Also, when collinear-
ity was tested, all VIF values were less than 3.00 and there was no collinearity effect 
observed (Kock, 2015).

It was seen that all items loaded well on their respective construct and loadings 
greater than 0.60 were accepted as shown in Table 1. No item was dropped from any 
construct in the given model. For model assessment, when testing the reliability and 
validity, Cronbach alpha values were greater than 0.77 and the composite reliability of 
the constructs was greater than 0.84. The average variance extracted (AVE) which is a 
measure of construct convergent validity, was higher than 0.50 and below the accept-
able value (Hair et al., 2014) as shown in Table 2. 

Finally, the discriminate validity was checked as the square roots of AVEs were all 
greater than the inter-construct correlation values and further, the loadings for all 
indicators were greater than cross-loadings as seen in Table 3.

After the above assessment model was validated, the measurement model was 
tested by running the non-parametric bootstrapping with sample (1000). The model 
fit values showed a good fit with SRMR for the saturated model as 0.062 < 0.08 and the 
Chi-square value was high (1180.87 and an NFI value was 0.808.

R-square values provide the predictive power of an endogenous construct, and the 
R-square value for computer self-efficacy (0.277) and locus of control (0.323) was 
observed and explained by the three factors considered under study i.e. epistemolog-
ical, social, and security risk factors. R-square values for Perceived functional ben-
efit (0.514), Perceived learner value (0.408), and Mobile Learning adoption (0.540). 
Hence, the model could explain the 54.0% variance in the dependent variable Mobile 
learning continuance, which is quite a good explanation.
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Table 1  Factor loadings for all the items for Mobile learning adoption model

Computer 
self-
efficacy

Epistemic 
curiosity

Locus of 
control

Mobile 
learning 
adoption

Perceived 
functional 
benefit

Perceived 
learner 
value

Security 
risk

Social 
influence

CSE-1 0.750

CSE-2 0.827

CSE-3 0.828

CSE-4 0.853

LOC-1 0.659

LOC-2 0.601

LOC-3 0.724

LOC-4 0.830

LOC-5 0.794

MLC-1 0.904

MLC-2 0.925

MLC-3 0.878

MLC-4 0.785

PEC-1 0.899

PEC-2 0.905

PEC-3 0.916

PEC-4 0.905

PFB-1 0.84

PFB-2 0.905

PFB-3 0.886

PFB-4 0.846

PLV-1 0.888

PLV-2 0.88

PLV-3 0.887

PLV-4 0.885

PSI-1 0.821

PSI-2 0.880

PSI-3 0.710

PSI-4 0.859

PSR-1 0.841

PSR-2 0.839

PSR-3 0.86

PSR-4 0.751

Table 2  Reliability values for the constructs for Mobile learning adoption model

Cronbach’s Alpha rho_A Composite 
reliability

Average variance 
extracted (AVE)

Computer self-efficacy 0.831 0.836 0.888 0.665

Epistemic curiosity 0.928 0.928 0.948 0.821

Locus of control 0.778 0.796 0.846 0.528

Mobile learning adoption 0.897 0.907 0.929 0.765

Perceived functional benefit 0.892 0.893 0.925 0.756

Perceived learner value 0.908 0.91 0.935 0.784

Security risk 0.841 0.843 0.894 0.679

Social influence 0.837 0.86 0.891 0.673
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Table 3  Discriminate validity for the constructs for Mobile learning adoption model

Computer 
self-
efficacy

Epistemic 
curiosity

Locus of 
control

Mobile 
learning 
adoption

Perceived 
functional 
benefit

Perceived 
learner 
value

Security 
risk

Social 
influence

Com-
puter self-
efficacy

0.815

Epistemic 
curiosity

0.436 0.906

Locus of 
control

0.458 0.417 0.726

Mobile 
learning 
adoption

0.454 0.463 0.378 0.875

Perceived 
functional 
benefit

0.452 0.561 0.552 0.671 0.870

Perceived 
learner 
value

0.469 0.518 0.471 0.691 0.720 0.885

Security 
risk

0.43 0.422 0.449 0.325 0.47 0.324 0.824

Social 
influence

0.381 0.473 0.487 0.505 0.583 0.478 0.468 0.820

Table 4  Hypothesis testing for Mobile learning adoption model (direct Effect)

Original 
Sample 
(O)

T Statistics 
(|O/
STDEV|)

P Values Results

H1a: Epistemic curiosity—>Computer Self-Efficacy 0.264 4.312 0 Supported

H1b:Epistemic curiosity—>Locus of Control 0.18 2.455 0.014 Supported

H1c: Epistemic curiosity—>Perceived functional benefit 0.258 4.191 0 Supported

H1d: Epistemic curiosity—>Perceived learner value 0.277 3.8 0 Supported

H2a: Security Risk—>Computer Self-Efficacy 0.254 3.4 0.001 Supported

H2b: Security Risk—>Locus of Control 0.236 3.453 0.001 Supported

H2c: Security Risk—>Perceived functional benefit 0.092 1.559 0.12 Not supported

H2d: Security Risk—>Perceived learner value -0.065 0.898 0.37 Not supported

H3a: Social Influence—>Computer Self-Efficacy 0.138 1.967 0.05 Supported

H3b: Social Influence—>Locus of Control 0.291 4.442 0 Supported

H3c: Social Influence—>Perceived functional benefit 0.271 4.728 0 Supported

H3d: Social Influence—>Perceived learner value 0.204 3.323 0.001 Supported

H4a: Computer Self-Efficacy—>Perceived functional 
benefit

0.091 1.394 0.164 Not supported

H4b: Computer Self-Efficacy—>Perceived learner value 0.21 2.487 0.013 Supported

H5a: Locus of Control—>Perceived functional benefit 0.231 3.288 0.001 Supported

H5b: Locus of Control—>Perceived learner value 0.189 2.785 0.006 Supported

H6: Perceived functional benefit—>Mobile Learning 
adoption

0.36 4.725 0 Supported

H7: Perceived learner value—>Mobile Learning adoption 0.432 5.419 0 Supported
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When testing the hypothesis, as shown in Table 4, it was observed that epistemo-
logical factors significantly affected computer self-efficacy, locus of control, perceived 
functional benefit, and perceived learner value (H1a, H1b, H1c, and H1d all were 
supported). Security risk did not affect perceived functional benefit, and perceived 
learner value directly (H2c and H2d not supported) but affected computer self-effi-
cacy and locus of control (H2a and H2b supported). Social factors affected computer 
self-efficacy, locus of control, perceived functional benefit, and perceived learner 
value (H3a, H3b, H3c, and H3d all supported).

Computer self-efficacy showed a significant effect on perceived learner value but 
not on perceived functional benefit (H4a unsupported but H4b supported) whereas 
locus of control showed a relation with both perceived functional benefit, and per-
ceived learner value (H5a and H5b both supported). Finally, both perceived func-
tional benefit and perceived learner value impacted mobile learning adoption (H6 and 
H7 were supported).

The mediation effect can be tested in the model for an indirect effect, as suggested 
by (Preacher & Hayes, 2004; Shrout & Bolger, 2002). The mediation effect came out to 
be significant for the indirect effect, as shown in Table 5. Locus of control mediated 
the relationship between epistemological curiosity, security risk, social influence, and 
perceived functional benefit with a p-value of 0.026, 0.013, 0.010 < 0.05 (95% sig level) 
and between social influence and perceived learner value as p-value 0.013 < 0.05 (95% 
sig level).

It was also found that perceived learner value mediated the relationship between 
self-efficacy and locus of control and mobile learning continuance as p-value 

Table 5  Hypothesis testing for Mobile learning adoption model (indirect effect)

Original 
sample 
(O)

T statistics 
(|O/
STDEV|)

P Values Bias 2.50% 97.50%

Epistemic curiosity—>Locus of Control—
>Perceived functional benefit

0.042 2.23 0.026 − 0.002 0.013 0.088

Security Risk—>Locus of Control—
>Perceived functional benefit

0.055 2.498 0.013 − 0.002 0.026 0.111

Social Influence—>Locus of Control—
>Perceived functional benefit

0.067 2.577 0.010 − 0.002 0.03 0.135

Social Influence—>Locus of Control—
>Perceived learner value

0.055 2.501 0.013 − 0.002 0.018 0.105

Computer Self-Efficacy—>Perceived learner 
value—>Mobile Learning adoption

0.091 2.128 0.034 0.003 0.024 0.186

Locus of Control—>Perceived learner 
value—>Mobile Learning adoption

0.082 2.453 0.015 − 0.002 0.028 0.156

Locus of Control—>Perceived functional 
benefit—>Mobile Learning adoption

0.083 2.761 0.006 − 0.001 0.039 0.159

Security Risk—>Locus of Control—
>Perceived functional benefit—>Mobile 
Learning adoption

0.02 2.112 0.035 − 0.001 0.008 0.05

Social Influence—>Locus of Control—
>Perceived functional benefit—>Mobile 
Learning adoption

0.024 2.557 0.011 − 0.001 0.011 0.05

Social Influence—>Locus of Control—
>Perceived learner value—>Mobile Learning 
adoption

0.024 2.105 0.036 − 0.001 0.008 0.057
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0.034 < 0.05 and 0.015 < 0.05(95% sig level). The perceived functional benefit mediated 
between locus of control and mobile learning continuance as p-values observed was 
0.006 < 0.10 (95% sig value). For all these values, zero did not fall between upper-level 
and lower-level confidence intervals and hence the indirect effect was confirmed by 
bootstrapping.

Discussion
When answering the two research questions raised at the beginning of the research.e. 
RQ1: Do epistemological, social, and security risk factors affect perceived functional 
benefits (PFB) and perceived learner value (PLV)? It was found that H1(a, b, c, and d), 
H2(a and b), and H3(a, b, c, and d) all were supported. While answering the second 
research question i.e. RQ2: Does locus of control and computer self-efficacy mediate 
the relationship between epistemological, social, and security risk factors and perceived 
functional benefits (PFB) and perceived learner value (PLV)? The findings showed that 
computer self-efficacy was only related to PLV (H4b supported) while locus of control 
was related to PFB and PLV and H5(a and b) both supported. It was found that locus of 
control mediated between epistemological, social, and security risk factors affect per-
ceived functional benefits.

Theoretical contribution

Current research has found epistemological and social factors along with security risks 
to be antecedents of mobile learning. The previous study by Magsayo (2023) found only 
security risk to be a significant predictor in mobile learning acceptance continuance and 
dropped epistemological and social factors. This led to exploring epistemological and 
social factors as the antecedent of mobile learning along with security risk and tested 
their relationship to perceived functional benefit and perceived learner value. The study 
elaborated on the work of Magsayo (2023) and added computer self-efficacy along with 
internal locus of control as personality traits and perceived functional benefit and per-
ceived learner value to understand mobile acceptance continuance.

First, the three factors epistemological, social, and security risk all were tested for their 
effect on computer self-efficacy and locus of control. It was found that epistemological 
factors affected computer self-efficacy and locus of control and both the perceived func-
tional benefit and perceived learner value. Epistemological curiosity reflects how the 
learner wants to learn by exploring new concepts and showing a high level of curiosity 
during the learning process. Learning on the mobile platform can help them satisfy their 
need for curiosity for new ideas and gain knowledge and concepts (Abdullah et al., 2017; 
Olufadi, 2015).

Security risk affected computer self-efficacy and locus of control but did not affect per-
ceived functional benefit and perceived learner value directly. A learner may feel more 
confident and have a higher locus of control if he/she feels that during mobile learn-
ing there is no threat to his data privacy and security and his perceived security is high. 
Previous research has shown a direct relationship between security risk and the use of 
M-learning (Al-Adwan et al, 2018; Almaiah et al., 2020; Hamidi & Chvosshi, 2018) or an 
indirect effect (Nikou & Economides, 2017; Obiria & Kimwele, 2017).
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Social factors affected computer self-efficacy and locus of control and again both per-
ceived functional benefit, and perceived learner value. Social influence play’s an impor-
tant role in learning and during mobile learning individuals when connecting to the 
right peers may find improved self-efficacy and locus of control leading to a higher level 
of perceived benefits and overall learning value. This confirms previous work that per-
ceived social influence does affect M-learning adoption because peer acceptance leads to 
greater popularity and higher status symbol (Pramana, 2018; Sanchez-Prieto et al., 2019; 
Yeap et al., 2016; Shukla, 2021; Sidik & Syafar, 2020).

Finally, the mobile learning continuance could be explained by perceived functional 
benefit and perceived learner value. So, when the learner feels that they are receiving 
function benefit from mobile learning, they want to continue learning through this 
mode. The functional benefit could be ease of use or flexibility. Learners also look out for 
the learning value they gain for learning.

The mediation showed that the locus of control mediated the relationship between 
epistemological curiosity, security risk, social influence, and perceived functional benefit 
and between social influence and perceived learner value. All three aspects of mobile 
learning i.e., epistemological curiosity, security risk, and social influence effects per-
ceived functional benefit through the locus of control, and the locus of control is also 
mediating the relationship between social influence and perceived learner value. Hence, 
locus of control is one aspect of the learner that helps in building a higher perception 
regarding functional benefits and learner value for the intention to adopt mobile learn-
ing. Perceived learner value mediated the relationship between self-efficacy and locus 
of control and mobile learning continuance and perceived functional benefit mediated 
between locus of control and mobile learning continuance.

Managerial implications

The managerial implications can be many firstly the study provides a direction as to 
what the learner is looking for when learning through mobile learning, which has picked 
up during the COVID times. Learners are interested in learning new ideas and concepts 
and looking for more creative ways to satisfy their curiosity. They are looking out for 
a more secure platform where their personal information is safeguarded, and they can 
maintain confidentiality at their own pace and grades. They are also looking for more 
collaborative learning through mobile learning where they can connect with peers and 
friends who are interested in the same topics. This led us to understand the needs of 
learners when designing any content for M-learning.

Secondly, it is quite visible that the intention to continue learning on M-learning is 
impacted by two important criteria like perceived learner value and perceived functional 
benefit. Perceived functional benefit talks about useful learning through M-Learning like 
flexibility and pace are achieved and perceived learner value is the overall value gained 
by learning through M-learning. The biggest advantage of M-Learning is the ease and 
mobility achieved while learning as you can even look at the content while traveling.

Slowly with the emerging technology learner are looking out for avenues in which 
learning is not restricted to place or location and due to time constraints, they may view 
the contents at any time and submit their assignment while on the move. M-learning has 
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broken all boundaries of learning and given extreme flexibility to the learner, which is 
the need of the day.

Limitations and future scope
The study was more focused on looking at the relationship between various aspects of 
Mobile learning and creating new hypotheses and building theory by testing the pro-
posed conceptual model. Hence, the study took a small sample and used SAMRT PLS 
to create an SEM model. The future study can take a larger sample and confirm the pro-
posed model. The same model can be tested in different cultural contexts to see its gen-
eralizability and look at specific factors suitable for each culture.

The study considered only three aspects of M-learning epistemological, social, and 
security risk, but future studies can look into other factors, which could be relevant for 
generating perceived functional benefit and learner value in the context of M-learning. 
More in-depth studies can be undertaken to understand the sub-dimension of episte-
mological curiosity and how the content developed for M-learning can help satisfy the 
creativity of learners.

Conclusion
Mobile learning is catching up fast due to time constraints and the amount of flexibility 
needed by the learner. Many countries including India have improved their connectivity 
and availability of Wi-Fi on mobiles. Individuals prefer to use their mobile phones for 
all their day-to-day activities like online payment and shopping. The use and acceptabil-
ity of mobile phones have gone to the grassroots in India. Learning through mobile can 
be one great way to impart learning to all socio-economic levels in society and spread 
learning in a faster yet more acceptable way.
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