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Role of kidney injury in sepsis
Kent Doi

Abstract

Kidney injury, including acute kidney injury (AKI) and chronic kidney disease (CKD), has become very common in
critically ill patients treated in ICUs. Many epidemiological studies have revealed significant associations of AKI and
CKD with poor outcomes of high mortality and medical costs. Although many basic studies have clarified the
possible mechanisms of sepsis and septic AKI, translation of the obtained findings to clinical settings has not been
successful to date. No specific drug against human sepsis or AKI is currently available. Remarkable progress of
dialysis techniques such as continuous renal replacement therapy (CRRT) has enabled control of “uremia” in
hemodynamically unstable patients; however, dialysis-requiring septic AKI patients are still showing unacceptably
high mortality of 60–80 %. Therefore, further investigations must be conducted to improve the outcome of sepsis
and septic AKI. A possible target will be remote organ injury caused by AKI. Recent basic studies have identified
interleukin-6 and high mobility group box 1 (HMGB1) as important mediators for acute lung injury induced by AKI.
Another target is the disease pathway that is amplified by pre-existing CKD. Vascular endothelial growth factor and
HMGB1 elevations in sepsis were demonstrated to be amplified by CKD in CKD-sepsis animal models.
Understanding the role of kidney injury as an amplifier in sepsis and multiple organ failure might support the
identification of new drug targets for sepsis and septic AKI.
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Introduction
Sepsis is defined by the Surviving Sepsis Campaign
Guideline 2012 (SSCG 2012) as the presence (probable
or documented) of infection together with systemic
manifestations of infection [1]. Serum creatinine, a
widely measured renal function marker, includes the def-
inition by SSCG 2012 as an organ dysfunction variable
with a serum creatinine increase of >0.5 mg/dL. A re-
cent acute kidney injury (AKI) definition by the Kidney
Disease: Improving Global Outcomes (KDIGO) includes
increase in serum creatinine by 0.3 mg/dL within 48 h.
Therefore, sepsis and AKI will be observed frequently in
critically ill patients in ICUs. In addition, sepsis and AKI
synergistically increase the mortality of ICU patients. No
specific drug against sepsis and AKI is clinically available.
Chronic kidney disease (CKD), defined as glomerular
filtration rate (GFR) <60 mL/min/1.73 m2 for 3 months, is
increasing all over the world because of not only the
greater prevalence of obesity, diabetes, and hypertension
but also improved longevity. The prevalence of CKD in

ICUs is also increasing. In fact, CKD has recently been
recognized as an important risk factor for AKI develop-
ment and poor outcomes in sepsis. Complication of
kidney injury worsens critical illness. Better management
for kidney injury will improve the outcomes of sepsis.

Review
Epidemiology of kidney injury in ICU
AKI is a serious complication in critically ill patients
because AKI strongly affects outcomes such as mortality
and medical costs [2–4]. Recently, the KDIGO has de-
fined diagnostic criteria and severity staging for AKI
(Table 1) [5]. A recent meta-analysis involving 154 stud-
ies of more than 3,000,000 individuals revealed that one
in five adults and one in three children worldwide devel-
oped AKI during a hospital episode of care [6]. The
overall incidence of AKI in ICU patients ranges from 20
to 50 %. The severity of AKI was significantly associated
with mortality [7]. It is noteworthy that dialysis-
requiring AKI in ICU shows the highest mortality.
Recent data from the Nationwide Inpatient Sample show
a rapid increase of the incidence of dialysis-requiring
AKI during the past decade in the USA [8].
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CKD has also been recognized as a public health prob-
lem because its incidence and prevalence continue to in-
crease, entailing poor outcomes and high costs [9, 10].
CKD is defined by a decreased estimated glomerular
filtration rate (eGFR) calculated with age, gender, and by
serum creatinine concentration (Table 2). In Japan, one
in eight adults is estimated to be complicated with CKD,
which is well known to contribute strongly to cardiovas-
cular disease and high mortality [11]. Moreover, CKD,
along with sepsis, is an important risk factor for AKI de-
velopment [12]. Actually, CKD is found in approximately
30 % of AKI patients in the ICU [13, 14]. Hsu and col-
leagues reported that the odds ratios of AKI development
were elevated progressively from 1.95 to 40.07 for stage 3
(45 < eGFR < 60) through stage 5 CKD (eGFR < 15) pa-
tients compared to patients with stage 1 and 2 CKD
(eGFR > 60) [15]. Several observational studies found that
0.9–6.8 % of all patients admitted to the ICU have a prior
diagnosis of end-stage renal disease (ESRD) [16]. Although
the incidence of non-dialysis CKD in ICU has been poorly

investigated, the prevalence of CKD in the ICU is assumed
to be much higher than that of ESRD.

Pathophysiology of septic acute kidney injury
AKI is a syndrome with a broad spectrum of etiologies,
and several mechanisms including ischemic/hypoxic,
nephrotoxic, and inflammatory insults contribute to AKI
development (Fig. 1). Depending on different clinical set-
tings such as post-cardiac surgery, contrast media exposure,
severe heart failure with low output, and sepsis, pathophysi-
ology and clinical features of AKI will be different. Among
these etiologies, sepsis is the leading cause of AKI in ICUs
[14]. Reportedly, 45–70 % of all AKI is associated with sep-
sis [17–19]. Patients with both sepsis and AKI are widely
recognized as having an unacceptably high mortality rate
[17, 20]. Bagshaw and colleagues reported that in-hospital
and ICU mortalities of septic AKI were increased, respect-
ively, to 30 and 20 % and that higher mortality was
observed across all the AKI severity categories [20].

Table 1 Definition and staging of AKI

Definition AKI is defined as any of the following

1) Increase in SCr by >0.3 mg/dL within 48 h

2) Increase in SCr to >1.5 times baseline, which is known or presumed to have occurred within the prior 7 days

3) Urine volume <0.5 mL/kg/h for 6 h

Severity Serum creatinine Urine output

Stage 1 1.5–1.9 times baseline, or <0.5 mL/kg/h for 6–12 h

>0.3 mg/dL increase

Stage 2 2.0–2.9 times baseline <0.5 mL/kg/h for >12 h

Stage 3 3.0 times baseline, or <0.3 mL/kg/h for >24 h, or

Increase in SCr to >4.0 mg/dL, or Anuria for >12 h

Initiation of renal replacement therapy

SCr serum creatinine

Table 2 Definition and staging of CKD

CKD is defined as either of the following present for >3 months

1) Markers of kidney damage (one or more)

Albuminuria, urine sediment abnormalities, electrolyte, or other abnormalities attributable to tubular disorders, abnormalities detected
by histology, structural abnormalities detected by imaging, history of kidney transplantation

2) Decreased GFR; GFR <60 mL/min/1.73 m2 (GFR categories G3a–G5)

GFR category GFR (mL/min/1.73 m2) Albuminuria category AER (mg/day)

G1 >90 Normal or high A1 <30 Normal to mildly increased

G2 60–89 Mildly decreased A2 30–300 Moderately increased

G3a 45–59 Mildly to moderately decreased A3 >300 Severely increased

G3b 30–44 Moderately to severely decreased

G4 15–29 Severely decreased

G5 <15 Kidney failure

GFR glomerular filtration rate, AER albumin excretion rate
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Several pathophysiological mechanisms that are rela-
tively specific for sepsis-induced AKI have been proposed
(Table 3). Recent review articles discuss these mechanisms
precisely [21–26], and a detailed description on this issue
is beyond the aim of this review. Because of the complex-
ity of sepsis and AKI, it should be noted that no single
pathway can explain all the features of septic AKI. Each
septic AKI patient moves along an individual disease tra-
jectory. Therefore, the therapeutic targets vary with the
underlying pre-existing conditions, time course, and dis-
ease trajectory of sepsis and AKI. Although many poten-
tial drug targets have been identified in animal models of
sepsis and AKI, translation from animals to humans has
been exceedingly difficult. The failure to translate results
from animals to humans has been attributed to disease

characteristics of sepsis and AKI (complexity and hetero-
geneity), inappropriate clinical trials, and animal models
that do not fully mimic human sepsis [27].

Remote organ injury induced by acute kidney injury
Dialysis-requiring AKI shows unacceptably high mortality
of 40–50 % [28], with mortality increasing to 60–80 %
when associated with distant organ dysfunction such as
cardiac and respiratory failure [29, 30]. Remarkable
progress has taken place in renal replacement therapy
(RRT) in critical care. Therefore, uremic conditions of
hemodynamically unstable patients in ICU can be treated
successfully using continuous RRT (CRRT) [31]. Never-
theless, dialysis has not decreased mortality appreciably
[8, 28, 32]. Although AKI in the ICU is associated with a
high mortality, factors other than loss of kidney function
appear to contribute to poor outcomes: non-dialysis-
requiring AKI patients show considerably higher mortality
than ESRD patients show [33].
Based on these observations, many basic researchers

have started to elucidate the mechanisms of distant
organ dysfunction caused by AKI [34]. The most investi-
gated distant organ is the lung. Respiratory failure, which
is frequently observed in septic patients, is caused by vas-
cular leakage and subsequent pulmonary edema. Volume
overload caused by AKI amplifies lung injury, but it can
be prevented by removing excess extracellular fluid [35].
However, several clinical studies have implicated inflam-
mation in the pathogenesis of lung injury complicated
with AKI. For instance, elevated blood levels of inflamma-
tory mediators such as plasminogen activator inhibitor-1,
interleukin-6 (IL-6), and soluble tumor necrosis factor
receptors are observed in ARDS patients complicated with
AKI compared with non-AKI [36].
Experimental studies using animal AKI models such as

renal ischemia-reperfusion injury (IRI) and bilateral
nephrectomy (BNx) have identified several different
mechanisms by which AKI causes lung injury, including
increased neutrophil infiltration, vascular permeability,
dysregulation of salt and water transporters, and inflam-
matory cytokine and chemokine expressions [34, 37, 38].
Faubel and colleagues demonstrated that circulating IL-6
is a pathogenic mediator of lung injury in AKI [39, 40].
Toll-like receptor 4 (TLR4) plays fundamental roles in
pathogen recognition and activation of innate immunity.
TLR4 recognizes lipopolysaccharide (LPS), heparan sul-
fate, heat shock proteins, and high mobility group box 1
(HMGB1) [41]. Actually, HMGB1 has been shown to acti-
vate NF-κB by interacting with TLR4 on target cells [42].
BNx-induced lung injury characterized by neutrophil infil-
tration was partly reduced in TLR4-mutant C3H/HeJ
mice, which is deficient in TLR4 signaling. Elevated blood
HMGB1 levels were observed after BNx. Blockade of
HMGB1 attenuated lung injury only in TLR4-wild type

Ischemia

Toxic 
injuryInflammation

Microcirculatory 
failure
Hypoxia

Direct tubular 
injury
(Abx, contrast)

Cytokine, TLR, HMGB1 
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Endothelial
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Mitochondrial 
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Fig. 1 Pathophysiology of AKI. Three major areas of ischemia,
inflammation, and direct toxic injury to the kidney contribute to the
pathogenesis of AKI with significant overlap. Each mechanistic
pathway identified by basic studies will be categorized into one of
these major areas; however, some will lie simultaneously in two or
three areas. Details are described in other review articles [71–73].
ROS reactive oxygen species, TLR toll-like receptor, HMGB1 high mobility
group box 1, ABx antibiotics

Table 3 Potential pathophysiological mechanisms of septic AKI

Pro-inflammatory state

Complement and coagulation activation

Protease activation (heparan sulfate, elastase)

Free radical formation

Pro-inflammatory cytokine production (IL-1, IL-6, IL-18, TNF-α)

Cell activation (neutrophil, macrophage, platelet, endothelial cell)

Anti-inflammatory state

Anti-inflammatory cytokine (IL-10)

Reduced phagocytosis and chemotaxis

Deranged immune function (lymphocyte apoptosis)

Dysregulation of microcirculation

Vasodilation-induced glomerular hypoperfusion

Abnormal blood flow within the peritubular capillary network

TNF tumor necrosis factor
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C3H/HeN mice. These observations suggest that TLR4–
HMGB1 pathway contributes to lung injury induced by
AKI (Fig. 2) [43].

Amplification of multiple organ failure by pre-existing
kidney injury
Epidemiological studies of human sepsis have demon-
strated the importance of pre-existing comorbid condi-
tions including CKD [44, 45]. Reportedly, patients with
CKD have increased risk of morbidity and mortality
from sepsis [46–48], although limited data are available
for non-dialysis CKD patients [49]. These findings suggest
that sepsis and septic AKI in clinical settings are remark-
ably influenced by underlying CKD. Star and colleagues
established two-stage mouse models of pre-existing renal
disease with subsequent sepsis (CKD-sepsis) to mimic the
complexity of human sepsis [50, 51]. CKD was induced by
5/6 nephrectomy (5/6Nx) or folic acid injection. Evidence
of CKD as reduced GFR and pathological renal injury
such as glomerular sclerosis and interstitial fibrosis was
observed 2 or 4 weeks after. Then, these CKD animals
were subjected to cecum ligation and puncture (CLP)
surgery, the most widely used animal model of sepsis
[52, 53], which induces polymicrobial bacteremia and
sepsis because of needle puncture of the ligated cecum,
causing leakage of fecal contents into the peritoneum.
These CKD-sepsis models showed remarkably high

mortality with increased blood levels of vascular endo-
thelial growth factor (VEGF) and HMGB1. Although
sepsis induced by CLP alone increased these mediators,
CKD-sepsis animals showed significantly higher levels
than non-CKD-sepsis did. It must be addressed that the
CKD condition caused mild but significant VEGF and
HMGB1 elevations before sepsis induction and acute
complete loss of renal function by BNx also caused
VEGF and HMGB1 elevations in blood. Importantly,
VEGF neutralization with soluble fms-like tyrosine kinase
1 (sFLT-1) (a soluble VEGF receptor) and HMGB1-
neutralizing antiserum attenuated other organ injury
including the liver and lungs and improved the survival of
CKD-sepsis animals. Taken together, pre-existing renal
injury amplifies sepsis disease progression and sepsis-
induced AKI by increasing VEGF and HMGB1.

The pro-inflammatory cytokine HMGB1 secreted from
dying cells induces the release of other cytokines from
macrophages and other cell types [54–56]. HMGB1 can
induce the additional release of HMGB1 in RAW 264.7
cells [57]. Therefore, HMGB1 seems to amplify inflamma-
tion by positive feedback. Several basic studies have dem-
onstrated that HMGB1 neutralizing therapy improves
mortality of sepsis in non-CKD mice [57–59]. This treat-
ment would work well in CKD-sepsis, which shows a
more severe form of sepsis. Can we translate these find-
ings on HMGB1 into clinical terms? In vitro analysis
revealed that surface-treated polyacrylonitrile (AN69ST),
which is now clinically available in Japan, shows a high
capacity to adsorb HMGB1 [60]. Further investigation is
necessary to elucidate the role of HMGB1 in human sepsis
complicated with CKD.

Perspectives for development of new treatment
Both sepsis and AKI have been recognized as a “grave-
yard for pharmaceutical companies” [61, 62] because no
specific drug is currently available for these diseases in a
clinical setting. Several new findings focusing on remote
organ injury in AKI and amplification of septic reaction
by CKD described above may suggest that humoral me-
diator removal would be effective in sepsis complicated
with kidney injury. So far, efficient elimination of IL-6
and HMGB1 by blood purification technique has been
reported. On the other hand, clinical trials that evaluated
high-volume hemofiltration (HVHF) failed to show any
protection even though HVHF could show significant
removal of humoral mediators from the blood [63–65].
Another potential therapeutic strategy is mesenchymal
stem cell (MSC) implantation. MSCs exhibit multiple
beneficial properties by attenuating the inflammatory re-
sponse, modulating immune cells, and promoting tissue
healing [66–68]. MSCs are expected to home to sites of
injury and use paracrine mechanisms to change the local
environment to improve organ function and survival.
Some study demonstrated the amelioration of sepsis-
induced AKI by MSC administration [69, 70]. MSCs may
be able to show their protective effects by regulating
inflammatory cells and mediators with adaption to envir-
onmental changes induced by kidney injury complication.

Conclusions
Complications of acute and chronic kidney injury are
associated significantly with poor outcomes of sepsis. Al-
though many epidemiological studies have already dem-
onstrated these associations, the precise mechanisms by
which kidney injury has a significant impact on other
organs in sepsis remain unclear. Understanding the role
of kidney injury as an amplifier in sepsis and multiple
organ failure might enable the identification of new drug
targets for sepsis and septic AKI.

Neutrophil 
infiltration 

to lung

TLR4 
activation 
by HMGB1

HMGB1 
elevation 

in AKI

Fig. 2 Possible pathway of lung injury induced by AKI. HMGB1 is a
TLR4 agonist, and TLR4 induces inflammation including neutrophil
activation. TLR toll-like receptor, HMGB1 high mobility group box 1
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