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Abstract

Background: Salmonella and E. coli O157 are common causes of foodborne diseases. Evisceration and de-hiding
steps can lead to carcass contamination during slaughter operation. In Ethiopia, information on the association
between the presence of these pathogens in the rectal content and/or on the hide of cattle and their presence on
the carcass is lacking.

Methods: The aim of this study was to assess the sources of beef carcass contamination with Salmonella and E. coli
O157 during slaughter. Rectal contents and hide- and carcass-swabs (from three sites: foreleg, brisket and hind leg)
were collected from 70 beef cattle at two small scale slaughterhouses. Isolates were genotyped by the Pulsed Field
Gel Electrophoresis method and tested for resistance against 14 microbial drugs.

Results: Salmonella was detected at equal proportions (7.1%) in rectal content samples and hide swabs. E. coli
O157 was detected in 8.6% of the rectal contents and 4.3% of the hide swabs. The proportion of contaminated
carcasses was 8.6% for Salmonella and 7.1% for E. coli O157. Genetic linkage between the Salmonella and E. coli
O157 isolates from the rectal contents and/or hides and carcasses were observed only in a few cases (2 and 1
carcasses, respectively) indicating the limited direct transfer of the pathogens from the feces and/or hide to the
carcass during slaughter. Most carcasses became positive by cross contamination. All the S. Typhimurium isolates
(n = 8) were multidrug resistant being resistant to ampicillin, chloramphenicol, sulfamethoxazole and tetracycline.
The two S. Dublin isolates were resistant to colistin. All E. coli O157 isolates were susceptible to the antimicrobials
tested.

Conclusion: The results indicated that cross contamination may be an important source for carcass contamination.
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Introduction
Foodborne diseases (FBD) are a worldwide problem.
Consumption of contaminated food of animal origin is
associated with potential food safety risks and a major
source of FBD. Salmonella and Shiga toxin-producing E.
coli are major causes of FBD (Havelaar et al. 2015). Ru-
minants, particularly cattle, are reservoirs and asymp-
tomatic carriers of Salmonella (Cummings et al. 2010;
Gutema et al. 2019) and E. coli O157 (Gyles 2007). Stud-
ies reported the occurrence of these pathogens in the
feces and on the hides of cattle on farms and in slaugh-
terhouses in developed countries (Arthur et al. 2010;
Cobbaut et al. 2008; Essendoubi et al. 2019; Madoroba
et al. 2016). The presence of Salmonella and E. coli
O157 in the feces and on the hides of cattle may lead to
their transfer to carcasses during hide removal and evis-
ceration (Croxen et al. 2013; Cummings et al. 2010;
Gutema et al. 2021a).
Consumption of contaminated beef and beef products

is one of the transmission routes of Salmonella and E.
coli O157 to humans (EFSA and ECDC 2018; Pires et al.
2019) and has been implicated in many foodborne out-
breaks (CDC 2016; Plumb et al. 2019). This is particu-
larly important in countries like Ethiopia where
consumption of raw or under-cooked beef in the form
of steak (“kurt”) or beef tartare (“kitfo”) made from raw
minced beef, is common (Avery 2014; Seleshe et al.
2014). Consumption of raw beef products can be a
source of Salmonella and E. coli O157 infections in
Ethiopia (Gutema et al. 2021b, c).
In Ethiopia, few studies have reported the prevalence

of Salmonella in cattle feces (Gutema et al. 2021c;
Takele et al. 2018), on hides (Sibhat et al. 2011) and on
carcasses (Atsbha et al. 2018; Takele et al. 2018). Simi-
larly, E. coli O157 was reported in cattle feces (Abdissa
et al. 2017; Gutema et al. 2021b; Haile et al. 2017), on
hides (Abdissa et al. 2017) and on carcasses (Atnafie
et al. 2017) at the slaughterhouse level. We previously
identified dehiding and evisceration as two major poten-
tial sources of carcass contamination at slaughterhouses
in Ethiopia (Gutema et al. 2021a). However, there is cur-
rently no data confirming the potential association be-
tween the presence of these pathogens in the rectal
content and/or on the hide of cattle and their presence
on the carcass. Determining the genetic relatedness of
Salmonella and E. coli O157 in cattle feces, on the hide
and on the carcass is essential to investigate the poten-
tial transfer to carcasses. This will also contribute to the
identification of critical control points and the develop-
ment of mitigation strategies to ensure beef safety.
The objective of this study was to investigate the oc-

currence and the genetic relatedness for both Salmonella
and E. coli O157 isolated from the rectal content and
hide, and the carcass at slaughterhouses. Antimicrobial

resistance of Salmonella and E. coli O157 isolates ob-
tained from rectal contents, hides and carcass was fur-
ther assessed.

Materials and methods
Slaughterhouses
The study was conducted from November 2018 to May
2019 at two slaughterhouses in Bishoftu town located in
East Shoa Zone, Oromia, Ethiopia. Both slaughterhouses
were small in process capacity whereby the municipal
slaughterhouse and the private slaughterhouse usually
slaughtered 5–15 and 15–30 cattle per day, respectively.
The retail shop owners buy cattle from open markets
and bring them to the slaughterhouse for slaughter ser-
vice. The slaughter process at both slaughterhouses was
rather similar. Briefly, the manual slaughter process in-
volved stunning with a sharp knife, bleeding by cutting
arteries and veins in the throat region, removal of head
and feet and dehiding the upper part of the hind legs on
the floor followed by hanging of the carcass, manual
dehiding, evisceration, carcass washing, post-mortem in-
spection, carcass labelling and storage at environmental
temperature until distribution to retail shops. The
slaughterhouses did not have a stand-by pressurized
water supply and hot water for hand and equipment in-
cluding knives washing. Moreover, slaughterhouse
workers were involved in different slaughter steps and
received no or limited hygienic training (Gutema et al.
2021a).

Sample collection
Samples were collected from 70 animals (35 in each
slaughterhouse). Seven visits per slaughterhouse were
organized whereby each time, 5 carcasses were sampled
during slaughter. Due to the presence of relatively many
cattle in the lairage of the private slaughterhouse, ani-
mals were selected using systematic random sampling
before slaughter whereas at the municipal slaughter-
house due to the limited number of animals present in
the lairage, five consecutively slaughtered animals
slaughtered the day of sampling were sampled. The fol-
lowing samples were collected from each carcass: one
rectal content (50 g), one hide and three carcass swab
samples. The hide swab was taken from the medial side
of the foreleg and hind leg and the brisket from one half
of the carcass immediately after stunning. From each
hide swabbing site, an area of 20 × 20 cm was swabbed
using the same sterile cotton swab pre-moistened in 10
ml buffered peptone water (BPW; Difco, BD, Sparks,
MD, USA). Separate carcass swabs (20 × 20 cm) per site
were obtained after evisceration and before washing
from the same sites as the hide swabs, but on the other
half of the carcass. Samples were transported in an
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icebox to the laboratory and stored at 4 °C until process-
ing within 24 h.

Detection of Salmonella and E. coli O157
For processing of the hide and carcass swabs, each swab
in 10ml BPW was transferred into a stomacher bag con-
taining another 30 ml BPW to make a final volume of
40 ml and homogenized for 2 min using a stomacher.
From the final volume of homogenized solution, 20 ml
was transferred into another stomacher bag.
Salmonella detection was based on the International

Organization for Standardization guideline ISO 6579-1:
2017 (ISO 2017). Briefly, 25 g of rectal content was
transferred into a sterile stomacher bag, 225 ml of BPW
was added and the mixture was homogenized using a
stomacher blender for 1 min at 200 rpm. Homogenized
rectal content, hide and carcass swabs were incubated at
37 °C for 18 h. After the incubation of the pre-
enrichment broths, 0.1 ml of each culture medium was
spotted in 3 drops onto a modified semi solid
Rappaport-Vassiliadis medium (MSRV; Oxoid, Basing-
stoke, UK) and incubated at 41.5 °C for 24 h. After incu-
bation, plates were examined for the presence of
migration zones. A loopful from the edge of a migration
zone was streaked onto xylose lysine deoxycholate (XLD,
Difco) agar plates and incubated at 37 °C for 24 h. Plates
were examined for the presence of suspect Salmonella
colonies. Suspected colonies were biochemically tested
using triple sugar iron agar slants (Difco, BD), lysine de-
carboxylase test (BBL, BD), and indole test (BBL, BD).
One confirmed isolate per sample was stored at − 18 °C
for further characterization. Collected Salmonella iso-
lates were subjected to a S. Typhimurium PCR using the
primers described by Lin et al. (1999). All isolates nega-
tive for this PCR were then clustered using enterobacte-
rial repetitive intergenic consensus (ERIC) PCR as
described by Rasschaert et al. (2005). Based on the data
obtained from each ERIC profile at least one isolate was
selected for serotyping according to the Kauffmann-
White scheme (Grimont and Weill 2007) at Belgian Na-
tional Reference Laboratory for Salmonella.
E. coli O157 detection was based on International

Organization for Standardization, horizontal method for
the detection of E. coli O157-ISO 16654: 2001 (ISO
2001). Twenty-five gram of each rectal content sample
was transferred into a stomacher bag containing 225 ml
of modified tryptone soya broth (Oxoid) supplemented
with 20mg/l novobiocin (Sigma Aldrich, MO; USA)
(mTSBn), homogenized using a stomacher blender for 1
min at 200 rpm. For the detection of E. coli O157 from
the swab samples, 20 ml double concentrated mTSBn
was added to stomacher bags containing 20 ml of the
sample homogenate. After the incubation of the enrich-
ment broths at 41.5 °C for 6 h, 1 ml of each broth was

manually subjected to immunomagnetic separation
(IMS) using Dynabeads anti-E. coli O157 (ThermoFisher
Scientific, West Palm Beach, FL, USA) according to the
manufacturers’ instruction. The final washed bead-
bacteria complexes were spread onto cefixime tellurite
sorbitol MacConkey agar plates (Oxoid) containing 0.05
mg/l cefixime and 2.5 mg /l potassium tellurite (Oxoid)
(CT-SMAC). After incubation at 37 °C for 24 h, the
plates were examined for the presence of suspect col-
onies. From each selective agar plate, up to three suspect
colonies were subjected to Kligler Iron agar, indole and
E. coli O157 latex agglutination (Oxoid) tests. In the
frame of another research project, one isolate per posi-
tive sample was further analyzed using whole genome
sequencing method described by De Rauw et al. (2019)
at the Belgian National Reference Center for STEC. Data
on the presence of stx genes, eae gene, and ehxA gene in
those isolates was obtained from this analysis.

Pulsed field gel electrophoresis (PFGE)
Both Salmonella and E. coli O157 isolates (one isolate
per positive sample) were genotyped by PFGE after di-
gestion with XbaI enzyme (CDC 2017). The fingerprints
were grouped according to their similarity with Bionu-
merics 7.6 software (Applied Maths, Biomérieux, Sint-
Martens-Latem, Belgium) using the band-based dice co-
efficient with a 2% position tolerance and unweighted-
pair group method using arithmetic averages (UPGMA).
Pulsotypes were assigned based on the difference of at
least one band in the fingerprints and indicated by cap-
ital letter.

Antimicrobial susceptibility testing
All Salmonella and E. coli O157 isolates were tested for
their antimicrobial resistance to the following 14 anti-
microbial drugs with tested concentration range (μg/ml)
in brackets: ampicillin (1–64), azithromycin (2–64), cefo-
taxime (0.25–4), ceftazidime (0.5–8), chloramphenicol
(8–128), ciprofloxacin (0.015–8), colistin (1–16), genta-
micin (0.5–32), meropenem (0.03–16), nalidixic acid (4–
128), sulfamethoxazole (8–1024), tetracycline (2–64),
tigecycline (0.25–8) and trimethoprim (0.25–32). The re-
sistance profiling was evaluated based on the minimum
inhibitory concentration (MIC) using Sensititre EU sur-
veillance Salmonella/E. coli (EUVSEC) plates (Thermo
Fisher Scientific, Merelbeke, Belgium). The tests were
performed according to the manufacturer’s instructions.
The standard reference strain E. coli ATCC 25922 was
used as quality control. European Committee on Anti-
microbial Susceptibility Testing (EUCAST) epidemio-
logical breakpoint values were used to categorize the
isolates as resistant or susceptible. In case of Salmonella,
for sulfamethoxazole, tigecycline and colistin the
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epidemiological breakpoints for E. coli were used
(EUCAST 2019).

Results
From the 70 cattle examined, 23 (32.9%) were positive
for Salmonella and/or E. coli O157 in at least one sam-
ple. Specifically, 14 (20.0%) animals were positive for
Salmonella, and 11 (15.7%) for E. coli O157 (Table 1).
Two animals were positive for both Salmonella and E.
coli O157 (Table 2).

Salmonella
From the 14 Salmonella positive carcasses, the following
16 samples were positive: 5 rectal contents (7.1%), 5
hides (7.1%) and 6 carcasses (1 foreleg, 2 briskets and 3
hind legs) (8.6%). Only in two cases, two samples of the
same animal were positive: the rectal content and the
carcass (brisket) from one animal, and the rectal content
and the carcass (hind leg) from the other animal. The 16
Salmonella isolates were identified as S. Chailey, S.
Dublin, S. Muenchen and S. Typhimurium. All isolates
within a serotype belonged to a single pulsotype (Fig. 1).
The isolates from the animals with two positive samples
were identified as S. Typhimurium. The supplementary
Table 1 shows the MIC distributions of the Salmonella
isolates. All S. Typhimurium isolates showed the same
resistance profile, namely resistant to ampicillin, chlor-
amphenicol, sulfamethoxazole and tetracycline, while the
two S. Dublin isolates were only resistant to colistin. Sal-
monella Chailey and S. Muenchen were sensitive to all
14 antimicrobial drugs tested.

E. coli O157
Of the 11 E. coli O157 positive carcasses, the following
14 samples were positive: 6 rectal contents (8.6%), 3
hides (4.3%) and 5 carcasses (1 foreleg, 2 briskets and 2
hind legs) (7.1%). In three cases, two samples of the
same animal were positive for E. coli O157: hide and
carcass (hind leg), rectal content and hide, and rectal

content and carcass (hind leg). E. coli O157 isolates were
grouped into eight pulsotypes (A-I) (Fig. 2). Among the
isolates obtained from the same animals (n = 3), genetic
relatedness was observed only between isolates obtained
from a hide and a carcass (hind leg) swab of one animal
sampled at the municipal slaughterhouse. All the E. coli
O157 isolates carried the eae and the ehxA gene; the
stx2 gene (10 stx2c and 2 stx2a) was detected in 85.7%
(12/14) of the isolates while the stx1 gene was not de-
tected in any of the isolates. The stx2a subtypes were de-
tected in isolates from a brisket and a hide swab. All E.
coli O157 isolates were sensitive to the 14 antimicrobial
drugs tested.

Discussion
The present study detected for the first time in Ethiopia
Salmonella and E. coli O157 in the rectal content, on
the hide and on cattle carcass at slaughterhouses. Al-
though Salmonella was detected at the same proportion
(7.1%) of the feces and the hide swabs, it was not simul-
taneously detected from the same carcasses. The propor-
tion of positive rectal contents was comparable with the
national prevalence estimate of 7.1% (variation from
2.1% to 16.2%) in Ethiopia (Tadesse and Tessema 2014)
but lower than the pooled prevalence estimate of 15.4%
with a variation from 11.7 to 20% in Africa (Thomas
et al. 2020). The proportion of Salmonella positive hide
samples was lower compared to a study by Sibhat et al.
(2011) who reported a prevalence of 31% in Ethiopia.
Studies that have been conducted elsewhere indicated
the occurrence of Salmonella on hides of cattle at
slaughterhouses with a variable prevalence ranging from
17.7% in England (Reid et al. 2002) and up to 94% in
USA (Brichta-Harhay et al. 2008).
The proportion of E. coli O157 in rectal contents and

on hides was 8.6 and 4.3%, respectively. The proportion
of positive rectal contents was slightly higher compared
to global prevalence estimate of 5.7% that ranges from
0.1% to 61.8% (Islam et al. 2014). A recent study by

Table 1 Proportion of Salmonella and E. coli O157 in the rectal content, hide and carcass swabs obtained from 70 beef cattle in
Bishoftu, Ethiopia

Source Number of samples Salmonella E. coli O157

Number (%) Serotypes Number (%)

Rectal content 70 5 (7.1) Typhimurium (5) 6 (8.6)

Hide 70 5 (7.1) Typhimurium (1), Dublin (1), Chailey (2), Muenchen (1) 3 (4.3)

Carcass 210 6 (8.6) 5 (7.1)

Fore leg 70 1 (1.4) Dublin (1) 1 (1.4)

Hind leg 70 3 (4.3) Typhimurium (1), Chailey (1), Muenchen (1) 2 (2.8)

Brisket 70 2 (2.8) Typhimurium (1), Muenchen (1) 2 (2.8)

Total 350 16 14

Animal 14 (20.0) 11 (15.7)
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Gutema et al. (2021b) reported 7.1% positive rectal con-
tents collected from cattle in the lairage at the same
slaughterhouses. The 4.3% positive hides was lower com-
pared to the global prevalence estimate of 44% with a
variation from 7.3 to 76% (Rhoades et al. 2009). Only
from one carcass, E. coli O157 was detected from the
rectal content and the hide concomitantly. However,
genetic typing showed that the isolates from both sam-
ples were not identical, indicating that the feces of the
animal was not the source of the hide contamination.
In the present study, we observed a carcass contamin-

ation rate of 8.6 and 7.1% for Salmonella and E. coli
O157, respectively. The carcass contamination with Sal-
monella was comparable to the prevalence of 7.6%
(Muluneh and Kibret 2015), 12.5% (Wabeto et al. 2017)

and 11.3% (Takele et al. 2018) in Ethiopia. For E. coli
O157 variable proportions of carcass contamination
were reported: from 0.54% by Abdissa et al. (2017) up to
13.3% by Bekele et al. (2014) for Ethiopia. For both path-
ogens, positive carcasses were only found positive on
one carcass site, indicating that the carcass contamin-
ation is in most cases not widespread over the positive
carcasses. As a consequence, collecting swab samples
from multiple sites on a carcass may increase the num-
ber of positive carcasses. According to the EU regulation
2073/2005 beef carcasses sampled for bacteriological
analysis, four carcass sites have to be swabbed (European
Commission 2005). However, such regulation is not
available for Ethiopia. Thus, it is essential to include ad-
equate number of carcass sites to be sampled for

Table 2 Distribution of Salmonella and E. coli O157 isolates among the positive cattle identified at two slaughterhouses in Bishoftu,
Ethiopia

+Sample positive for Salmonella; + Sample positive for E. coli O157
* identification number of each animal/visit
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bacteriological analysis in the beef safety regulation of
Ethiopia.
Only in a few cases Salmonella or E. coli O157 were

detected simultaneously in the rectal content or on the
hide, and on the corresponding carcasses. For the two
Salmonella isolates and one of the three E. coli O157
isolates, respectively from the rectal content and hide,
and the carcass swabs were genetically similar, indicating
a possible direct transfer of the pathogen to the carcass

surface. In all other cases, no genetic link was stated be-
tween isolates from the rectal content and/or hide iso-
lates and the carcass swabs. The observed low level of
linkage of Salmonella and E. coli O157 isolates on
carcass with those from rectal contents and/ or hide in-
dicates that other sources may be involved in the carcass
contamination during slaughter. This could be due to
cross contamination caused by unhygienic handling
practices such as infrequent washing of knifes and hands

Fig. 2 Pulsed-field gel electrophoresis patterns and virulence factors of E. coli O157 isolates obtained from rectal contents, hides and beef
carcasses in Bishoftu, Ethiopia. o1st letter - slaughterhouse (M-Municipal, P-Private); 2nd letter - sampling visit (A to G); number - carcass within
each visit (1 to 5), last letter(s) - sample sources (R: rectal content; H: hide, Br: brisket carcass, Hl: hind leg carcass, Fo: foreleg carcass). * Isolates
from a same carcass. ** Isolates from a same carcass. *** Isolates from a same carcass

Fig. 1 Pulsed-field gel electrophoresis patterns and resistance profiles of Salmonella isolates from rectal contents, hides and beef carcasses in
Bishoftu, Ethiopia. o 1st letter - slaughterhouse (M: Municipal, P: Private); 2nd letter - sampling visit (A to G); number - carcass within each visit (1
to 5), last letter(s) - sample sources (R: rectal content; H: hide, Br: brisket carcass, Hl: hind leg carcass, Fo: foreleg carcass). oo S-susceptible; AMP-
ampicillin; CHL- chloramphenicol; COL-colistin; SMX- sulfamethoxazole; TET-tetracycline. * Isolates from a same carcass. ** Isolates from a
same carcass
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(Gutema et al. 2021a). Contamination and cross con-
tamination of hides during cattle transport or in the
lairage could increase the risk of carcass
contamination.
Salmonella Dublin was isolated from the hide of one

carcass and from the foreleg of another carcass in this
study and it was also previously reported from retail beef
in Ethiopia (Ejeta et al. 2004) indicating that this sero-
type is present in the cattle population and can be a
source for human infections. S. Dublin is known to
cause invasive infections and fatalities in humans (Har-
vey et al. 2017; Mattheus et al. 2018). In Ethiopia, S.
Dublin was sporadically reported from stool of diarrheic
patients (Tadesse 2014).
All S. Typhimurium isolates were multidrug resist-

ant being resistant to ampicillin, chloramphenicol,
sulfamethoxazole and tetracycline. Except for chlor-
amphenicol, similar resistance profile was observed
for S. Typhimurium isolates from cattle before slaugh-
ter at the same slaughterhouses (Gutema et al.
2021c). This suggests the widespread occurrence of
ampicillin, sulfonamides and tetracycline resistance in
S. Typhimurium isolated from cattle in Ethiopia and
may be related to the long-time marketing and acces-
sibility of these drugs. The two S. Dublin isolates
were resistant to colistin. Resistance to this antibiotic
seems to be common in S. Dublin isolates (EFSA and
ECDC 2020). The finding that all 14 E. coli O157 iso-
lates being susceptible to the 14 antimicrobials tested
was in agreement with our previous study that have
reported susceptibility of E. coli O157 isolates except
one isolate obtained from beef in the study area
(Gutema et al. 2021a).

Conclusions
During slaughter, beef carcasses can become contami-
nated with Salmonella and/or E. coli 0157. The contam-
ination was not widespread over positive carcasses. The
study indicated the frequent occurrence of cross con-
tamination besides the direct contamination of carcasses
by feces and hide of positive animals. More studies are
needed to unravel the sources for this cross contamin-
ation and to develop efficient preventive measures to en-
sure beef safety.
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