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Abstract

Background: This paper presents a simple and effective formulation based on a
rotation-free isogeometric approach for the assessment of collapse limit loads of plastic
thin plates in bending.

Methods: The formulation relies on the kinematic (or upper bound) theorem and
namely B-splines or non-uniform rational B-splines (NURBS), resulting in both exactly
geometric representation and high-order approximations. Only one deflection variable
(without rotational degrees of freedom) is used for each control point. This allows us to
design the resulting optimization problem with a minimum size that is very useful to
solve large-scale plate problems. The optimization formulation of limit analysis is
transformed into the form of a second-order cone programming problem so that it can
be solved using highly efficient interior-point solvers.

Results and conclusions: Several numerical examples are given to demonstrate
reliability and effectiveness of the present method in comparison with other published
methods.

Keywords: Plate bending; Limit analysis; Rigid-perfect plasticity; NURBS; Isogeometric
analysis; Second-order cone programming

Background
Accurate prediction of the load bearing capacity of plate structures plays an important
role in many practical engineering problems. Traditional elastic designs cannot evalu-
ate the actual load carrying capacity of plates and incremental elasto-plastic analyses can
become cumbersome and present convergence issues for large-scale structures. There-
fore, various limit analysis approaches have been devised to investigate the behavior of
structures in the plastic region. Nowadays, limit analysis has become a well-known tool
for assessing the safety load factor of engineering structures as an efficient direct method.
Due to limitation of analytical methods, various numerical approaches such as finite ele-
ment methods (FEM) [1-6], meshfree methods [7,8], and natural element method [9], just
to mention a few, have therefore been developed.
It is also worth adding that mathematical programming is the other key issue in

numerical assessment of limit analysis problem. Discrete upper bound limit analysis
results in a minimization problem involving linear or nonlinear programming. Linear
programming problems can be applied for piecewise linearization of yield criteria, but
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an important number of additional variables is often needed. However, most of the yield
criteria for plates can be formed as an intersection of cones for which the limit analysis
problem can be solved efficiently by the primal-dual interior point method [10,11] imple-
mented in the MOSEK software package [12]. This algorithm was proved to be a very
effective optimization tool for the limit analysis of structures [4,6,7,13-16], and therefore
it will be used in our study.
Isogeometric approach (IGA) has been recently proposed by Hughes et al. [17] to unify

the fields of Computer Aided Design (CAD) and Finite Element Analysis (FEA). The basic
idea is that the IGA uses the same basis functions, namely B-splines or non-uniform
rational B-splines (NURBS), to describe precisely the geometry, especially containing
conic sections and to construct the finite approximation for analysis. It is well known
that NURBS functions provide a flexible way to make refinement, de-refinement and
degree elevation [18]. They enable to easily achieve continuity up to C(p−1), instead of
C0-continuity as it typically happens with traditional FEM. Hence, IGA naturally verifies
the C1-continuity of thin plates, which is interested in this study. The IGA has been well
known and widely applied to various practical problems [19-27] and so on.
Among various plate theories [28], the classical plate theory (CPT) and the first-order

shear deformation plate theory (FSDT) have been widely used in many numerical meth-
ods, especially finite elements. The first-order shear deformation plate theory assumes
that transverse shear stresses are constants through the thickness and a shear correction
factor (SCF) is needed to take into account the non-linear distribution of shear stresses. It
is known in FSDTmodels that the FE approximation functions only requireC0-continuity
across element boundaries. Such a construction is simple but leads to shear locking prob-
lems. In CPT,C1-continuity of approximation fields across element boundaries is needed.
Unfortunately, it is difficult to construct FE formulations with C1-continuous approx-
imation. Traditionally, the conforming FE approximation of the Kirchhoff plate model
has in general 3 degrees of freedom per node. This is due to the continuity of the rota-
tion solutions. It is also well known in the literature that non-conforming finite element
models enable us to relax strict requirements of the continuity of the rotations. Attempts
to eliminate the rotational degrees of freedom help us to reduce significantly the total
number of degrees of freedom of problem without loss of accuracy of solution. As a
result, such approaches promise more benefit for solving large-scale industrial problems
[26,29,30]. For example, an efficient way of the rotation-free FE approaches for plate and
shell analysis is to use C0 basis functions via the so-called cell-centred and cell-vertex
finite volume schemes [29-32]. The rotation-free isogeometric approach recently pro-
posed is regarded as an alternative way for solving practical problems. The method is
conformable to the thin plate/shell theory and the C1-continuity is easily achieved using
NURBS basis functions [33]. Several investigations on the rotation-free formulation can
be found in the literature, e.g., Bernoulli-Euler beams [34], Poisson-Kirchhoff plates [35],
multi-patch Kirchhoff-Love shells [23] and large deformation analysis with rotation-free
[26]. It was demonstrated in the aforementioned references that the rotation-free isoge-
ometric approach is a potential candidate for solving a wide range of practical problems.
It therefore deserves for pursuing and developing this approach for limit analysis of thin
plate structures.
This paper further exploits the advantage of a rotation-free isogeometric approach to

the assessment of collapse limit loads of plastic thin plates in bending. The kinematic



Nguyen-Xuan et al. Asia Pacific Journal on Computational Engineering 2014, 1:12 Page 3 of 29
http://www.apjcen.com/1/1/12

formulation relies on the displacement (deflection) approximation using NURBS, result-
ing in both exact geometric representation and high-order approximations. Only deflec-
tion degrees of freedom are involved in the underlying optimization problem. This
enables us to design the resulting optimization problem with a minimum size and to
reduce computational cost. We adopt a simple procedure to eliminate rotational degrees
of freedom on essential boundary conditions related to the constraint of normal slopes.
The resulting non-smooth optimization problem is then written in the form of minimiz-
ing a sum of Euclidean norms so that it can be solved using highly efficient interior-point
solvers. Several numerical examples are provided to show the reliability and accuracy of
the present formulation.
The paper is arranged as follows: a brief review of B-spline and NURBS surfaces is

described in the next section. This is followed by a section stating a rotation-free NURBS-
based isogeometric formulation for limit analysis of thin plate problems. The solution
procedure is given in the fourth section. Several numerical examples are illustrated in the
fifth section. Finally, we close our paper with some concluding remarks.

Methods
A brief review of NURBS basis functions and surfaces

Knot vectors and basis functions and surfaces

Let � = [
ξ1, ξ2, . . . , ξn+p+1

]
be a nondecreasing sequence of parameter values, ξi ≤

ξi+1, i = 1, . . . , n + p, where p is the polynomial order and n is the number of basis func-
tions. The ξi are called knots, and � is the set of coordinates in the parametric space. The
knot vector is called uniform if all knots are equally spaced. If the first and the last knots
are reduplicated p + 1 times, the knot vector is known as open. A B-spline basis function
is C∞ continuous inside a knot span and Cp−1 continuous at a single knot. A knot value
can appear more than once and is then called a multiple knot. At a knot of multiplicity k,
the continuity is Cp−k . Given a knot vector, the B-spline basis functions Ni,p(ξ) of order
p = 0 are defined as follows:

Ni,0(ξ) =
{
1 ξi ≤ ξ < ξi+1
0 otherwise

(1)

The basis function of order p > 0 is defined by the following recursion formula [33]

Ni,p (ξ) = ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ)+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) with p = (1, 2, 3, . . .)

(2)

For p = 0 and 1, the basis functions of isogeometric analysis are identical to those of
standard piecewise constant and linear finite elements, respectively. Nevertheless, for p ≥
2, they are different [17]. Therefore, the present work will consider only basis functions
with p ≥ 2. Figures 1 and 2 illustrate a set of one-dimensional (1D) and two-dimensional
(2D) quadratic and cubic B-spline basis functions for open uniform knot vectors � ={
0, 0, 0, 12 , 1, 1, 1

}
and � = {

0, 0, 0, 0, 12 , 1, 1, 1, 1
}
, respectively.
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Figure 1 1D and 2D quadratic B-spline basis functions.

NURBS surfaces

A B-spline curve is defined as

C (ξ) =
n∑

i=1
Ni,p (ξ)Pi (3)

where Pi are the control points, n denotes the number of control points andNi,p (ξ) is the
pth-degree B-spline basis function defined on the open knot vector.
Given two knot vectors � = {

ξ1, ξ2, . . . , ξn+p+1
}
and H = {

η1, η2, . . . , ηm+q+1
}
and a

control net pi,j, a tensor-product B-spline surface is defined as

S (ξ , η) =
n∑

i=1

m∑
j=1

Ni,p (ξ)Mj,q (η)pi,j (4)

where Ni,p (ξ) andMj,q (η) are the B-spline basis functions defined on the knot vectors �

and H , respectively.
In a finite element context, we identify the logical coordinates (i, j) of B-spline surfaces

with the traditional notation of a ‘node’ I [24] and rewrite Equation 4 as follows:

S (ξ , η) =
n×m∑
I

Nb
I (ξ , η)PI (5)

0 1/2 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2 1D and 2D cubic B-spline basis functions.
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where Nb
I (ξ , η) = Ni,p (ξ)Mj,q (η) is the shape function associated with a node I. The

superscript b indicates that Nb
I (ξ , η) is a B-spline shape function.

Non-uniform rational B-splines (NURBS) are obtained by augmenting every point in
the control mesh PI with the control weight ζI . The weighting function is constructed as
follows:

ζg (ξ , η) =
n×m∑
I=1

Nb
I (ξ , η) ζI (6)

The NURBS surfaces are then defined by

S (ξ , η) =

n×m∑
I=1

Nb
I (ξ , η) ζIPI

ζg (ξ , η)
=

n×m∑
I=1

NI (ξ , η)PI (7)

where NI (ξ , η) = Nb
I (ξ , η) ζI/ζg (ξ , η) are NURBS basis functions. An example of a

quadratic NURBS surface with 4 × 4 elements is indicated in Figure 3.

Rotation-free isogeometric formulation for upper bound limit analysis of plates

A background on limit analysis theorems of thin plates

Let � ⊂ R
2 be the mid-plane of a plate and ẇ be the transversal displacement velocity

(or deflection velocity) in the z direction. Further, let us consider a kinematical boundary
�1 = �w ∪ �wn and a static boundary �2 = �m ∪ �mn , where the subscript n stands for
the outward normal vector. The general relations for thin Kirchhoff plates are described
as follows.
Equilibrium
Collecting the bending moments in the vector mT = [

mxx,myy,mxy
]
, the equilibrium

equation can be written as

(∇2)Tm + λq̄ = 0 (8)

where q̄ is the transverse load, λ is the collapse loadmultiplier and the differential operator
∇2 is defined by ∇2 =

[
∂2

∂x2
∂2

∂y2 2 ∂2

∂x∂y

]T
.

Figure 3 Physical mesh and control points of a quadratic NURBS surface.
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Compatibility
If w denotes the transverse displacement velocity, the curvature rates can be expressed

by the following relation

κ̇ = [
κ̇xx, κ̇yy, 2κ̇xy

]T = ∇2ẇ (9)

Flow rule and yield condition
In the framework of a limit analysis problem, only plastic strains are considered and

are assumed to obey the normality rule κ̇ = μ̇
∂ψ
∂m , where the plastic multiplier μ̇ is

non-negative and the yield function ψ(m) is convex. In this study, the von Mises failure
criterion in the space of moment components is used

ψ(m) =
√
mT P m − mp ≤ 0 (10)

wheremp = σ0t2/4 is the plasticmoment of resistance per unit width of a plate of uniform
thickness t, σ0 is the yield stress and

P = 1
2

⎡
⎢⎣ 2 −1 0

−1 2 0
0 0 6

⎤
⎥⎦ (11)

The dissipation rate
The internal dissipation power of the two-dimensional plate domain can be written as

a function of the curvature rates as

Dp(κ̇) =
∫

�

∫ t/2

−t/2
σ0
√
ε̇T�ε̇ dz dA = mp

∫
�

√
κ̇T� κ̇ d� (12)

where

ε̇ =
⎡
⎢⎣ ε̇xx

ε̇yy
γ̇xy

⎤
⎥⎦ = zκ̇ (13)

and

� = P−1 = 1
3

⎡
⎢⎣ 4 2 0
2 4 0
0 0 1

⎤
⎥⎦ (14)

Details on the derivation of the dissipation for plate problems can be found in [2]. Let it be
pointed out that, here, the velocity fields are supposed to be C1-continuous. In fact, more
general fields presenting discontinuities of the normal rotation are possible. In this case,
the expression of the dissipation power includes a supplementary term. For more details
on this aspect, we refer to [6].
Let V denote a space of kinematically admissible velocity field:

V = {
ẇ ∈ H2(�)

} ∩ B (15)

and � be an appropriate space of symmetric stress tensors and B is a set of essential
boundary conditions defined in subsection ‘Essential boundary conditions’. More details
on the mathematical formulations for limit analysis can be found in [36]. The external
work rate of a transversal force q̄ associated with a virtual plastic flow ẇ ∈ V is expressed
in the linear form as

Wex(ẇ) =
∫

�

q̄ẇ d� (16)
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The internal work rate for sufficiently smooth stresses (or moments) m and velocity
field ẇ is given by the bilinear form

Win(m, ẇ) =
∫

�

mTκ(ẇ) d� (17)

The equilibrium equation is then described in the form of virtual work rate as follows:

Win(m, ẇ) = Wex(ẇ),∀ẇ ∈ V (18)

Furthermore, the stresses m must satisfy the yield condition for the assumed material.
This stress field belongs to a convex set, B, obtained from the used field condition. For
the von Mises criterion, one writes

B =
{
m ∈ �; | m2

xx − mxxmyy + m2
yy + 3m2

xy ≤ m2
p

}
(19)

If defining C = {ẇ ∈ V |Wex(ẇ) = 1}, the exact collapse multiplier λexact can be
determined by solving any of the following optimization problems [36]:

λexact = max{λ | ∃m ∈ B : Win(m, ẇ) = λWex(ẇ),∀ẇ ∈ V } (20)

= max
m∈B

min
ẇ∈C

Win(m, ẇ) (21)

= min
ẇ∈C

max
m∈B

Win(m, ẇ) (22)

= min
ẇ∈C

Dp(ẇ) (23)

Problems (20) and (23) are known as static and kinematic principles of limit analysis,
respectively. The limit load of both approaches converges to the exact solution. Herein, a
saddle point (m∗, ẇ∗) exists such that both the maximum of all lower bounds λ− and the
minimum of all upper bounds λ+ coincide and are equal to the exact value λexact. In this
work, we only focus on the kinematic formulation. Hence, problem (23) will be used to
evaluate an upper-bound limit load factor using a NURBS-based isogeometric approach.

NURBS-based approximate formulation

Using the same NURBS basis functions, both the description of the geometry (or the
physical point) and the velocity of the displacement field are expressed as

x(ξ , η) =
n×m∑
I

NI (ξ , η)PI , ẇh(x(ξ , η)) =
n×m∑
I

NI (ξ , η)ẇI (24)

where n × m represent the number of basis functions, xT = (x, y) is the physical coordi-
nates vector, NI (ξ , η) is the NURBS basis function and ẇI is the nodal value of ẇh at the
control point I, respectively.
The curvature rates are written as

κ̇ =
∑
I

BI ẇI (25)

where

BI =
[
NI,xx NI,yy 2NI,xy

]T
(26)

The plastic dissipation power (Equation 12) of the perfectly rigid plastic body is
computed over all patches:

Dh
p = mp

∫
�

√
κ̇T�κ̇ d� = mp

nel∑
e=1

∫
�e

√
κ̇T�κ̇ d� (27)



Nguyen-Xuan et al. Asia Pacific Journal on Computational Engineering 2014, 1:12 Page 8 of 29
http://www.apjcen.com/1/1/12

where nel denotes the total number of elements. The integration
∫
�e

√
κ̇T�κ̇ d� in

Equation 27 is approximated using the Gaussian quadrature rule [17] which allows
Equation 27 to be rewritten as

Dh
p ≈ mp

NG∑
i=1

ω̄i |Ji|
√
κ̇Ti � κ̇i (28)

where NG = nel × nG is the total number of Gauss points of the problem, nG is the
number of Gauss points in each element, ω̄i is the weight value at the Gauss point i and
|Ji| is the determinant of the Jacobian matrix computed at the Gauss point i.
The curvature rate κ̇ is now evaluated at Gauss points as

κ̇i = Biẇ ∀i = 1,NG (29)

where Bi is defined as the global deformation matrix and ẇT = [ẇ1, ẇ2, . . . , ẇnCP] is the
global displacement velocity vector, in which nCP is the total control points of the prob-
lem. The external work rate given in Equation 16 is also computed at Gauss points as

Wext(ẇ) =
NG∑
i=1

q̄ω̄i |Ji|N(ξ̄i, η̄i)ẇ = 1 (30)

where N = [N1(ξ̄i, η̄i),N2(ξ̄i, η̄i), . . . ,NnCP(ξ̄i, η̄i)] is the global basic function vector and
(ξ̄i, η̄i) is the Gaussian quadrature point in a bi-unit parent element.
Finally, the optimization problem (23) associated with the IGA can now be rewritten as

λ+ = min mp

NG∑
i=1

ω̄i |Ji|
√
κ̇Ti � κ̇i

s.t

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
κ̇i = Biẇ, ∀i = 1,NG
ẇ = 0 and ẇn = 0 on �1

Wext(ẇ) =
NG∑
i=1

q̄ωi |Ji|N(ξ̄i, η̄i)ẇ = 1

(31)

Since integral Equation 27 is not calculated exactly, it cannot be said that the formula-
tion yields a strict upper bound using this formula. Nevertheless, the optimal velocity field
is still kinematically admissible and corresponding compatible strain are obtained using
the Bi matrix so that a strict upper bound can be obtained provided that the dissipation is
computed exactly a posteriori. However, in practice, there is practically no difference and
the computed values can be considered as upper bounds.

Essential boundary conditions

In this part, we show how to impose essential boundary conditions of the isogeometric
approach. For the sake of simplicity, we consider the following several Dirichlet boundary
conditions (BCs):

• Simply supported plates with curved boundaries

B = {ẇ(xD) = 0 on �1} (32)

• Clamped plates

B = {ẇ(xD) = 0 and ẇn(xD) = 0 on �1} (33)

where ẇn(xD) is the normal rotation constraint and xD are control points that define the
essential boundary.
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It is well known that the enforcement of Dirichlet BCs on ẇ is treated as in the stan-
dard FEM. This procedure involves only control points that define the essential boundary.
However, for the normal rotation ẇn occurred in (32), the enforcement of Dirichlet BCs
can be solved in a special way reported in [23,37]. The idea for a clamped case, i.e,
ẇn(xD) = 0 is to impose zero values of deflection velocity variables, i.e., ẇ = 0, at both
control points xD = {

xD1 , . . . , xDd

}
and xA = {

xA1 , . . . , xAd

}
adjacent to the boundary

control points xD as shown in Figure 4. It be can seen that enforcing essential boundary
conditions using this way in the isogeometric approach is very simple and efficient when
comparing with other numerical methods.
The second and third constraints (31) can be written as a standard linear equality

constraint (ec):

Becq̇ = bec (34)

where the matrix Bec and vector bec of Equation 34 are given by

Bec =

⎡
⎢⎢⎢⎣

NG∑
i=1

ω̄i |Ji|N1(ξ̄i, η̄i) · · ·
NG∑
i=1

w̄i |Ji|NnCP(ξ̄i, η̄i)

Bec
IJ

Bec
IJ

⎤
⎥⎥⎥⎦

(2d+1)×nCP

(35)

becT =
[
1

d︷ ︸︸ ︷
0 · · · 0

d︷ ︸︸ ︷
0 · · · 0

]
(36)

where row 1, row 2 to d + 1 and row d + 2 to 2d + 1 in Bec matrix stand for the number
of constraints related to an external work rate, the boundary control points and control
points adjacent to the boundary, respectively, and Bec

IJ is described as

Bec
IJ =

{
1 each I ∈ {1, 2, . . . d} with respect to each J ∈ D

0 otherwise
(37)

Figure 4 Clamped boundary conditions in a rotation-free IGA formulation.
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where d denotes the number of control points defining the Dirichlet boundary with
respect to a set of boundary control points D = {n1, n2, . . . nd}.
Note that first d + 1 rows in (35) are indeed used for limit analysis of plates with the

only prescribed deflection on �1. In addition, when the symmetric boundary conditions
are employed, as illustrated in Figure 5, we enforce the constraint of same deflections into
the boundary control points and control points adjacent to the symmetric boundary, (i.e.
along the symmetry lines, the normal rotation is fixed which can be achieved by enforcing
the deflection of two rows of control points that define the tangent of the plate to have the
same value [22]). A matrix storing such constraints will be added to the extensive rows
of Bec.
It be can observed that the enforcement of essential boundary conditions using the

rotation-free approach is simple and efficient in comparison with other numerical meth-
ods. For instance, readers can find more details on the advantages of this procedure in
[22,23,25,26]. In addition, IGA based on the Lagrange multiplier, penalty and collocation
methods (see [7]) can be also used to enforce essential boundary conditions for the thin
plate.

Solution procedure of the discrete problem

Second-order cone programming

The above limit analysis problem is a non-linear optimization problem with equal-
ity constraints. It can be solved using a general non-linear optimization solver such
as a sequential quadratic programming (SQP) algorithm (which is a generalization of
Newton’s method for unconstrained optimization), a direct iterative algorithm [38]. In
particular, the optimization problem can be reduced to the problem of minimizing a sum
of norms by Andersen et al. [39] due to the specific choice of the von Mises criterion
and can be reformed as a second-order cone programming (SOCP) problem and solved

(a) Symmetric conditions (b) Coupled nodes

Figure 5 A fully clamped square plate: a quarter of plate is modeled: (a) symmetric conditions; (b)
coupled nodes.
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using an interior point method [12]. The general form of a SOCP problem with Ncs sets
of constraints has the following form

min
NG∑
i=1

citi

s. t. ‖Hit + vi‖ ≤ yTi t + zi for i = 1, . . . ,Ncs (38)

where ti ∈ R, i = 1,NG or t ∈ R
NG are optimization variables, and the coefficients are

ci ∈ R, Hi ∈ R
mdim×NG, vi ∈ R

mdim , yi ∈ R
NG, and zi ∈ R. For optimization problems

in 2D or 3D Euclidean space, mdim = 2 or mdim = 3, respectively. When mdim = 1, the
SOCP problem reduces to a linear programming problem.

Solution procedure using second-order cone programming

The limit analysis problem, Equation 31, is a non-linear optimization problem with
equality constraints. As stated before, the problem can be reduced to the problem of
minimizing a sum of norms following the procedure described by Andersen et al. [39].
Since � is a positive definite matrix, the objective or the internal plastic dissipation

function in Equation 31 can be straightforwardly rewritten in a form involving a sum of
norms as

Wint ≈ mp

NG∑
i=1

ω̄i |Ji|
∣∣∣∣∣∣CT κ̇i

∣∣∣∣∣∣ (39)

where ‖·‖ denotes the Euclidean norm appearing in the plastic dissipation function, i.e.,
‖v‖ = (vTv)1/2, C is the so-called Cholesky factor of � which is given by

C = 1√
3

⎡
⎢⎣ 2 0 0
1

√
3 0

0 0 1

⎤
⎥⎦ (40)

For convenience, a vector of additional variables ρi is introduced as

ρi =
[

ρ1 ρ2 ρ3
]T = CT κ̇i (41)

Hence, Equation 39 becomes

Wint = mp

NG∑
i=1

ω̄i |Ji|
∣∣∣∣ρi

∣∣∣∣ (42)

Figure 6 Clamped - supported beammodel.
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Table 1 A comparison of the limit load factor
(
q̄a2

mp

)
of beams withmp = σ0bt2/4

Methods SS CS CC

Present (p = 2) 8.0007 (66 Dofs) 11.703 (514 Dofs) 16.063 (258 Dofs)

Present (p = 3) 8.0004 (67 Dofs) 11.687 (515 Dofs) 16.042 (259 Dofs)

Analytical 8.0 11.657 16.0

Now the optimization problem (31) becomes a problem of minimizing a sum of norms
as

λ+ = min mp

NG∑
i=1

ω̄i |Ji|
∣∣∣∣ρi

∣∣∣∣
s.t
{

ρi = CT Biẇ ∀i = 1,NG
Becẇ = bec

(43)

In fact, a problem of this sort can be reformed as a SOCP problem by introducing
auxiliary variables t1, t2, . . . , tNG

λ+ = min mp

NG∑
i=1

ω̄i |Ji| ti

s.t

⎧⎪⎨
⎪⎩
∣∣∣∣ρi

∣∣∣∣ ≤ ti ∀i = 1,NG
ρi = CT Biẇ ∀i = 1,NG
Becẇ = bec

(44)

where the first constraint in Equation 44 represents quadratic cones. The total number of
variables of the optimization problem is Nvar = NoDofs + 4 × NG where NoDofs is the
total number of the degrees of freedom (DOFs) of the underlying problem. As a result, the
optimization problem defined by Equation 44 can be effectively solved by the academic
version of the Mosek optimization package [12].

Results and discussion
In this section, we examine the performance of the present approach through the limit
analysis of beams and plates. The computations are performed on a desktop computer
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Figure 7 Convergence rate of limit load factors of beams.
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(c) 4 × 4 elements (49 NoDofs)

(a) (b)

Figure 8 Full model of square plates and an illustration of uniformmesh: (a) fully clamped; (b) simply
supported; (c) coarse mesh.
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Figure 9 Comparison of numerical results of the clamped square plate using two Gaussian rules.
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Figure 10 Comparison of computational times of the clamped square plate using quadratic and cubic
elements.

with ADM Phenom II X6 (2.8GHz CPU, 16G RAM). For purpose of comparison with
other publishedmethods in the literature, we will restrict our interest to simply supported
and clamped plates, which are the most frequently found case in practice. As shown in
[17], the standard Gaussian quadrature rule (or nG = ( p + 1) × ( p + 1) Gauss points)
is used to evaluate the integrals of NURBS elements of p degree. Just a precision, this
is valid only for evaluating stiffness matrices and load vector for elastoplastic analyses,
but here the dissipation involving a square root cannot be evaluated exactly using Gauss
rules. However, we also can utilize this quadrature rule for limit analysis problem without
much loss of accuracy of solution. It also is worth mentioning that the computational cost
increases significantly when higher-order elements are used. This was pointed out that
using the Gauss quadrature rule for NURBS elements is far from optimal. Hence, a simple
and efficient quadrature algorithm [40,41] for NURBS-based isogeometric analysis will
be recommended for our future research. For the limit problem of thin plates, we in this
study employ only nG = p × p Gauss pointsa to compute the integral in Equation 27. We
also exploit the so-called k-refinement approach, which is a unique characteristic of IGA
as a flexible way for refinement and degree elevation for limit analysis problems. Note
that with the same number of elements, the total number of DOFs of IGA is less than that
of FEM. For all the examples, the von Mises criterion and perfectly rigid plastic material
are used.

Table 2 The convergence of the limit load factor (q̄a2/mp) for a clamped square plate

Authors Mesh

8 × 8 16 × 16 32 × 32 64 × 64

Present (Quadratic) 49.487 46.784 45.456 44.781

Present (Cubic) 47.302 45.760 44.963 44.556

Hodge and Belytschko [1] - - - 49.25/42.86

Reference solution [1]: upper/lower bounds.
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Table 3 The convergence of the limit load factor
(
q̄a2/mp

)
for a simply supported square

plate

Authors Mesh

4 × 4 8 × 8 16 × 16 32 × 32

Present (Quadratic) 25.295 25.089 25.037 25.023

Present (Cubic) 25.064 25.022 25.019 25.018

Hodge and Belytschko [1] - - - 26.54/24.86

Reference solution [1]: upper/lower bounds.

Beams

We restrict the present formulation to a 1D beam case and verify its performance for the
Euler beam of length a and thickness t. Without loss of generality, beams of rectangular
cross section (b × t) are considered and subjected to a uniform load and various bound-
ary conditions at the ends, as shown in Figure 6. For computation, a symmetry model is
applied to the simply supported and clamped beams whilst the clamped simply supported
beam uses a full model.
Table 1 shows limit load factors of the beam with various boundary conditions. It can

be seen that the numerical results are in very good agreement with analytical solutions.
The convergence rates are plotted in Figure 7. They verify the theoretically expected val-
ues of 1:1 for the clamped beam and 1:2 for the simply supported beam. Being different
from the regularity of the convergence rate in elastic problems [17], the convergence rates
obtained do not change significantly when increasing the degree of basis functions of the
approximate solution. This is due to the appearance of plastic hinges in the beam. More
importantly, the accuracy of solution is improved with increasing the degree of basis
functions.

Rectangular plates

We next consider a square plate of length a and thickness t with clamped and simply
supported boundary conditions subjected to a uniform load, as shown in Figure 8. Here,
we use a symmetric model and a coarsely uniform mesh is given in Figure 8c.
Similar to FEM, Gauss quadrature can be utilized for integration on element level,

although it was proved that such a Gauss quadrature is far from optimal with NURBS

Table 4 A comparison of the limit load factor
(
q̄a2/mp

)
for a square plate

Authors Methods Bounds Simply supported Clamped

Hodge and Belytschko [1] Quadratic field (nonconforming) UB 26.54 49.25

Capsoni and Corradi [2] BFS (conforming) UB 25.02 45.29

Le et al. [4] HCT (conforming) UB 25.01 45.12

Bleyer and de Buhan [6] T6b (nonconforming) UB - 45.036

Bleyer and de Buhan [6] H3 (nonconforming) UB - 44.287

Zhou et al. [9] C1-NEM UB 25.07 45.18

Le et al. [7] EFG QUB 25.01 45.07

Le et al. [16] EFG QLB 24.98 43.86

Le et al. [4] Enhanced Morley (EM) LB 24.93 43.454

Present (p = 2) IGA UB 25.023 44.803

Present (p = 3) IGA UB 25.018 44.556

UB, upper bound; QUB, quasi-upper bound; QLB, quasi-lower bound; LB, lower bound.
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Figure 11 Relative error to the reference upper bound of the clamped square plate.

basis functions [40,41]. Herein, discussion focuses on using a right reduction of the num-
ber of Gauss points without loss of accuracy of solution. Figure 9 shows that two Gaussian
quadrature rules produce the same results while the number of optimization variables
using p × p Gauss points reduces very significantly, approximately Nvar/3 less than those
using the full integration.
For the computational cost, it is estimated based onNvar versus total optimization steps

(Mosek times). Results are plotted in Figure 10. It is seen that the total number of variables
increases quickly when increasing the degree of basis functions. Optimization problems
solved using the Mosek academic software show very fast convergence in about 13 to 16
step iterations with computing times ranging from 2 to 18 s only.
Although the analytical solution is unknown, this benchmark has been investigated

by many authors. The earliest numerical performance of the upper and lower bounds
was proposed by Hodge and Belytschko [1]. Tables 2 and 3 show the convergence of

(a) (b)
Figure 12 The plastic dissipation of a square plate: (a) SSSS; (b) CCCC.
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Figure 13 Convergence of the limit load factor
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)
of a clamped square plate using
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the present solutions using quadratic and cubic elements versus elemental meshes. The
present solutions fall between lower and upper bound published ones.
Table 4 compares the present results with the upper bound solutions [1,2,4,6,9], the

quasi-upper bound [7] and the (quasi-) lower bound [4,16]. As seen, the limit load fac-
tor using the rotation-free IGA approach is more accurate than that of several published
solutions. The improved upper bound solution of 45.036 and 44.287 derived with respect
to T6b and H3 elements is provided by Bleyer and de Buhan [6] for the clamped square
plate problem. The present results agree well with the most recent upper bounds; one has
a value of 44.560 for the cubic B-splines element (between 1% and 0.6% with respect to
T6b and H3). Figure 11 illustrates several reference upper bound solutions of the clamped
square plate and proves the reliability of the present solutions.
In addition, Figure 12 depicts the plastic dissipation of simply supported and clamped

square plates. It is seen that the rotation-free IGA approach can reproduce properly
the plastic dissipation (or yield line mechanism). Even the failure mechanism can be
reproduced exactly using a lower number of DOFs.
Furthermore, to prove the flexibility of the present method, we study its performance

using k-refinement (higher order and higher continuity). In this case, two slightly coarse
mesh of 4 × 4 and 8 × 8 B-spline elements are illustrated. We know that one of the
main advantages of IGA is to increase easily the order of basis functions. Especially,
k-refinement algorithm in IGA can produce easily C1-continuity between elements while
p-refinement (in the p-version FEM) achieves only C0 continuity. The limit load factor of

Table 5 The limit load factor
(
q̄ab/mp

)
for a rectangular plate with a/b = 2 and various

condition boundaries

Authors SSSS CCCC CCCsF CCClF CCsFF

Le et al. [7] 29.88 54.61 43.86 - -

Zhou et al. [9] 28.90 55.09 45.18 18.82 40.39

Melosh [42] 29.88 57.26 46.31 19.74 40.28

Present (p = 2) 29.93 54.95 45.19 19.61 39.40

Present (p = 3) 29.88 54.65 44.91 19.44 38.55
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(a) (b)

(c) (d)

(e)

Figure 14 The plastic dissipation of a rectangular plate: (a) SSSS; (b) CCCC; (c) CCCsF; (d) CCClF; (e)
CCsFF.

the clamped square plate using the k-refinement algorithm is shown in Figure 13. Numer-
ical results indicate that the rotation-free isogeometric approach with k-refinement
improves very well the convergence of solution.
Next, let us consider the rectangular plate (length-to-width ratio a/b = 2) with various

boundary conditions. We compare the present results with other published ones such

Figure 15 Geometry of a rhombic plate.
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(b) α = 300 (c) α = 600

(a) 21 × 21 control points

Figure 16 Meshes of B-spline elements: (a) control points; (b) α=30°; (c) α=60°.

as the EFG method [7], the rectangular non-deforming plate element (ACM) [42] and
the C1 natural element method [9]. Table 5 summarizes the limit load multipliers of a
rectangular plate with various boundary conditions such as simply supported (SSSS), fully
clamped (CCCC), three-clamped and one-short free sides (CCCsF), three-clamped and
one-long free sides (CCClF), and two-clamped and two-short free sides (CCsFF). It is
again observed that the results obtained are in good accordance with other published
ones. Figure 14 shows the plastic dissipation with very good smoothness using the cubic
B-spline basis functions.

Rhombic plate

A rhombic plate with varying skewness angles α as shown in Figure 15 is subjected to
a uniform load. For comparison, the rhombic plate is modeled by 20 × 20 B-spline ele-
ments, as shown in Figure 16. Simply supported and fully clamped boundary conditions
are considered. In the numerical calculation, the radius of the circular in Figure 16 is

Table 6 Results of the limit load factor
(
q̄R2/mp

)
for the rhombic plate

α0 Boundaries Capsoni and Silva [44] Zhou et al. [9] Present (p = 2) Present (p = 3)

0 SSSS 6.278 6.267 6.267 6.255

15 6.197 6.186 6.230 6.166

30 5.966 5.916 5.942 5.901

45 5.609 5.447 5.570 5.475

60 5.140 4.808 5.090 4.89

0 CCCC 12.062 11.296 12.100 11.674

15 11.893 11.065 11.928 11.506

30 11.394 10.781 11.423 11.010

45 10.596 9.939 10.615 10.195

60 9.575 8.901 9.602 9.077
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Figure 17 Limit load factor of a skew plate: (a) simply supported; (b) fully clamped.

chosen as R = 0.5 and the plate thickness is fixed at t = 0.02. The results of the col-
lapse limit factor with varying skewness angle are listed in Table 6. The obtained result
is compared with the analytical solution given by Mansfield [43], the Mindlin plate finite
element (N4B̄0) proposed by Capsoni and Silva [44] and C1 natural element method (C1-
NEM) based on Kirchhoff plate model by Zhou et al. [9]. For this problem, an analytical

(a) (b)

Figure 18 Plastic dissipation of a rhombic plate with α=30°: (a) simply supported plate, (b) clamped
plate.
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(a) Supported plate (b) Clamped plate

Figure 19 L-shaped plate models: (a) supported plate; (b) clamped plate.

approach into lower bound (LB) and upper bound solutions using the square yield crite-
rion were proposed by Mansfield [43]. Note that an upper bound (UB) solution using the
square yield criterion can be obtained by multiplying the lower bound value with a fac-
tor of 2/

√
3. Figure 17 depicts the collapse limit factor with respect to various skewness

angles. It is observed that the result of the quadratic element matches well with that of

(a) (b)

(c)

Figure 20 Control net, coarse mesh and fine mesh of an L-shaped plate: (a) quadratic, (b) cubic, (c)
50 × 25 B-splines elements.
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Table 7 The limit load factor
(
q̄L2/mp

)
for an L-shaped plate

Authors Methods SSSS CCCC

Le et al. [7] QUB 6.298 -

Le et al. [4] UB/LB 6.288/6.065 -

Bleyer and de Buhan [6] UB -T6b 6.44 -

Bleyer and de Buhan [6] UB -H3 6.24 -

Present (p = 2) UB 6.298 16.146

Present (p = 3) UB 6.174 15.621

Reference [6] 6.16 -

the N4B̄0 element. The cubic element produces higher accuracy solutions than the N4B̄0
element and is competitive to the C1-NEM. When increasing skewness angle, the limit
load factor value decreases. Figure 18 shows the plastic dissipation energy of 60°-rhombic
plates using the cubic element. It is clear that the present method is reliable for predicting
collapse mechanism compared to other published ones [9,44].

L-shaped plate

We consider an L-shaped plate subjected to a uniform load. The plate geometry is
shown in Figure 19. Control net, coarse mesh and fine mesh are detailed in Figure 20.
Knot vectors and control data are given in the Appendix (‘L-shaped plate’). This prob-
lem involves a singular behaviour at the obtuse vertices. Simply supported and fully
clamped boundary conditions are used. The plate is modeled by 50 × 25 B-spline ele-
ments of 1,512 nodes (Nvar = 21, 512 for p = 2, and Nvar = 46513 for p = 3). The
obtained results are compared with those of the quasi-upper approach based on the
element-free method [7] and the dual FEM approach [4] based on the conforming HCT
and enhanced equilibrium Morley (EM) element using the finest mesh of 6,426 nodes
(or Nvar = 105, 264 for HCT). Table 7 summarizes the collapse limit load factor. The
present elements provide strict upper bound solutions and produce load factor values
lower than EFG and HCT elements. Note that the HCT element has 3 Dofs per node
resulting in a larger number of DOFs than the present elements. Also, for comparison,
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Figure 21 Relative error to the reference upper bound of a simply supported L-shape plate.
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Figure 22 Geometry of a clamped circular plate.

(a) (b)

(c)

Figure 23 Coarse mesh and control points of a circular plate with various degrees: (a) p = 2, (b) p = 3
and (c) p = 15.
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(a) (b)

(c) (d)

Figure 24 Element meshes of a circular plate: (a) 4× 4; (b) 12× 12; (c) 20× 20; (d) 28× 28.

the EFG requires 3,816 nodes (or 3,816 NoDofs) while the cubic element has only 1,024
nodes.
The accuracy of the present method in comparison with HCT element is also shown in

Figure 21. It is clear that the performance of the present elements is better than that of
the HCT.
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Figure 25 Convergence of the limit load factor (q̄R2/mp) of a circular plate.
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Figure 26 Convergence of the limit load factor (q̄R2/mp) of a circular plate using k-refinement.

Circular plate

Circular plate subjected to uniform transverse loading

In this example, we consider a fully clamped circular plate under uniform transverse load-
ing as illustrated in Figure 22. The circular plate has a radius to thickness ratio of 100
(R/t = 100). A rational quadratic basis is enough to model exactly the circular geometry.
Knot vectors and control data of the circular plate are given in the Appendix (‘Circular
plate’). Coarse mesh and control net of the plate with respect to quadratic, cubic, quartic
and fifteenth elements are illustrated in Figure 23. To investigate the convergence of the
limit load factor, differentmeshes of 4×4, 12×12, 20×20 and 28×28NURBS elements are
displayed in Figure 24. The results of the limit load factor are provided in Figure 25. The
obtained solution is compared with that of the analytical approach [45] and the numeri-
cal formulation presented in Capsoni and Silva [44]. It can be seen that the present results
converge well to the analytical value and are much better than those of the N4B̄0 element.
The k-refinement algorithm is now used to calculate the limit load factor of the clamped

circular plate. Figure 26 shows the limit load factor of various degrees of NURBS functions
(from 5 to 15) based on a mesh of 6 × 6 NURBS elements. The obtained result converges
well to the best reference value given in the literature.

Figure 27 An illustration of a circular plate subjected to a non-uniform load.
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Table 8 The limit load factor λcr/mp for a clamped circular plate subjected to a linear load

a2 Tresca(UB) Square(UB) Quadratic Cubic

−3 8.404 9.238 8.554 8.402

−2 6.412 6.928 6.639 6.485

−1 5.174 5.543 5.414 5.270

0 4.334 4.619 4.567 4.446

1 3.727 3.959 3.948 3.8926

2 3.269 3.464 3.475 3.363

3 2.911 3.080 3.074 3.000

Circular plate subjected to non-uniform transverse loading

Finally, we study a clamped circular plate subjected to non-uniform (linear and parabolic)
load as shown in Figure 27. The parabolic load can be written as follows [43]:

f (r) = a1 + a2r + a3r2 (45)

where a1, a2 and a3 are predefined constants. In the numerical calculation, the constants
a1, a2 and a3 are chosen in such a way that a1 is fixed at value of 3 (a1 = 3) and a2, a3 vary.
The geometry and material parameters are as given in the previous case. For illustration,
we use a slightly fine mesh of 17× 17 NURBS elements for quadratic and cubic elements.
For a varying load case, the analytically upper bound value based on the square yield

criterion is λcr = 12
√
3mp/

(
(2a1 + a2R)R2) [43]. Table 8 compares the present solu-

tions and the analytical values using both the Tresca and square yield criteria reported
by Ghorashi [43]. As expected, the present results almost vary between the upper bound
solutions using the Tresca and square yield criteria.
For a parabolic load case, the constants are chosen such as a1 = 3, a2 = 2 and various a3

values. The limit load factor is given in Table 9. Again, the present solutions are bounded
by the upper bound values reported in [43].

Conclusions
We have for the first time presented a rotation-free isogeometric finite element approach
for upper bound limit analysis of thin plate structures. The method was derived from
the kinematic theorem and isogeometric finite elements. The underlying optimization
formulation of limit analysis was transformed into the form of a second-order cone
programming, and it was then solved by highly efficient interior-point solvers. The per-
formance of the method is validated through benchmark problems of plastic thin plates.
Through the examples tested, some concluding remarks can be given as follows:

Table 9 The limit load factor λcr/mp for a clamped circular plate subjected to a parabolic
load

a3 Tresca(UB) Square(UB) Quadratic Cubic

−3 4.172 4.469 4.358 4.244

−2 3.821 4.074 4.019 3.904

−1 3.524 3.744 3.728 3.644

1 3.037 3.222 3.254 3.144

2 2.854 3.002 3.059 2.952

3 2.684 2.827 2.886 2.781
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Table 10 Control points and weights for a disk of radius 0.5

i 1 2 3 4 5 6 7 8 9

xi −√
2/4 −√

2/2 −√
2/4 0 0 0

√
2/4

√
2/2

√
2/4

yi
√
2/4 0 −√

2/4
√
2/2 0 −√

2/2
√
2/4 0 −√

2/4

wi 1
√
2/2 1

√
2/2 1

√
2/2 1

√
2/2 1

• Only deflection degrees of freedom were needed in the optimization problem. Thus,
the method requires less variables than N4B̄0 element (or C0-FEM), HCT element
(or C1-FEM) and C1 natural element (C1-NEM). As a result, it is promising to
provide an effective way to solve large-scale plate problems.

• The essential boundary conditions are easily imposed in the context of the
rotation-free isogeometric approach.

• Beyond h-and p-refinement schemes currently available in the traditional FEM, the
present approach was found to be more efficient with k-refinement type for limit
analysis of thin plates.

• Numerical results showed that the present method provides upper bound estimates
of collapse limit loads, that proves the stability of the method. Also, the proposed
method exhibited very good agreement with several published results in the literature
for different benchmark problems. It seems, in particular, very efficient for the
L-shaped plate problem which presents a singularity near the corner.

In present work, only benchmark problems were used to show the performance of the
proposed formulation. However, we believe that the methodology is generalizable for
large-scale plate problems in practice. Although the present method achieved high reli-
ability, its computational cost is still significant due to an excessive overhead of control
points for very uniformly refined meshes. It would therefore be interesting to associate
the present method with adaptive local refinement procedures [25,46]. This is a work in
progress and our findings will be devoted in a forthcoming paper.

Endnotes
aThis helps to reduce the size of the optimization problem without loss of accuracy of

solution as it will be shown later.

Appendix
Knot vectors and control points for NURBS objects

Circular plate

A circular plate is shown in Figure 22. A rational quadratic basis is used to exactly describe
the geometry of the circular plate. Knot vectors �×H of the coarsest mesh with one ele-
ment is defined as follows: � = {0, 0, 0, 1, 1, 1}; H = {0, 0, 0, 1, 1, 1}. Data of the circular
plate are given in Table 10.

Table 11 Control points for the L-shaped plate

i Pi,1 Pi,2 Pi,3

1 (0, 1) (0, 2.5) (0, 4)

2 (1, 1) (1, 2.5) (4, 4)

3 (1, 1) (2.5, 1) (4, 4)

4 (1, 0) (2.5, 0) (4, 0)
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L-shaped plate

An L-shaped plate is illustrated in Figure 20. As stated previously, a rational quadratic
basis is used to describe an L-shaped plate. Knot vectors � × H of the coarsest mesh
with two elements are defined as follows: � = {0, 0, 0, 0.5, 1, 1, 1}; H = {0, 0, 0, 1, 1, 1}.
Control points of the L-shaped plate are given in Table 11. Note that all control points
have unit weights.
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