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Abstract

With the excellent thermal conductivity and the compatibility to micro electromechanical
systems technology, silicon is widely used in micro heat pipes (MHPs). Copper shows
higher heat transfer capability and capillary traction than silicon. Copper microgrooves
were fabricated on the silicon wafer using electroforming technique in this paper.
Water contact angle measurements and thermal behavior tests demonstrated that
copper-grooved MHPs showed better performance than silicon ones. Under the input
power of 5.99 W, the equivalent thermal conductivities of copper-grooved and
silicon-grooved MHPs were 228.98 W/K · m and 196.26 W/K · m. This work showed
the feasibility of copper grooved silicon based MHPs in heat transfer for high-power
light emitting diode (HP LED).
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Background
In recent years, how to reduce the high-power light emitting diode’s (HP LED) thermal

resistance, junction temperature and hot spot influence have been studied by different

research groups in passive and active cooling mechanism. There are several aspects

having been studied in heat dissipation, such as package design [1–4], thermal interface

material [5], low thermal resistance heat sink material [6–9], and cooling systems [10–14].

The best-known devices for effective heat transfer or heat spreading with the lowest

thermal resistance are heat pipes with vapor chambers which are two-phase heat

transfer devices with excellent heat spreading and heat transfer characteristics [15,16].

Silicon is selected as the ideal material of micro heat pipes (MHPs). To enhance the

thermal behavior of MHPs, researchers have introduced a series of methods. Ye H [17]

fabricated a fluid channel by wet etching and wafer bonding with silicon and glass. The

phase transition of coolant allowed the package temperature to remain below 115°C

with LED power up to 2.8 W. Dean R. N [18] presented a MHP constructed from a

micromachined base and lid that were bonded together after charging. The base and

the lid were fabricated on separate silicon wafers utilizing convension MEMS fabrication

technique. The base silicon wafer had 22 channels, where each channel was 100 μm wide

and 9.5 mm long. The water-filled MHP had a thermal conductivity of approximately

290 W/m · K while the Hg-filled MHP had a thermal conductivity of approximately

790 W/ m · K. However, since Hg forms health and safety concerns, this working fluid

should be used carefully. A MHP consisted of two layers was introduced by Liu X. W
2014 Wang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
icense (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
rovided the original work is properly credited.

mailto:luoy@dlut.edu.cn
http://creativecommons.org/licenses/by/2.0


Wang et al. Journal of Solid State Lighting 2014, 1:14 Page 2 of 8
http://www.journalofsolidstatelighting.com/content/1/1/14
[19]. The bottom layer was Si. Its V-shaped grooves were developed by bulk Si technology.

Glass was the up layer, which served as a chamber connecting the vapor phase of all

the grooves. The size of the long MHP was 14 mm × 34 mm and the short one was

14 mm × 24 mm. And for 5 W input power, when the filling ratio was 35%, long MHP

had the lowest evaporator surface temperature of 90°C. And for the short one, the

lowest evaporator surface temperature was 86°C at the optimal filling ratio. Liu W. T

[20] fabricated the MHP array in the plate composed of 17 parallel triangular pipes.

Nine of the pipes were 371 μm wide and 20 mm long, and the other eight smaller

pipes, which served as arteries between every neighbor MHPs, were 268 μm wide and

20 mm long. Ethanol was selected as the working fluid. The working temperature

range of MHP was 37.3°C −44.1°C.
Though silicon was widely used in MHPs, it showed poorer surface wettability which

was identified as one of the key factors affecting phase change heat transfer [21], com-

pared to the material of copper. Mahmood R. S. Shirazy et al. [22] studied the capillary

and wetting characteristics of copper metal foam which was used as a wick in flat heat

pipes. Lim H. T, et al. [23] fabricated a copper MHP that worked under adverse-gravity

conditions. The wick structure of the flat MHP consisted of fan-shaped microgrooves

with a width and depth of about 100 μm and 200 μm, respectively. The fabrication of

microgrooves was done using a laser micromachining technique and water was used as

the working fluid. Fan-shaped microgrooves were found to induce a greater capillary

pressure than triangular microgrooves of a similar size. Subsequent test results confirmed

that despite its small size, 56 × 8 × 1.5 mm3, the FMHP had a high heat transport capacity.

The test results demonstrated that a FMHP with fan-shaped microgrooves had a good

cooling capacity and worked with no loss of performance under adverse-gravity orienta-

tion. Paiva K. V. [24] presented a copper mini flat heat pipe fabricated using the welding

diffusion technique. When a plate and a cylinder touched each other, a very sharp edge

between them, which could work as a groove, were observed. The mini heat pipe studied

in the present paper had 100 × 30 × 2 mm3 of dimensions and was made of ten parallel

cylindrical copper wires welded between two thin copper sheets each with 0.3 mm of

thickness. Water was chosen as the working fluid, and the maximum heat transfer

transported by grooves was 1.25 W.

Meng K. [25] identified that Metallic surfaces with high surface free energy were

intrinsically hydrophilic, and the performance of MHP could benefit from enhanced

wettability. Copper had excellent thermal conductivity and was usually used as heat

exchanger materials, but the copper surface was not hydrophilic, which impacted the

heat transfer.

The static contact angle of water droplets on air-exposed copper often exceeds 70°.

Since wettability evaluated by water contact angle (WCA) is governed mainly by both

surface geometrical structures and chemical compositions [26], researchers had put

forward efforts to improve the hydrophobicity of copper. Zhang Q. Y. [27] utilized silica

hydrophilic and moisture retention property. Considering that the silica cannot be

separated from the film, organic resin was added as a binder, and both interaction

could play a hydrophilic function. Min J. [28] immersed the copper-finned evaporator in a

NaOH and K2S2O8 mixed solution for a certain length of time. The hydrophilically-treated

evaporator tended to yield a greater cooling capacity than the untreated evaporator. Min J.

C. [29] investigated the wetting and corrosion characteristics of hot-water-treated aluminum



Table 1 The MHPs’ design dimension

Section A B C D E F G

Dimension 200 μm /60 μm 180 μm /80 μm 160 μm /100 μm 140 μm /120 μm
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and copper fin stocks and found that the hot water soak could improve the surface

wettability of both aluminum and copper surfaces. Nam Y. [30] reported the heat

transfer performance of super hydrophilic Cu micro post wicks fabricated on thin

silicon substrates using electrochemical deposition and controlled chemical oxidation.

Copper oxide nano-structures formed on the micro post surfaces significantly enhanced

the critical heat flux without compromising the effective heat transfer coefficient.

Literatures prove that the copper-grooved silicon wafer can show better heat transfer

characteristic than the silicon grooved one. In this paper, a copper-grooved MHP was

fabricated using electroforming technique. Water contact angle and the thermal behavior

of both copper-grooved and silicon-grooved MHPs were tested.

Method
The dimension of the MHPs was designed to suit for 10 W LED module heat dissipation.

The dimension of MHP depended on the dimension of the module. The length and width

of LED module in this paper were both 16 mm. The overall dimension of MHP was

45 mm (length) × 16 mm (width) × 1.5 mm (thickness). The working area was 35 mm×

10 mm, including condenser, adiabatic and evaporation section. The microgrooves were

fabricated on the silicon wafer, which was bonded to Pyrex 7740 glass with a steam cham-

ber. According to the previous study, the steam chamber enhanced the thermal behavior

of MHPs compared with the MHPs without the steam chamber [31]. The Pyrex 7740

glass was used to achieve the visualization of how the working fluid was moving.

Silicon heat pipes contained four sections of parallel microgrooves, and the specific

dimensions of this type of MHP were shown in Table 1 and Figure 1.

In the table above, section A ~G divided the working area of MHP in the axial. The

value before ‘/’ was the width of the microgrooves, and the value after ‘/’ was the space

between the microgrooves.

The structure and dimension of the copper-grooved MHP were the same with those

of the silicon MHP.
Figure 1 Photolithographic mask of MHP grooves.



Figure 2 The fabricated MHPs (a) silicon microgrooves (b) copper microgrooves.
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Anisotropic wet etching was used to fabricate silicon microgrooves on the n-type silicon

(100) wafer. The depth of the microgrooves was about 200 μm. The Pyrex 7740 was wet

etched to form a vapor chamber, and the depth of the vapor chamber was 200 μm. The

silicon wafer and the Pyrex 7740 were bonded using anodic bonding technique at the

temperature of 450°C and the voltage of 1200 V.

Electroforming process was used to fabricate copper microgrooves on the n-type silicon

(100) wafer. The depth of the microgrooves was about 100 μm. In the electroforming

process, the current density was 2A/dm2, and electroforming solution was mixed by the

mix of CuSO4 (70 g/l) and H2SO4 (12%). The whole process was under the condition of

24°C. Finally, the fabricated copper micro-grooved silicon wafer and Pyrex 7740 glass

were enveloped using sealant (Loctite 326 structural adhesive).

Double air pumping charge method was used for the MHP’s charging and sealing

after the microgrooves were fabricated. This method has been detailed in another paper
Figure 3 The schematic of three measured points (1, 2 and 3) in copper-grooved silicon base.



Table 2 The contact angle of grooved silicon and copper

1 2 3

Silicon microgrooves 88.2° 88.5° 103.5°

Copper microgrooves 54.8° 53.0° 65.5°
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[32]. The working fluid was degassed DI water, and the filling ratio was about 30%. The

fabricated MHPs are shown in Figure 2.

An experiment was conducted to measure the hydrophobicity between the fabricated

silicon microgrooves and copper microgrooves. The drop shape analyzer measuring

instrument (DSA 100 Kruss, Germany) was used to measure the contact angle of the

fabricated microgrooves. Each MHP was measured by three points (point 1, 2 and 3)

which were the central points of the condensation, adiabatic and evaporation section,

respectively, as shown in Figure 3. The measured contact angles are shown in Table 2

and Figure 4.

The value showed that the 3 points contact angles of copper microgrooves were

smaller than those of silicon microgrooves, respectively. The main reason was the

dimension of the micro grooves at these three sections are different, and we wish the

condenser section has higher capillary force, that is more hydrophilic, which can help

the working fluid traction back to the evaporation section. Since the capillary traction

was proportional to the cosine value of the contact angle, copper microgrooves had stron-

ger hydrophilicity and better capillary traction compared with the silicon microgrooves.

The thermal performance of the MHPs can be evaluated by the equivalent thermal

conductivity which is calculated as follows:

K ¼ Qin

T 1−T2
� L
Ac

ð1Þ

where Qin was the heat input, T1 and T2 were the temperatures of the evaporation part

and the condensation part, respectively, L was the length between evaporation part and

condensation part, and Ac was the cross sectional area of the MHPs.

The thermal behavior testing system was described in another paper [33]. In this

system, Two K type thermocouples (Chal-0005, Omega Company, USA) were used

to test the temperature at the evaporation and condensation section, respectively. A
Figure 4 The contact angle of the microgrooves (a) silicon grooves, (b) copper grooves.



Figure 5 The temperature curve of the MHPs. (a) and (b) were the temperature curves of the silicon
MHP and copper MHP, respectively, and (c) was the temperature curves of the silicon wafer.
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heat flux sensors (HFS-3, Omega Company, USA) was used to record the input

power of the MHPs.

The accuracy grade of the thermocouple instrument (Testo 735, Germany) was ±0.3°C.

Calibration of the thermocouples was done by measuring the temperature change of

thermocouples upon the temperature change inside a well-controlled oven. This

testing system was used to test the fabricated MHPs, the silicon wafer and the copper

wafer. The 10 W LED module was placed as the heat source of the MHP. The voltage

and current applied to the LED module was 31.50 V and 0.19 A, respectively, which

means the input power was 5.99 W. The temperature rising curves of the two thermo-

couples at the evaporation and condensation section are shown in Figure 5. A silicon

wafer and a copper wafer with the same dimension of the MHP were also tested,

respectively.

Results and discussion
With Equation (1) and the data shown in Figure 5, the equivalent thermal conductivities

of the MHPs were calculated and listed in Table 3. As a comparison, the equivalent ther-

mal conductivity of the silicon wafer was also tested, calculated and listed in Table 3.
Table 3 The equivalent thermal conductivity

MHP Ka (W/K · m)

Silicon microgrooves 196.26

Copper microgrooves 228.98

Si 72.57
aK is the equivalent thermal conductivity of MHPs and Si wafer.
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It is obvious that the equivalent thermal conductivity of MHPs is higher than that of

the silicon wafer. The MHPs worked effectively. The equivalent thermal conductivity of

the copper-grooved MHP was 2.16 times higher than that of silicon wafer which is the

raw material of the MHPs.

The equivalent thermal conductivity of the copper-grooved MHP was higher than

that of the silicon MHP. The performance was promoted about 17% only because the

grooved material changed from silicon to copper, while the base material was same.

The possible reason is that the copper grooves were more hydrophilic, thus higher

capillary force could be generated and working fluid could be drawn back to evaporation

section more efficiently.

Conclusions
A copper-grooved silicon MHP was introduced in this paper, and the rectangular-

ambulatory structures was designed and fabricated between copper and silicon. Since

the copper microgrooves had a smaller contact angle, as well as better capability of

capillary traction, the copper-grooved MHPs showed a 17% higher equivalent thermal

conductivity than that of silicon-grooved MHPs.

The copper-grooved silicon based MHP was proved to be feasible in heat transfer for

HP LEDs. Moreover, future work will be focused on structure optimization to achieve a

more efficient and reliable heat transfer.
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