
Zhang et al. Chem. Biol. Technol. Agric.          (2023) 10:118  
https://doi.org/10.1186/s40538-023-00474-9

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Chemical and Biological 
Technologies in Agriculture

Transcriptomic and metabolomic insights 
into the antimicrobial effect of Leuconostoc 
mesenteroides or lactic acid on pathogenic 
Gallibacterium anatis
Hua Zhang1,2, HePing HuangFu3, GuangYong Qin4, GuoFang Wu5, Lei Wang5* and ZhongFang Tan4* 

Abstract 

Gallibacterium anatis (G. anatis) is an opportunistic poultry pathogen that poses a threat to human health via the food 
chain and can also lead to great economic losses in poultry industries. Our previous studies have demonstrated 
that the lactic acid-producing bacteria Leuconostoc mesenteroides QZ1178 can effectively inhibit the growth of G. ana-
tis by acid production, but the mechanism remains unclear. The aim of the current research was to further investigate 
the molecular mechanism underlying this acid-induced antimicrobial effect. The TEM results showed that the cell 
membrane of G. anatis (GAC026) was damaged and that cells were lysed in the presence of cell-free supernatants 
from Leuconostoc mesenteroides (CFS) or lactic acid. Lactic acid showed a greater antimicrobial effect than CFS. In this 
study, the changes in the transcriptome and metabolic profile of G. anatis under acid stress at different stages were 
studied. Using culture medium supplemented with CFS (pH 3.6) or lactic acid (pH 3.6) at a 1:1 ratio, 677 differentially 
transcribed genes and 374 metabolites were detected in G. anatis. The interaction network of all identified differen-
tially expressed genes and metabolites was constructed to outline the regulatory genes and dominant pathways 
in response to acid stress. The results of real-time reverse transcription quantitative PCR (RT‒qPCR) further confirmed 
the results of the transcriptomic analyses. Typically, succinate, citrate, L-malic acid, and oxaloacetate were reduced 
by acid stress in G. anatis, which suggested that lactic acid greatly disturbed energy metabolism. Overall, this work 
provides a comprehensive understanding of the stress response and cell death of G. anatis caused by lactic acid.
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Graphical Abstract

Introduction
Gallibacterium anatis (G. anatis) is an opportunistic 
pathogen that colonizes the lower genital tract and res-
piratory tract as part of the normal microbiota of healthy 
birds [1, 2]. Pathogenic G. anatis causes respiratory dis-
eases, salpingitis, and peritonitis in chickens, leading to 
decreased egg production and increased mortality [3, 4]. 
G. anatis has the ability to infect a wide range of hosts, 
including domesticated and free-ranging avian animals 
[5], as well as mammals such as cattle [6] and human 
beings [7]. Treating this bacterial pathogen with tradi-
tional antimicrobial drugs is discouraging owing to the 
emergence of widespread multidrug resistance [8, 9], 
whereas the efficacy of classical vaccines is limited due to 
antigenic diversity [10].

Lactic acid bacteria (LAB) in traditional fermented 
foods around the world are well known for their pro-
biotic properties [11–13]. The antimicrobial activity 
of LAB is mainly based on the production of metabo-
lites such as organic acids, hydroperoxide and bacte-
riocins [14]. Organic acids are toxic to bacterial cells, 
as they can cause membrane damage and protein mis-
folding or denaturation [15] and lead to an increase in 
the intracellular NAD ( +)/NADH ratio under low pH 

conditions [16]. The positive effect of LAB on the bal-
ance of animal intestinal microorganisms [17] and the 
antibiotic-like effects in inhibiting the growth of patho-
genic microorganisms found in chickens, pigs, piglets, 
and cattle have been reported [18–21].

In a previous study, we reported that the fermented 
solution of Leuconostoc mesenteroides QZ1178 (L. 
m QZ1178), a type of LAB, effectively inhibited the 
growth of G. anatis by producing acid [22]. However, 
the in-depth mechanism by which G. anatis responds 
to acid stress is still unknown. In this work, we applied 
transcriptomic and metabonomic approaches to elu-
cidate the changes involved in the adaptation of G. 
anatis to acid stress conditions. Transcriptomic analy-
sis was conducted using the Illumina sequencing plat-
form followed by validation with real-time qPCR, while 
metabolomic analysis was completed using positive and 
negative ion modes. The experimental design is shown 
in Fig.  1. The current research will contribute greatly 
to our knowledge about the antimicrobial mechanism 
of lactic acid bacteria or their acid products against 
G. anatis, which will lay a foundation for the develop-
ment of new strategies to prevent G. anatis infection in 
domestic animals.
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Materials and methods
Bacterial strains and growth conditions
Leuconostoc mesenteroides QZ1178 (L. m QZ1178) was 
previously isolated from Qula, a traditional fermented 
food from Qinghai Province, China. It was maintained 
in 25% (v/v) glycerol stocks at − 80  °C at the Henan Key 
Laboratory of Ion-Beam Bioengineering, Zhengzhou 
University. L. mesenteroides QZ1178 was grown in Man 
Rogosa Sharpe (MRS; Merck, Darmstadt, Germany) solid 
media at 30 °C for 48 h. The G. anatis (GAC026) biovar 
haemoultica strain was isolated, identified and preserved 
in the clinical veterinary laboratory of Henan University 
of Animal Husbandry and Economy [23]. The G. anatis 
strain was cultured on blood agar plates (Bosai Zheng-
zhou, China) containing brain–heart infusion (Oxoid) 
agar supplemented with 5% citrated bovine blood in 
sealed plastic bags at 37 °C.

Bacterial treatment
L. m QZ1178 was inoculated into liquid MRS medium 
at 30 °C for 24 h. Cultures were centrifuged at 6,000 rpm 
(4  °C) for 10  min, and the culture fermentation super-
natant (CFS) was collected following filtration (0.22  μm 

membrane). The pH of the supernatant declined sharply 
and remained at pH 3.6. According to HPLC data, the 
major organic acid in L. mesenteroides QZ1178’s CFS 
was LA, whose concentrations reached 29  mg/ml. The 
cell suspension was centrifuged at 6,000 rpm (4 °C), and 
the supernatant was collected. G. anatis (GAC026) iso-
lates from chicken palate were selected as the experi-
mental strains. After preculture on solid media, they 
were inoculated into LB (containing 10% foetal bovine 
serum) at 37 °C at 180 rpm for 24 h. G. anatis (GAC026) 
was then separated into 10 mL tubes, with each tube con-
taining 4 ml. L. m. QZ1178 CFS and LA (29 mg/mL; pH 
3.6) were added at 1:1. Experiments were performed in 
triplicate. For transcriptomic analysis, cell samples were 
harvested after (treatment time points 0, 30 and 60 min) 
the addition of CFS or LA. Similarly, samples for metab-
olomics were collected at 0, 30 and 60 min. Samples for 
RNA isolation and metabolomic preparation were centri-
fuged and washed twice with chilled phosphate-buffered 
saline (PBS). The collected samples were snap-frozen in 
liquid nitrogen and stored at −80 °C until use.
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Fig. 1  Experimental design process. Created with BioRender.com
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Transmission electron microscopy
G. anatis (GAC026) was treated with CFS or LA for 
60  min. The bacterial samples were fixed in 4% glu-
taraldehyde at 4  °C overnight. After post-fixation in 1% 
osmium tetroxide for 1 h, the sections were dehydrated 
using a graded ethanol series and embedded in resin. An 
ultramicrotome was used to section the embedded sam-
ple blocks, and the sections were then placed on 200-slot 
grids coated with polyvinyl alcohol ester and imaged 
using a JEM-1400 electron microscope (JEOL) equipped 
with an electric coupling camera (Olympus).

RNA isolation, cDNA library construction, 
and high‑throughput Illumina sequencing
Total RNA from the 0 min, 30 min and 60 min samples 
was isolated using RNeasy Protect Bacteria kits (QIA-
GEN, USA) according to the manufacturer’s instructions. 
RNA purity and concentration were evaluated by 1% aga-
rose gel electrophoresis. Libraries were constructed using 
the TruSeq RNASample Prep kit (Illumina, San Diego, 
CA, USA). High-throughput sequencing was performed 
on an Illumina Nova6000 platform by Gene Denovo 
(Guangzhou, China) (http://​www.​gened​enovo.​com) [24].

Transcriptome sequencing and enrichment analysis 
of differentially expressed genes
The raw sequencing data were filtered by fastp (v. 0.18.0) 
to obtain high-quality clean reads [25]. The rRNA-
mapped reads were removed using the Bowtie2 short 
reads alignment tool (v. 2.2.8), and the remaining clean 
reads were used in the subsequent assembly and gene 
abundance calculations [26]. The reference genome of 
G. anatis and the gene annotation files were downloaded 
from the genome website https://​ftp.​ncbi.​nlm.​nih.​gov/​
genom​es/​refseq/​bacte​ria/​Galli​bacte​rium_ anatis/latest_
assembly_versions/GCF_000209675.1_ASM20967v1/. 
All transcripts were obtained with HISAT v. 2.2.4. Dif-
ferentially expressed genes (DEGs) were identified 
using DESeq2 to make comparisons between groups 
[27, 28]. Genes were considered significantly differen-
tially expressed when the P-value was < 0.05 and the fold 
change was ≥ 2.0 [29]. R (v 3.50 https://​www.R-​proje​ct.​
org/) was used to conduct correlation analyses of these 
DEGs. The DEGs were functionally annotated using 
the KO (KEGG Orthologue) and GO (Gene Ontology) 
databases.

Validation of gene expression patterns using real‑time 
quantitative PCR
Three biological replicates were prepared for G. anatis 
(GAC026) under CFS or LA conditions (treatment time 
points 0, 30 and 60 min). Primer 5.0 software (Palo Alto, 

CA, USA) was used to design RT–qPCR primers. The 
sequences of all primers are listed in Additional file  1: 
Table  S1. RT–qPCR was performed on the Real-Time 
PCR Detection System (StepOnePlus, ABI, USA) using 
cDNA from G. anatis (GAC026) at different times after 
acid stress induction. gyrB was used as a reference gene 
for RT–qPCR data correction [23].

Metabolomics and bioinformatics analysis
Gene Denovo Biotechnology Co. Ltd. (Guangzhou, 
China) extracted the primary metabolites from the 
experimental samples per protocols that have been vali-
dated previously [30]. As mentioned previously, there 
were six biological replications. Each biological replicate 
was analysed by LC‒MS in triplicate.

Targeted metabolomics (energy metabolism)
The metabolomics of bacteria exposed to CFS and LA 
were analyzed after 60 min of incubation. The three sam-
ples from each acid treatment in nutrient broth were 
evaluated. The extraction procedure was performed by 
the method published by Bajad et al. [31]. The detection 
methods were performed as described previously by Cai 
et al. [32].

Correlation of transcriptomic and metabolomic data
We determined the correlation between DEGs (fold 
change ≥ 1.5, P < 0.05) and differentially accumulated 
metabolites (DAMs) (P < 0.05 and VIP ≥ 1) and utilized 
the cor function in R to calculate the Pearson correla-
tion coefficient and p-values. The correlation coeffi-
cients between genes and metabolites greater than 0.8 
were selected for inclusion in a correlation cluster net-
work map. To identify the common pathways, DEGs 
and DAMs were simultaneously mapped to the KEGG 
database. Using a coefficient method, the correla-
tion network diagram between genes and metabolites 
from common KEGG pathways was visualized using 
Cytoscape software.

Results
The effects of CFS and LA on the morphology of G. anatis
Transmission electron microscopy (TEM) was used 
to observe the ultrastructural changes in G. anatis 
(GAC026) after treatment with CFS or LA. In the con-
trol group, the bacteria had a normal shape (Fig.  2A, 
B). The CFS-treated bacteria were characterized by cell 
membrane rupture (Fig. C and D). Similarly, the LA-
treated bacteria were smaller and had reduced mem-
brane integrity (Fig. E and F). It should be noted that 
LA was more detrimental to G. anatis, as evidenced by 
the fact that nearly all the cells lost their membranes. 

http://www.genedenovo.com
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Gallibacterium_
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Gallibacterium_
https://www.R-project.org/
https://www.R-project.org/
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Fig. 2  TEM of G. anatis GAC026 treated with CFS or LA. A and B Normal cells without treatment; C and D CFS treatment at 29 mg/ml for 0 
and 60 min; E and F LA treatment at 29 mg/ml for 0 and 60 min. Scale bar: 2 μm

The only explanation for this difference was that the 
CFS content aside from acids was somehow protective 
to the cells.

Differentially expressed genes of G. anatis under acid 
stress
The effect of acid stress on the GAC026 transcriptome 
was investigated. Differentially transcribed genes at the 
mRNA level were evaluated by comparing acid-chal-
lenged samples harvested at two time points (30 and 60 
min) with those collected at the 0-min time point (set as 
the control). The transcriptomic data analysis indicated 
that 1872 genes and 1872 genes at 30 min with CFS and 
LA, 1876 at 60 min with CFS, 1893 at 60 min with LA, 
1874 at 0 min with CFS and 1875 at 0 min with LA were 
detected (Additional file 1: Table S1). After filtering (≥ 2 
fold change, adjusted p ≤ 0.05), 677 genes were consid-
ered significantly differentially expressed (264 up- and 
413 downregulated) under acid stress conditions (Addi-
tional file 2: Table S2), including 174 at 30 min with CFS 
(94 up- and 80 downregulated) and 49 at 60 min with 
CFS (5 up- and 44 downregulated), 183 at 30 min with 
LA (75 up- and 108 downregulated) and 271 at 60 min 
with LA (90 up- and 181 downregulated) (Fig. 3A). Tak-
ing the F0 min and R0 min samples as the control group, 
73 DEGs were identified between F30 min and R30 min 

(Fig. 3B). However, the number of DEGs was reduced to 
17 after 60  min of treatment (Fig.  3C). Consistent with 
the TEM results, acid stress was the main cause of the 
antimicrobial effect of CFS within 30 min, while the other 
components in CFS tended to antagonize this effect by 
unknown mechanisms.

Gene expression pattern analysis, clustering, 
and functional enrichment
The genes displayed a considerable difference in expres-
sion profiles in response to acid stress for different 
exposure durations (Fig.  4). The total DEGs at vary-
ing exposure times were clustered into different pro-
files based on the expression patterns of genes using 
Short Time-series Expression Miner (STEM) soft-
ware. The most representative clusters were profile 2 
and profile 5 in CFS and profile 3 and profile 4 in LA 
(p < 0.05). In profile 2, the expression of 67 gene tran-
scripts decreased and then increased with the increas-
ing duration of CFS treatment (Fig. 4A), and in profile 
5, the expression of 126 gene transcripts increased and 
then decreased with the increasing duration of CFS 
(Fig. 4B). In profile 3, the expression of 211 gene tran-
scripts remained unchanged and then decreased with 
the increasing duration of LA (Fig.  4C), and in pro-
file 4, the expression of 101 gene transcripts remained 
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unchanged and then increased with the increasing 
duration of LA (Fig. 4D).

To define the functional annotation of the changes dur-
ing transcription, KO classifications were implemented 
for the genes in these profiles. As shown in Fig. 4A, the 
DEGs of profile 2 (gene expression first decreased and 
then increased under fermentation stress) were mainly 
enriched in the following KEGG pathways: ribosome, 
including rpmH, rpmF, rplQ, rpsD, rplX, rpsQ, rpmC, 
rplW, rplD and rplC; and ABC transporters, includ-
ing oppB, potC, HI_0359, xylF, and HI_0036 (Additional 

file 3: Table S3). As shown in Fig. 4B, the DEGs of pro-
file 5 (gene expression first increased and then decreased 
under fermentation stress) were mainly enriched in the 
following KEGG pathways: amino sugar and nucleotide 
sugar metabolism, including manA, manZ, manY, manX, 
nagA, nagE, galT, nanK and nanA; inositol phosphate 
metabolism, including iolB, iolA, iolG, iolE and iolD; 
phosphotransferase system, including manZ, manY, 
manX, fruB, unknown and nagE; and fructose and man-
nose metabolism, including manA, manZ, manY, manX, 
fruB and fruK (Additional file 4: Table S4). As shown in 
Fig. 4C, the DEGs of profile 3 (gene expression remained 

Fig. 3  Differential gene expression after CFS and LA exposure. A Regulation of differentially expressed genes (DEGs); B and C the number of DEGs 
between samples at the two times is depicted on the Venn diagram. F0 min: 0 min CFS treatment. F30 min: 30 min CFS treatment. F60 min: 60 min 
CFS treatment. R0 min: 0 min LA treatment. R30 min: 30 min LA treatment. R60 min: 60 min LA treatment
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unchanged and then decreased under LA stress) were 
mainly enriched in the following KEGG pathways: Amino 
sugar and nucleotide sugar metabolism, including galE, 
manY, manX, nagB, nagA, scrK, manB, galK, galT, nanEK 
and nanK; inositol phosphate metabolism, including 
tpiA, iolB, iolA, iolD and iolC; microbial metabolism in 
diverse environments, including 26 genes; sulfur metab-
olism, including dmsC, dmsB, dmsA, ttrB and ttrA; and 
valine, leucine and isoleucine biosynthesis, including ilvI, 
ilvE, ilvG, leuC2 and alaA (Additional file  5: Table  S5). 
As shown in Fig. 4D, the DEGs of profile 4 (gene expres-
sion remained unchanged and then increased under LA 

stress) were mainly enriched in the following KEGG 
pathways: oxidative phosphorylation, including atpC, 
atpD, atpG, atpF, cyoC, cyoD and cyoE; photosynthesis, 
including atpC, atpD, atpG and atpF; propanoate metab-
olism, including sucD, sucC, prpF, acnD, acsA and puuE; 
and ribosomes, including rpmF, rplQ, rpsD, rpmJ, rpmD, 
rplX, rpmG, rplS and rpmE (Additional file 6: Table S6).

The results indicate that the expression levels of most 
genes related to ribosomes and ABC transporters first 
decreased and then increased under fermentation 
stress, but the transcription levels of genes involved in 
amino sugar and nucleotide sugar metabolism, inositol 

Fig. 4  Patterns of gene expression across two treatments (0 (CK), 30, and 60 min) inferred by STEM analysis; in each frame, the black line represents 
the expression tendency of all the genes; and the number of genes belonging to each pattern is labelled above the frame. The top five enriched 
KEGG pathways analysis of profile 2 A CFS treatment, profile 5 B CFS treatment, profile 3 C LA treatment, and profile 4 D LA treatment
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phosphate metabolism, the phosphotransferase system, 
fructose and mannose metabolism and sulfur metabo-
lism first increased and then decreased after fermen-
tation. The expression levels of most genes related to 
amino sugar and nucleotide sugar metabolism, inositol 
phosphate metabolism, microbial metabolism in diverse 
environments, sulfur metabolism and valine, leucine and 
isoleucine biosynthesis remained unchanged and then 
decreased under LA stress, but the transcription levels of 
genes involved in oxidative phosphorylation, photosyn-
thesis, propanoate metabolism and ribosomes remained 
unchanged and then increased after LA exposure. A sim-
ilar pattern between the gene expression of ribosomes, 
inositol phosphate metabolism, and amino sugar and 
nucleotide sugar metabolism, all of which play critical 
roles in structural integrity and energy balance, was seen 
with CFS and LA exposure. These results indicated that 
both CFS and LA inhibit cell growth or cause cell death 
by disrupting the cell structure, including the membrane, 
and disturbing energy homeostasis.

qRT‒PCR validation of DEGs identified in RNA‑Seq analysis
To confirm the reproducibility and accuracy of DEGs 
identified by RNA-seq analysis, we selected 16 targeted 
genes (purM, metK, copA, metN, fruK, htpG, ldh1, rplQ, 
rpsS, hcp, iolA, rpoE, norB, dcuB, HI_0227, and nanA) 
that are involved in structural and energy metabolism for 
qRT‒PCR measurement. The primer sequences for the 
analyzed genes are shown in Additional file 7: Table S7. 
In Fig. 5, the gene expression between CFS and LA acid 
stress-treated G. anatis (GAC026) was compared by 
qRT‒PCR and RNA-seq. The fold changes for gene regu-
lation predicted from the transcriptome were verified by 
qRT‒PCR, as both results showed a similar or nearly syn-
chronized pattern.

Nontargeted metabolome analysis and validation 
of targeted energy metabolites
Nontargeted metabolomic analysis was used for the dif-
ferential metabolic profiling of G. anatis (GAC026) 
treated with CFS and LA to identify potentially impact-
ful molecules. The CFS- and LA-treated samples were 
differentiated using orthogonal partial least-squares dis-
criminant analysis (OPLS-DA) (Fig. 6A, B). In total, 374 
metabolites were identified (Additional file 8: Table S8). 
Intracellular metabolites, which were changed sig-
nificantly under CFS treatment at 60  min, were mainly 
involved in arachidonic acid metabolism, linoleic acid 
metabolism, metabolic pathways and alpha-linolenic acid 
metabolism (P < 0.05) (Fig.  6C). Intracellular metabo-
lites, which were changed significantly under LA treat-
ment at 60  min, were mainly involved in arginine and 
proline metabolism, metabolic pathways, biosynthesis 

of antibiotics, biosynthesis of amino acids, arachi-
donic acid metabolism, aminoacyl-tRNA biosynthesis, 
2-oxocarboxylic acid metabolism, cysteine and methio-
nine metabolism and the sulfur relay system (P < 0.05) 
(Fig.  6D). The shared pathways explaining the antimi-
crobial effect of CFSs under acid stress included the 
arachidonic acid metabolism and metabolic pathways. 
In particular, the KEGG pathway (lipid metabolism) 
mainly involved 7 DAMs upon CFS treatment, namely, 
PC(16:1(9Z)/18:1(11Z)), PC(16:1(9Z)/P-18:1(11Z)), 
PC(16:1(9Z)/20:1(11Z)), PC(16:1(9Z)/20:2(11Z,14Z)), 

Fig. 5  Comparison of gene expression patterns based on RNA-Seq 
and qRT‒PCR



Page 9 of 17Zhang et al. Chem. Biol. Technol. Agric.          (2023) 10:118 	

prostaglandin D2, gamma-linolenic acid and arachidonic 
acid. The expression of these 7 DAMs was upregulated 
not only in lipid metabolism but also in metabolic path-
ways. Additionally, the metabolic pathway contained 8 
other DAMs, including 5’-methylthioadenosine (MTA), 
adenine, adenosine, thiamine, citrulline, D-glutamic 
acid, creatinine and creatine. Among the DAMs, except 
for creatine and creatinine, the remaining 6 metabo-
lites were downregulated. The KEGG pathway mainly 
involved 21 metabolites with LA treatment; L-arginine, 
L-proline, L-phenylalanine, L-tyrosine and L-isoleucine 

all increased; 6 DAMs associated with lipid metabolism 
showed the same change trend as the CFS group; and 
creatine, creatinine, 2-dehydro-3-deoxy-D-galactonate 
and pyroglutamic acid were upregulated. However, MTA, 
adenosine, putrescine, S-adenosylmethionine (SAM), 
phytosphingosine and thiamine were downregulated. The 
results suggest that acid stress involves lipid, amino acid 
and energy metabolism in G. anatis. Targeted metabo-
lome analysis confirmed the inhibition of succinate, 
L-malic acid, oxaloacetate and citrate, which are associ-
ated with energy metabolism in the TCA cycle (Fig. 7).

Fig. 6  Nontargeted metabolic profiling of G. anatis (GAC026) under acid stress. A and B, Clustering of orthogonal partial least-squares discriminant 
analysis (OPLS-DA) for samples treated with CFS and LA, respectively. C Bubble plot of KEGG pathways that were significantly different after CFS 
treatment. D Bubble plot of KEGG pathways that were significantly different after LA treatment. n = 6 for each group
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Combined analysis of differentially accumulated 
metabolites (DAMs) and DEGs
To explore the key genes and metabolites that impact 
to G. anatis under acid stress and elucidate the molecu-
lar regulatory relationships between them, a combined 
analysis of metabolomic and transcriptomic data was 
performed. First, the DEGs and DAMs were enriched 
in KEGG pathways, and 26 common enrichment path-
ways were found (Additional file 9: Table S9). The signifi-
cantly expressed genes and metabolites were primarily 

associated with the phosphotransferase system (PTS), 
ascorbate and aldarate metabolism, and purine metabo-
lism following 30  min of treatment with CFS and LA. 
Conversely, during the 60-min treatment with CFS and 
LA, they were mainly involved in propanoate metabo-
lism, carbon fixation pathways in prokaryotes, and valine, 
leucine, and isoleucine degradation. A total of 14 DEGs 
and 35 DAMs were identified in the purine metabolism 
pathway, while 7 DEGs and 10 DAMs were associated 
with propanoate metabolism upon treatment with CFS 

Fig. 7  Targeted metabolic profiling of G. anatis (GAC026) under acid stress. Error bars represent the standard deviation of triplicate samples (CK: F 
0 min and R 0 min, treatment: F 60 min and R 60 min) (∗ ∗ p < 0.01)
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for 60 min. Furthermore, a total of 11 DEGs and 8 DAMs 
were involved in the fructose and mannose metabolism 
pathways upon treatment with LA for 30  min, whereas 
amino sugar and nucleotide sugar metabolism were 
enriched with 17 DEGs and 18 DAMs after LA treatment 
for 60 min. Compared with CFS adaptation, the adaptive 
responses to LA in G. anatis cells were more radical and 
active.

Based on the DAM and DEG data, a subnetwork 
was constructed for some hub genes to determine 
transcript‒metabolite correlations. Pearson’s correla-
tion tests were carried out between relative quantita-
tive changes in metabolites and related transcripts, 
and we set a correlation coefficient > 0.8 as the cut-off 
in the analysis. Meanwhile, the pathways involved in 
DAMs and DEGs are shown in the pie chart. In addi-
tion to “metabolic pathways”, DAMs and DEGs were 
also involved in “aminoacyl-tRNA biosynthesis” and 
"biosynthesis of secondary metabolites" (Fig.  8). These 
results indicated that the hub genes were highly cor-
related with their corresponding metabolites. Cit-
ric acid, guanosine, D-glutamic acid, L-arginine, 
taurocholic acid, stearidonic acid, D-xylulose, galactose 

1-phosphate and 2-keto-3-deoxy-D-gluconic acid were 
identified in these biological processes, which recon-
firmed the large accumulation of metabolites and their 
roles during acid stress.

Discussion
The cell membrane plays an important role in controlling 
the signal transduction of cellular materials, as well as 
material transport and energy transfer [33, 34]. Organic 
acids can damage the cells of gram-negative or gram-
positive bacteria, destroying their cell surface structure, 
changing their internal enzyme activity, and altering their 
biological functions [15, 35]. The antibacterial mecha-
nism of organic acids is partly due to the intracellular pH 
reduction through the accumulation of ionized forms of 
the organic acid inside the cytoplasm [36]. In our experi-
ment, G. anatis cells tended to shrink under acid stress. 
A portion of G. anatis cells was still viable after exposure 
to CFS for 60 min, while none of them were culturable, 
indicating that they were metabolically active yet not cul-
turable. G. anatis cells quickly died after exposure to LA. 
CFS has numerous metabolites, of which LA is the main 
organic acid that contributes to the acidic environment, 
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while the others may have different roles. The transcrip-
tional and metabolic profiles reveal some differences in 
the metabolic changes of G. anatis under acid stress.

Nucleotide salvage and purine biosynthesis reactions 
to acid stress
The assembly of an intact ribosome requires many com-
plex and regulated functions, such as the coordinated 
synthesis of ribosomal proteins [37]. In this study, some 
DEGs (rpmH, rpmF, rplQ, rpsD, rplX, rpsQ, rpmC, 
rplW, rplD and rplC) involved in the assembly of ribo-
some functional components were upregulated at the 
transcriptional level under acid stress. This might help 
the bacteria adjust the number of ribosomes in propor-
tion to the metabolic state and the growth rate of cells to 
meet the demand for protein synthesis under acid stress. 
Living organisms respond to stressful environmental 
conditions by redirecting protein synthesis to alleviate 
cell damage [38]. As a consequence, the transcription of 
genes involved in cell response and repair is stimulated, 
while those not involved in those functions, such as genes 
with roles in cell division machinery, are usually down-
regulated. In the study by Chueca et  al., upregulated 
genes after carvacrol treatment with available informa-
tion about their function included purine nucleotides 
(purM) in Escherichia coli [39]. Upregulation of rpmH 
under acid stress has also been reported in Lacticaseiba-
cillus rhamnosus [40].

Increased expression of genes associated with initiating 
defence responses
The cellular machineries that maintain redox homeo-
stasis or that function within antioxidant defence sys-
tems rely heavily on the regulated reactivities of sulfur 
atoms either within or derived from the amino acids 
cysteine and methionine [41]. The ttr operon encoded 
the tetrathionate response regulatory protein TtrR, the 
tetrathionate sensor histidine kinase TtrS and three 
Ttr subunits, TtrC, TtrB and TtrA. The TtrB, TtrC and 
TtrA proteins could also be involved in arsenic reduc-
tion and consequent energy acquisition for bacterial 
growth in Leclercia adecarboxylata [42]. The ttrRS-
BCA gene cluster provides Escherichia coli the ability to 
respire with tetrathionate as an electron acceptor [43]. 
Transcriptome analysis revealed that the expression 
of the ttrB gene (upregulated by 1.2 fold) and the ttrC 
gene (upregulated by 1.5 fold) was enhanced following 
treatment with CFS for 30  min. Additionally, the ttrC 
gene (upregulation by 1.3 fold) showed the same trend 
after LA treatment for 30  min. Transcriptional regu-
lation and organization of the dcuA and dcuB genes 
encode homologous anaerobic C4-dicarboxylate trans-
porters in Escherichia coli [44]. The C4-dicarboxylate 

transporters DcuB and DcuC were activated to improve 
succinate production [45]. After 30 min of acid stress, 
the expression of the dcuB gene was found to be upreg-
ulated by 1.7 fold and 1.4 fold in the transcriptomes, 
respectively. The cells of G. anatis survived and adapted 
to acid stress by activating sulfur metabolism and 
transporter expression.

The response of genes associated with carbon metabolism 
to acid stress
The bacterial phosphotransferase system (PTS) is the 
major transport system for many carbohydrates that 
are phosphorylated concomitantly with translocation 
through the membrane (group translocation) [46]. 
Mannose-6-phosphate isomerase, encoded by the 
manA gene, catalyzes the isomerization of D-mannose 
and D-fructose and promotes the metabolic uptake of 
carbon sources [47]. Okochi et  al. demonstrated that 
the overexpression of manXYZ in Escherichia coli leads 
to a significant increase in organic solvent tolerance. 
Transcriptomic analysis revealed a biphasic regulation 
pattern of manAXYZ gene expression following CFS 
treatment, characterized by initial upregulation fol-
lowed by subsequent downregulation. The fruK gene 
(1-phosphofructose kinase) and the fruB gene (diphos-
phoryl transfer protein) are implicated in the transport 
and utilization of fructose [48]. The same trend was also 
observed during transcription. In extreme alkaline con-
ditions (pH 11), the PTS mannose transport system of 
Enterococcus faecalis undergoes downregulation, while 
the membrane proteins of E. faecalis appear to play a 
role in redirecting carbohydrate metabolism from the 
PTS system towards glycerol utilization. Therefore, low 
expression levels of PTS genes indicate that acid stress 
reduces carbon source uptake and the energy state.

Signal transduction (inositol phosphate metabolism) 
in response to acid stress
The role of inositol phosphate metabolism as a coordi-
nator of metabolic adaptability has been recognized; it 
coordinates the cellular responses to nutrient uptake 
and utilization from growth factor signalling to energy 
homeostasis [49]. The iolABCDEFGHIJ operon of 
Bacillus subtilis is responsible for myo-inositol catabo-
lism involving multiple stepwise reactions, including 
the conversion of myo-inositol to an equimolar mix-
ture of dihydroxyacetone phosphate, acetyl-CoA, and 
CO2 [50]. Feng et  al. proved that downregulation of 
inositol phosphate metabolism is one of the strategies 
to adapt to salt stress in Staphylococcus aureus [51]. In 
this study, the iolB, iolA, iolG, iolE and iolD genes were 
downregulated with CFS and LA treatment. Inositol 
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phosphate metabolism is complicated. It involves the 
conversion of various inositol phosphate molecules, 
which perform various functions in metabolic path-
ways. Therefore, we speculated that G. anatis reduced 
the conversion of functional molecules and that down-
regulated inositol phosphate metabolism to adapt to 
acid stress.

Increased expression of acid tolerance‑related genes
Based on transcriptome data related to acid‐stress tol-
erance in G. anatis, it was found that the puuE gene 
(upregulation by 2.2 times) encodes 4‐aminobutyrate 
transaminase. 4‐Aminobutanoate (GABA) plays a 
significant role in micro‐organisms in the cytosolic 
regulation of pH, the control of carbon and nitrogen 
metabolism, and protection against biotic and abiotic 
stresses [52, 53]. Yuan et  al. demonstrated that the 
ethanol‐stress tolerance of L. plantarum WCFS1 was 
improved by heterologous expression of puuE [54]. The 
expression levels of the prpF, prpC, and acnD genes 
were upregulated 1.9 times, 2.1 times, and 1.5 times, 
respectively. According to Tracey et  al., in Shewanella 
oneidensis and Vibrio cholerae, prpF is an acces-
sory protein required to prevent oxidative damage to 
the Fe/S centre of the active acnD enzyme or may be 
involved in the synthesis or repair of the Fe/S clus-
ter present in acnD, and the acnD and prpF proteins 
restored the ability to grow on propionate as a source 
of carbon and energy [55] Differential gene abundance 
analysis using statistical tests revealed that G. anatis 
cells switched to anaerobic energy metabolism under 
acid stress conditions, resulting in an increase in pro-
panoate metabolism.

Unsaturated fatty acids levels increased to repair the cell 
membrane
Microbial fatty acids enable a cell to form membra-
nous components that are essential for its structural 
integrity. Electron microscopy results revealed that 
acid stress induced cell membrane rupture in G. anatis. 
Different metabolite enrichment metabolic pathways 
showed that the contents of PC(16:1(9Z)/18:1(11Z)), 
PC(16:1(9Z)/P-18:1(11Z)), PC(16:1(9Z)/20:1(11Z)), 
PC(16:1(9Z)/20:2(11Z,14Z)), prostaglandin D2, gamma-
linolenic acid and arachidonic acid were upregulated by 
CFS and LA treatment at 60  min, which indicated that 
after being stimulated by acid stress, G. anatis synthe-
sized more unsaturated fatty acids to repair the oxidative 
damage to the cell membrane. This was consistent with 
previous reports that the ratio of unsaturated fatty acids 
increased under octanoic acid stress in E. coli [56, 57]. 

Membrane fatty acid adaptation is a common mechanism 
utilized by bacteria to survive acidic environments [58]. 
Likewise, genetically engineered E. coli, in which trans-
unsaturated fatty acids were incorporated into the mem-
brane, led to a significant decrease in membrane fluidity, 
resulting in high tolerance to carboxylic acids (an organic 
acid) [59]. However, the induction of fatty acid synthe-
sis or the addition of fatty acids both notably increases 
membrane leakage and decreases cell viability [57, 60].

Increased biosynthesis of amino acids for pH homeostasis 
restoration
The arginine system has been identified as an important 
defence mechanism against damage by acid in several 
bacteria [61, 62]. Previous reports have proposed that 
amino acid decarboxylases function to control the pH 
of the bacterial environment by consuming hydrogen 
ions as part of the decarboxylation reaction. Examples 
of this are lysine, arginine, and glutamate decarboxy-
lases, which operate by combining an internalized amino 
acid (lysine, arginine, or glutamate) with a proton and 
exchanging the resultant product (cadaverine, agmatine, 
or γ-aminobutyrate) for another amino acid substrate 
[63]. As the LA stress time increased, the levels increased 
by 0.79 times for arginine and 0.78 times for proline. 
Arginine can also participate in the synthesis of creatine 
(upregulation by 0.94 fold), which plays an important role 
in the storage and transfer of phosphate bond energy and 
ATP synthesis [64]. The metabolism of arginine leads to 
the production of ornithine, which is subsequently con-
verted into putrescine. In this study, putrescine (down-
regulated by 2.55 times) is another organic molecule that 
was important based on its protective role against oxida-
tive damage [65, 66]. A previous study showed that the 
significantly reduced putrescine levels in nicotine-treated 
Pseudomonas sp. HF-1 could also be associated with 
resistance to ROS damage from nicotine [67]. In contrast, 
putrescine plays a necessary role in DNA, RNA and pro-
tein biosynthesis [68] and cell division [69].

It was reported that deamination of branched-chain 
amino acids was one of the mechanisms by which lactic 
acid bacteria maintain intracellular pH stability [70, 71]. 
As the LA stress time increased, the levels increased 
1.17 times for isoleucine. Aromatic amino acids can 
protect proteins from bile stress by forming hydropho-
bic regions [72]. As the LA stress time increased, the 
levels increased 0.75 times for phenylalanine and 0.83 
times for tyrosine. It is hypothesized that aromatic 
amino acids contribute to resistance to LA stress by 
forming hydrophobic regions, but the specific mecha-
nism needs to be further explored. We found that the 
cysteine and methionine metabolic pathways were 
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significantly altered in the amino acid pathway, includ-
ing SAM and MTA, which are the primary methyl 
donors for the methylation of DNA and other macro-
molecules, including proteins, carbohydrates, lipids, 
and small molecules such as sterols and nucleosides 
[73]. SAM and MTA are essential for several metabolic 
pathways, including biological methylation, polyamine 
biosynthesis, methionine recycling, and bacterial quo-
rum sensing (QS). Several bacterial behaviours, includ-
ing virulence factor expression, secondary metabolite 
production, biofilm formation, motility, and lumines-
cence, are regulated by QS [74, 75], the disruption of 
which is considered a strategy for controlling virulent 
pathogens [76, 77]. The data of Bourgeois et al. indicate 
that disruption of the bacterial methionine metabolism 
pathway suppresses S. typhimurium virulence [78]. The 
results suggest that amino acid metabolism responds 
positively to acid stress, with the aim of restoring intra-
cellular pH homeostasis in G. anatis. Additionally, it 
was observed that organic acids can downregulate the 
expression of virulence factor-related intermediates by 
inhibiting their production.

Conclusions
This study illustrated the antibacterial effect and par-
tial mechanism of acid treatments (lactic acid and CFS) 
on G. anatis strains. LA and CFS treatment had similar 
inhibitory effects on G. anatis by damaging membrane 
structure and metabolic pathways. KEGG pathway 
enrichment analysis showed that these differentially 
expressed genes were mainly involved in purine metabo-
lism and carbon metabolism, and differentially abundant 
metabolites were mainly involved in regulating lipids 
and amino acids. Amino acids and fatty acids increased, 
and lower concentrations of putrescine, SAM and MTA 
were detected after treatments. The changes in the target 
metabolome revealed that the energy metabolism (TCA 
cycle, glycolysis) and DNA expression and transcrip-
tion of G. anatis were influenced under acid stress. This 
study provides theoretical support for research on apply-
ing LABs or organic acids to control pathogens that may 
cause food safety issues.
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