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Abstract

The incorporation of data analytics in the healthcare industry has made significant
progress, driven by the demand for efficient and effective big data analytics solutions.
Knowledge graphs (KGs) have proven utility in this arena and are rooted in a number
of healthcare applications to furnish better data representation and knowledge
inference. However, in conjunction with a lack of a representative KG construction
taxonomy, several existing approaches in this designated domain are inadequate
and inferior. This paper is the first to provide a comprehensive taxonomy and a

bird's eye view of healthcare KG construction. Additionally, a thorough examination
of the current state-of-the-art techniques drawn from academic works relevant to
various healthcare contexts is carried out. These techniques are critically evaluated in
terms of methods used for knowledge extraction, types of the knowledge base and
sources, and the incorporated evaluation protocols. Finally, several research findings
and existing issues in the literature are reported and discussed, opening horizons for
future research in this vibrant area.

Keywords Knowledge graph, Knowledge graph construction, Healthcare Knowledge

Graph, Drugs, Diseases, Biomedicine, Survey

Introduction

The emergence of big data has opened up new possibilities and ushered in signifi-
cant changes in various disciplines. Healthcare industry is one of such areas in which
advanced and sophisticated data analysis is required to accommodate and properly
understand the growing volume of healthcare data, thereby optimising healthcare deliv-
ery. However, healthcare data is still regarded as a by-product [1], thus massive health-
care data sources remain neglected and underutilised [1, 2]. Attaining meaningful and
actionable knowledge from such data sources could positively affect patient care and
enable more accurate diagnosis, prevention of disease, personalised treatment, and bet-
ter decision-making. Primary obstacles for analysts include heterogeneity of healthcare
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data sources and formats, lexical disparities, and the lack of comprehensive and inte-
grated healthcare knowledge libraries [3].

Knowledge Graphs (KGs) have evolved into a new type of knowledge representation
that serves as the cornerstone for a variety of applications ranging from general to spe-
cialised industrial use [4, 5]. The fundamentally abstract structure of this technology,
which efficiently promotes domain conceptualisation and data management, is one of
the key factors driving the growing interest in it. The KG, in particular, displays an inte-
grated collection of real-world entities linked by semantically associated relationships.
In this case, data annotation put the available semantic content in a machine-readable
format, minimising ambiguity and generating relevant information particular to the
domain of an application. KGs can furnish an efficient and effective technical solution
to conceptualise a healthcare domain and thus be used for several downstream tasks.
Therefore, incorporating this technology into healthcare data analytics has emerged as
a solution capable to mitigate such issues as data island’s complexity, heterogeneity, and
sheer size. However, constructing healthcare KGs with unproven methodologies raises
concerns regarding their quality and robustness and whether sufficient assessment mea-
sures have been applied, especially for KGs obtained from unstructured data sources
(such as scientific medical literature or social media). Furthermore, the dynamic nature
of healthcare data is strongly linked to context, and numerous facts that characterise
clinical and medical entities may vary or change over time. Disregarding the flexibility
of knowledge lowers the quality and accuracy of facts embedded in the KGs, thereby
leading to substandard decision-making based only on such data sources. As a result,
it is critical to perform a detailed analysis of current state-of-the-art methodologies for
healthcare KG creation in order to identify such difficulties and open new avenues for
pursuing potential solutions.

This survey offers a bird’s eye view of the current construction techniques and possible
applications of KG technology in the healthcare domain. First, a taxonomy of health-
care KG construction is formulated to illustrate the scope of usage of KG in healthcare,
levels of knowledge extraction, different types of knowledge bases and sources, and
existing evaluation procedures. Next, we examined significant state-of-the-art KG gen-
eration approaches relevant for critical healthcare applications, including (i) drug dis-
covery, repurposing and adverse reactions; (ii) diseases and disorders; (iii) biomedicine;
and (iv) other miscellaneous healthcare applications. These approaches are scrutinized,
with a summary created for each domain demonstrating specific KG functionalities, the
incorporated knowledge extraction techniques (at both entity and relation levels), type
of the knowledge base, the resources needed to construct it, relevant KG statistics, the
measurements used to assess the KG construction methodology, and the limitations and
shortcomings of each approach. This paper is distinguished from similar works that tend
to focus too narrowly on specific healthcare subdomains [6, 7] or generic applications of
KG in healthcare [8]. In particular, the following are the key contributions of this paper:

+ To the best of our knowledge, this survey is the first to provide a bird’s eye view of
healthcare KG construction.

+ A new representative taxonomy is outlined to facilitate easier KG construction in the
healthcare domain.
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+ An in-depth analysis of state-of-the-art KG construction methodologies is provided,
and their main strengths and weaknesses are discussed.
« A summary of the research findings and remaining issues is presented, paving the

way for future research.

In Sect. 2, taxonomy of KG construction in healthcare is presented and analyzed from
multiple perspectives. Several KG construction approaches relevant for various health-
care domains are reported in Sect. 4. Section 5 summarizes the major flows of the exist-
ing techniques, and the observed research gaps, and offers suggestions to overcome
them.

Survey methodology

This paper aims to review the recent KG construction approaches for healthcare applica-
tions. Thus, we attempt to cover all papers that describe mechanisms for KG construc-
tion to benefit the healthcare domain. We focus on articles that were published in the
past five years (2018-2022). PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) framework [9] is followed to guide this systematic review. As dem-
onstrated in Fig. 1, around 560 articles were selected in the first stage from various
databases including Elsevier, ACM Digital Library, Multidisciplinary Digital Publishing
Institute (MDPI), IEEE Xplore digital library, and Google Scholar. The collected articles
were all in English and were retrieved using the following keywords used in this query:
“Knowledge Graph Construction’, “Healthcare’, “biomedicine’, “medicine’, “drug discov-

» o«

ery’, “drug repurposing’, “adverse drug reaction’, “disease(s)’;, “disorder’, etc. An addi-
tional 83 articles were identified and added to the corpus by reviewing the citations map
of the tentative collected set of papers. The first stage resulted in a total of 643 records.
Another round of inspection was carried out in the screening stage to eliminate any
redundant or irrelevant articles. This was accomplished by examining both the title and
the abstract of each paper. In this way, 440 records were excluded in the screening stage
as they did not meet the inclusion criteria. In particular, many of the articles discussed
approaches for KG embeddings that are applied to existing KGs, thus no construction of
new healthcare KGs was proposed. Another array of articles reported KG construction
for other domains of knowledge yet indicated “healthcare” as an example of the popular-
ity of KGs to tackle industrial applications. The eligibility phase was then carried out by
examining the full text of papers and eliminating the irrelevant ones (102 records). In

n=560
Records identified through
databses

Full-text articles assessed
for elegibility (n=203)

Total abstract screen
(n=643)

Total articles inclued in the
survey (n=101)

n=83

(n=440) records excluded - (n=102) records excluded -
irrlelevant title/abstract irrlelevant inclusion

Records identified through
citastion map

Fig. 1 The article selection strategy for the literature review (PRISMA model)
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the final stage, a total of 101 papers were deemed to be qualified to be included in this
review.

Figure 2 presents the volume distribution of the selected articles over the past years,
clearly showing the growing interest in this technology.

Groundworks

An overview of KG

A KG is a multidimensional graph that contains entities (nodes) and relations (edges)
that describe the interrelation of one or more domains. Hence, the KG displays a unified
collection of real-world objects connected by semantically relevant relationships. The
concept of semantic interlinking is framed by Semantic Web technology whereby data
can be annotated in a machine-interpretable format. This is commonly accomplished
through the use of ontologies, which define concepts (representing a collection of enti-
ties), the relations between entities, and semantic rules, thereby giving a formal and
explicit representation of that domain’s knowledge [10, 11]. These efforts are fostered
by using KGs, an abstract data model that captures a single standard representation of
semantically related data (i.e., a graph).

A KG is a directed graph (G), where G = (V, E). This notation depicts the relation-
ship between entities, as well as the interactions between these entities, in terms of
graph vertices (1) and edges (F ) connecting these vertices. The edges reflect relation-
ships between real-world things whereas the vertices represent real-world entities. The
edges of the graph connect the vertices/entities/nodes, and facts can be represented as
an RDF! triple (head, relation, tail), which is also notated as <h,r,t>. As a result, a fact
can be inferred by the relationship that connects two interrelated entities. Figure 3 dem-
onstrates a sample KG demonstrating the semantic representation of entities captured
from different interrelated healthcare domains, namely Disease, Gene, Drug, and Com-
pound. The figure shows how a KG can be used to expand one domain by semantically
interlinking it with another domain. Also, various facts can be inferred from the abstract
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Fig. 2 #Publications about KG construction for healthcare in the past years
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Fig. 3 A sample healthcare KG

causes causes

structure of the KG. For example, the fact “a Disease is associated with a Gene” repre-
sents an abstract fact that comprises two abstract concepts (i.e. Disease and Gene), and
the relation “is associated with” builds the triple <* Disease’ ‘associatedWith’}* Gene”>.
These abstract concepts can be then replaced with real-life entities to provide a specific
domain representation. For example, the triple <“ Sjogren’s Syndrome’, “associated With’,
“HLA-DR3”> indicates a fact about the Sjogren’s Syndrome disorder which can be asso-
ciated with HLA genes, namely HLA-DR3 [12].

The sample KG depicted in Fig. 3 can be further expanded and linked with other data-
sets and vocabularies to extend the understanding of these real-world entities which
belong to one or different domains.

Generic and domain specific KG

There are two types of KGs: generic and domain-specific KGs. Since the Semantic Web’s
inception, generic KGs (also called domain-independent, cross-domain, or open-world)
have been constantly expanded. As a natural representation of interconnected entities,
generic KGs have been related to linked data [13]. Cyc? BabelNet?, NELL?, CliGraph®,

Zhttps://www.cyc.com/.
3https://babelnet.org/.
“http://rtw.ml.cmu.edu/rtw/kbbrowser/.

®http://caligraph.org/ontology/Scientist.
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YAGO®, and DBPedia’ knowledge bases are examples of generic KGs, and the number of
such KGs is rising rapidly. Domain-specific KGs are defined as “an explicit conceptuali-
sation to a high-level subject-matter domain and its specific subdomains represented in
terms of semantically interrelated entities and relations” [14]. These KGs are important
to conceptualise specific domains, such as health, sports, social science, engineering,
travel, etc. Examples of domain KGs include: HKGB [15], K12EduKG [16], SoftwareKG
[17], ClaimsKG [18].

A taxonomy of healthcare KG construction

To better understand the overall paradigm of healthcare KG construction, we design a
taxonomy that illustrates key activities and aspects of this process. Figure 4 shows the
schematic representation of the taxonomy that was designed after careful examination
of all significant state-of-the-art KG creation approaches relevant to critical healthcare
applications, including (i) drug discovery, repurposing and adverse reaction; (ii) diseases
and disorders; (iii) biomedicine; and (iv) other miscellaneous healthcare applications.
This taxonomy aims to ensure that the process of constructing a typical KG in health-
care must demonstrate the intended primary use of KG, levels of knowledge extraction

Drugs discovery, repurposing and
adverse reaction

Diseases and disorders

Doamin expert

r KG Usage |
Biomedicine |
Miscellaneous Healthcare (Q&A, Named Entity Recognition (NER)
RS, etc.)
Entity-level 5 . n .
Named Entity Disambiguation (NED)
r Extraction Level Named Entity Linking (NEL) |
Global-based |
Relation-level
Local-based |
Knowledge
1 i ] Knowledge based )
Extraction M nowte ge ase —| rule- and lexicon-based |
techniques
Healthcare KG || Construction _Collaboratlve
Construction | | approach || Human-crafted
Semi-Supervised
ML based
off-the-shelf
_
Schema-based Deep Learning
Type of
H Knowledge H
Schema-free |—| Open IE
base -I P |
—| Hybrid
Type of
Resource
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Fig. 4 A taxonomy of healthcare KG construction

Chttp://www.foaf-project.org/.
7 https://wiki.dbpedia.org/.
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(entity level and relation level), different types of knowledge bases and sources, and eval-
uation metrics and criteria. The following sections provide detailed descriptions of each
of the aforementioned elements.

Levels of knowledge extraction

The mechanism used to build a typical healthcare KG includes extracting entities and
relations that can be captured from various heterogeneous healthcare data sources using
a range of extraction methods. This section discusses the knowledge extraction proce-
dures at both the entity level and the relation level.

Entity-level

Entities in healthcare KGs represent the nodes of the graph, which correspond to real-
world entities such as drugs, diseases, diagnoses, patients, hospitals, events, etc. There
are three main approaches used for entity extraction [19, 20]; (i) Named Entity Recogni-
tion (NER); (ii) Named Entity Disambiguation (NED); and (iii) Named Entity Linking
(NEL). NER techniques aim to analyse textual data, thereby identifying factual names of
various real-world objects. For example, the “Pfizer” entity in the following text snippet
“Clinical trials showed that Pfizer is effective.” refers to the name of BioNTech vaccine
that protects against COVID-19. The techniques used in NER can be classified into (a)
knowledge-based techniques that rely on domain-specific knowledge and (b) advanced
machine learning techniques that benefit from annotated data (in case of supervised
learning), or partially annotated data (in case of semi-supervised learning), or derive
knowledge from the structural or distributed nature of data (in case of unsupervised
learning) to carry out an entity recognition task. Examples of ML-based techniques
include Hidden Markov Models (HMM), Support Vector Machines (SVM), Conditional
Random Fields (CRF) and variations, and Decision Trees [21-23].

Although NER techniques can identify potential entities, some of these units can be
difficult to link to their corresponding entities that are located in the same or different
KGs. For example, the expression “Pink eye” captured from any textual snippet could
possibly refer to conjunctivitis and thus should be linked to a corresponding entity in a
medical KG; or could simply refer to a cosmetic makeup term (eyeshadow) that relates
to a completely different domain. The spectrum of currently used techniques in named
entity disambiguation spans from rule-based approaches to advanced machine learning
approaches, serving to clarify the results of NER and separate similar cases. Finally, NEL
aims to link an identified entity (using a NER method) with an unambiguous manifesta-
tion (using a NED method) of the same entity captured from textual content, and frame
it within a fixed context by linking it to a KG. As a result, NEL is the process of locating
an entity mentioned in an (unstructured) text and linking it to a (structured) KG entry.
The reader can refer to [19, 20] for detailed discussions on entity extraction mechanisms
and technical issues related to their practical implementation.

Relation-level

A relation between two entities conveys the semantic relationship between these enti-
ties. Extracting the relations between entities in KG requires such links to be identified,
thus establishing a tuple that connects two potential entities. The aim of relation extrac-
tion is to figure out in which ways the identified and disambiguated entities are related
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semantically. This operation can be performed using either a local or a global strategy.
The former denotes a mention-level relationship that is frequently inferred from short
textual contents, while the latter seeks to infer relationships that span multiple knowl-
edge bases and may involve numerous local relationships. Further information on rela-
tion extraction methods can be found in the related literature [24, 25].

Types of knowledge base

The course of construction of a healthcare KG is dependent on whether a predeter-
mined ontology schema is used (schema-based), no predefined schema is used (schema-
free) [26], or a combination of schema-based and schema-free techniques is employed.
Based on the selection of data sources and ontology [27, 28], the first class of methods
(schema-based) can be divided into two groups: (i) the bottom-up methods, in which
the structural framework of an ontology is used as a foundation to construct the KG (e.g.
Wikipedia is established by using the predefined ontology model, i.e. DBpedia [29]); and
(ii) the top-down technique (e.g., YAGO) [30]), in which the ontology schema is inferred
from the underlying structured data, or the taxonomies (hierarchy) which are developed
based on information on the Web [31]. Schema-free methods are generally based on
open information extraction strategies that rely on the open access to information on the
Internet; as a result, data is gathered with diverse knowledge extraction techniques with-
out particular concern for fitting the data into a unifying ontology design (e.g. OpenlE
[32]). Hybrid knowledge-based approaches: are flexible strategies for obtaining knowl-
edge that partially rely on a specified ontology but integrate new information in a flexible
way (e.g. KnowledgeVault [27], NELL [33]).

Types of knowledge resources

Building a consolidated healthcare KGs requires extracting and integrating data from
a variety of sources. The integration step is necessary in order to harmonise the data
and provide a consistent big-picture view. There are three types of healthcare knowledge
resources; (i) unstructured data sources (such as EMRs, medical literature, discharge
summaries, and radiology reports); (ii) semi-structured or tree-structured data sources
like JSONs and XMLs (e.g., Bio2RDF®); and (iii) structured databases that organize infor-
mation in tabular formats such as relational medical databases (e.g., MEDLINE®).

KG evaluation metrics

The sudden growth of demand for healthcare KGs and the corresponding rush to pro-
duce them raises concerns about the quality of embedded information (i.e., entities and
relations) and whether these elements accurately transmit the intended real-world facts
behind the numbers. Assessing the completeness and veracity of information contained
within a KG is the key to determining its “fitness of purpose” [34] for various down-
stream applications, as well as ascertaining data quality [35-38].

The lack of a complete and accurate KG in a particular domain makes the evaluation
process difficult. This is due to the fact that compiling all factual data regarding a par-
ticular topic is a massive undertaking that may never be actually finished. As a result,
several attempts have been made to augment and dynamically updateknowledge graphs

8https://bio2rdf.org/.
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with new facts derived from new entities and/or relations, usually referred to as KG
Augmentation/Completion approaches. These efforts are subjected to correctness and
completeness evaluation procedures to assure data quality. The evaluation can be per-
formed by tracking classification accuracy and ranking metrics such as Hits@N and
Mean Reciprocal Rank (MRR), Accuracy, Precision, Recall, and F-score [39, 40], based
on a comparison between data in the KG and ground truth. These metrics are among a
number of tools that can be used to assess the KG’s construction quality and factuality of
the described entities and relationships. Case studies and domain experts have also been
occasionally used in the evaluation of KG structures [41, 42].

State of the art review

Recently, the Healthcare sector has gained much public attention, particularly with
the coronavirus (COVID-19) pandemic that started in 2019 and continues to rattle the
world. Therefore, there is a notable consensus between industry and academia that it is
critical to consolidate the efforts of all stakeholders to overcome the challenges of this
vital sector [43]. KGs offer the technical means to the healthcare sector to derive mean-
ingful insights from voluminous and heterogeneous healthcare data contained in clinical
and academic sources [44, 45]. The examined papers relevant to healthcare are classified
into four different categories: (1) Drugs: This category comprises studies that incorpo-
rate KG technology for drug discovery, drug repurposing, and adverse drug reactions.
(2) Diseases and disorders: Which includes studies that benefited from KG technology
to conceptualise various diseases and conditions, such as stroke, subarachnoid haem-
orrhage, hepatitis, etc. Also, it includes papers about mental illnesses, such as depres-
sion, anxiety, autism, etc. (3) Biomedical studies: These include the fields of biomedicine,
microbiology, etc. (4) Miscellaneous healthcare: These are works that span different cat-
egories, or those that incorporate KGs to model a specific healthcare solution.

Drug discovery, repurposing and adverse reaction

Drug discovery KGs are receiving a lot of attention from researchers who are involved
in the drug development studies. The necessity to construct specific KG for the drug sec-
tor has several key motivating factors [46]; prescribing a particular drug to treat a certain
disease might involve some non-medical factors including the demographics, insurance
policy, drug availability, etc. Further, in some instances, healthcare professionals who are
not qualified to prescribe drugs, might act upon an emergency, thereby initiating a treat-
ment that in a normal situation has to be initiated by a specialist doctor. Such complica-
tions illustrate the need for an intelligent platform that can actively guide the search for
the optimal drug to prescribe. In this context, Mann et al. [46] attempted to create such
a platform that can assist in finding a valid treatment considering the known symptoms
or identified disease. In this study, the authors integrated existing medical knowledge
resources, thereby building a KG to benefit the entire domain. In the same line of research,
Che et al. [47] proposed a method to integrate six knowledge bases into one coherent KG.
The resulting KG is then embedded into Graph Convolutional Network with an Attention
mechanism for Drug—Disease Interaction (DDI), which is used to predict and discover
potential drugs capable of effectively treating COVID-19. The prediction of Drug-Target
Interaction and Drug-Drug Interaction are important aspects of the development of new
drugs. In another interesting study, Zhang et al. [48] constructed two designated KGs
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describing drugs captured from a biological dataset, namely Bio2RDF, This is followed
by developing a learning model based on graph representation (MHRW2Vec), whose out-
put was fed to a neural network model (TextCNN-BiLSTM Attention Network (TBAN)).
The ultimate objective was to predict potential interactions of various COVID-19 drugs.
Ye et al. [49] developed KGE_NEFM, an integrated framework comprising both a KG and
a recommender system to predict DDI. The components of the KG were embedded in a
low-dimensional space, after which a neural factorization machine was tasked to build
the recommender system for drug target discovery. Drug discovery incorporating KG
technology was also discussed in [50—53].

Drug repurposing Drug repurposing (a.k.a. reprofiling, redirecting, rediscovery, or
repositioning) is an interesting domain that has come into focus recently. It aims to reuse
existing drugs to treat emerging diseases (such as COVID-19) thereby reducing both drug
development timelines and the associated costs [54]. Therefore, various studies attempted
to provide intelligent solutions for the challenges inherent in drug repurposing. Regard-
ing the use of KGs, there is a direction of research aimed at constructing KGs that can
be used for drug repurposing. BenevolentAIs proprietary KG [55] is amongst the most
successful approaches in this research line. The BenevolentAl KG integrates an assort-
ment of medical data obtained from structured and unstructured scientific repositories
(including literature). It is queried by various algorithms to identify new relationships
between entries, thereby suggesting new ways of treating diseases. In the same context,
Wang et al., [56] proposed a framework called COVID-KG which aimed to construct a
KG from multimodal data found in scientific literature into one actionable KG that can be
used for drug repurposing. The proposed K@ is built on an ontology of 77 entity subtypes
and 58 event subtypes, as defined in the Comparative Toxicogenomic Database (CTD)
(Davis et al., 2016), and entities are linked using Medical Subject Headings (MeSH)
framework [57]. also proposed a multimodal drug repurposing KG for COVID-19 that
was built with data harvested from scientific literature, and aimed to provide an overview
of pathophysiology related to COVID-19. The construction of this graph was carried out
manually using Biological Expression Language, and evaluated based on multiple case
studies. Drug repurposing is further discussed in [58-63].

Adverse drug reactions (ADRs) ADRs refer to undesired reactions that occur after the
use of a certain medical product [64]. ADRs carry significant risks to both patients and
the hospital system [65], thus serious attention is required to tackle this issue and develop
optimal technological solutions to mitigate it. The sophisticated structure of KGs pres-
ents an opportunity to define this problem conceptually and provides new ways to predict
potential ADRs. Many studies were conducted in this direction, notably Bean et al. [66]
benefited from access to two drug resources (namely DrugBank!!' and SIDER'?) to build a
KG that can predict ADRs. This KG contains four types of nodes and three types of edges,
and is consolidated with a prediction model (similar to linear regression). Authors of [67]
introduced a KG to represent drugs and ADRs, with data embedded using the Word2Vec
model. On top of this model, logistic regression was used to predict whether a given drug

https://bio2rdf.org/.
Mhttps://go.drugbank.com/.
2http://sideeffects.embl.de/.
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causes any ADRs. Tumor-Biomarker Knowledge Graph (TBKM) [68] is another attempt
to design a KG with four node classes (namely Tumor, Biomarker, Drug, and ADR) based
on data from scientific biomedical literature. The aim of the KG is to discover ADRs of
antitumor drugs as well as provide explanations why they occur. Predicting and discov-
ering ADRs have been further reported in [69-74]. Zhao et al. [75] designed their drug
action mechanism KG after extracting information from 770,000 abstracts of medical
papers. Despite the poor approach used to extract entities and their relationships, the
paper managed to cover a large number of drugs and mechanisms of action. Table 1 illus-
trates a summary of currently proposed KG construction approaches for drug discovery,
drug repurposing, and adverse drug reaction.

Diseases and disorders

Topographic and anatomic KGs have accelerated the pace of scientific discovery that
aims to better understand diseases affecting the human body. For example, Zhang et al.
[15] developed Health Knowledge Graph Builder (HKGB), which is a framework that can
be used to construct a Health KG (HuadingKG) from multiple sources (namely EMRs,
medical standards, and expert knowledge) to be used in the cardiovascular domain. To
conceptualise subarachnoid haemorrhage stroke, the authors of [45] developed a com-
prehensive framework that allowed them to construct a KG from heterogeneous data
automatically. In particular, the authors incorporated semantic analysis for entity and
relation extraction, and implemented a knowledge prediction model based on the asso-
ciation rule and ensemble machine learning. KGHC [76] is a KG designed specifically for
Hepatocellular Carcinoma. It brings together and connects entities captured from 5 dif-
ferent unstructured and structured data sources and extracted using information extrac-
tion techniques such as BiolE and SemRep. Yin et al. [77] constructed a KG for diagnosing
and treating viral hepatitis B by adopting a top-down approach where a domain ontology
was used to build the KG. The authors did not provide adequate details on the mecha-
nism utilised to construct the KG or the evaluation metrics. Yet, they claimed that the
designed KG benefits intelligent recommender systems that can be used to diagnose and
treat viral hepatitis B. Another research direction identified the role of genes in human
disease [78]. The authors built a convolutional neural network-based model on top of a
biological KG to classify the genes highly correlated with cancer. While the construc-
tion of the KG itself was not adequately validated, the resultant embedding model was
evaluated on downstream tasks. An attempt at preventing Myopia using KG technol-
ogy was described in [79]. The authors developed a KG from various Chinese websites
to provide intelligent Q&A services to users interested in Myopia prevention. However,
the finalised KG lacks multimodal data that can be captured from medical databases and
domain-relevant question answering systems. Conceptualising Stroke and its causes and
effects is an extensively covered subject in the literature. For example, Yang et al. [80] con-
structed an integrated KG, named StrokeKG, that portrays various stroke-relevant rela-
tionships inferred from various medical datasets. Designing KGs to benefit the victims of
stroke was also examined in [81, 82]. COVID19-related disease discovery using KGs was
reported by Huang et al. [83]. Relying on a pipeline approach, the authors surveyed from
relevant scientific papers related to COVID-19 and used the collected data to construct a
KG that can identify diseases and drugs associated with COVID-19. The accuracy of the
extracted knowledge was then verified using the time-slicing method. The use of KGs in
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the healthcare domain was discussed with a focus on disease identification and predic-
tion in [84—87], detecting the association between miRNA and disease in [88], chronic
disease management in [89], and syndromes diagnosis in [90].

Mental disorders Yuan et al. [91] constructed a KG with minimal supervision to frame
autism spectrum disorder diseases, using the articles obtained from the PubMed dataset.
Entities were extracted using MinHash lookup/ UMLS [92] and formed into pairs which
were then clustered using kmeans++based on similarity between entities. Construct-
ing KGs that can describe depression was undertaken by Huang et al. [93]. In particu-
lar, they attempted to generate a sub-graph that describes depression disorder, obtained
by parsing data from a variety of major knowledge sources such as PubMed, Medical
Guidelines, DrugBank, Unified Medical Language System (UMLS) etc. In the same line
if research, Li et al. [94] proposed a UMLS-based semantic prediction program, known
as SemRep, as well as SemMedDB to construct a KG for describing depression by using
a bottom-up approach. Depression and its association with metabolism is also discussed
in [95]. The authors developed MDepressionKG KG that integrates data about human
microbial metabolism network, human diseases, microbes, etc., to offer semantic-based
rational reasoning and establishing probable relations between depression and comorbid
diseases. Although the authors furnish a useful online website to demonstrate utility of
MDepressionKG, the knowledge inference mechanism is ineffective due to the incorpo-
rated traditional rules of logic. Furthermore, automatic extraction methods are required
to enrich the functional diversity of the proposed depression KG. The conceptualisation
of various mental disorders through graphs was also presented in [96—99]. Table 2 shows
a summary of KG construction approaches for diseases and disorders.

Biomedicine

Generic biomedicine KG’s have been used with success for modelling both biological
systems and pathologies, providing the means to understand this interplay between them.
Several studies reported significant advances in this direction while incorporating KG
technology. PharmKG [100] is a comprehensive KG built upon integrating six interrelated
knowledge bases, with nodes representing genes, chemical compounds, and diseases.
Entities of PharmKG are labeled with domain-specific information, keeping semantic
and biomedical characteristics of the data. Percha et al. [101] compiled a basic KG known
as the Global Network of Biomedical Relationships (GNBR) from biomedical literature.
The process of populating GNBR with data was performed using PubTato (named entity
annotator) tool, as well as Ensemble Biclustering for Classification (EBC) algorithm to
annotate entities captured from Medline abstract. Wood et al. [102] developed RTX-KG2,
an integrated KG that includes biomedical data captured from 70 biomedical knowledge
bases. The aim of RTX-KG2 is to offer an open-source KG that can be used as a bio-
medical translational reasoning engine. Zhang et al. [103] reported the extraction of bio-
medical causality from the scientific literature. In their work, the authors constructed a
biomedical knowledge graph to discover causal relationships in the biomedicine field.
Authors of [82] developed a marine Chinese medicine KG using a top-down approach
that takes guidance from a domain ontology. Developing an integrated KG to benefit the
biomedical domain has also been discussed in [104]. The authors presented BioKG, a KG
of drug-drug and drug-protein interactions data collected and compiled using modu-



Page 13 of 32

‘/speo[umop/310-aseqp3d//:dny
“/wodJuB[oASURG MMM/ /s o
/8107 ypagorq//:sdny g
*/wodueqdnip-od/ /:sdny o

(2023) 10:81

Abu-Salih et al. Journal of Big Data

'Sa1IaND 1591 UoLeIUSD
pUE ‘921N0s ‘e1ep UsWdO|aASP pue Bululel) Ul Seig PaAIaSqQ « 1oday UOMDRIIXD
‘SSOUDAIIDYD S1I 91BIISUOWSP 01 paien|ens Ajiadoid Jou sem anss| puisodindsy /5482, (,,ALD) HSIN Aua
Ajllenb ay3 ‘s921N0sal DY JURAI|RJ JO aNSS| Ayauenb ay buipdel Bnig uo D#  2INJRII| dYUD pue gD uo  pauleib-auy
Ul $5300NS pajelisuowsp ylomawel) pssodoid sy ybnoyy « Apnisase)  /17'/9:Ug  -IDS [PPOWNN  PSSEQ-BWSYDS  paseq Ajjenuely  pue-ssieo)  buisodindsi brug  [99]
61-dINOD
Suol||il U0 24nyela bul
‘ApN1s ased AQ painseaw A|2IaW Sem UONeN[eAS 3y JOSpaIp  -pNjul Pa2IN0Sal
‘ydeib [y1usjoAsUSg 1DNJISUOD -uny :o# paJn1dnJisun dl 119y jo ped pue y [yausjonsu
01 PIMO]|0} LISIURYDIIW Y1 UO UOISSNISIP Pajielsp Ou S aJay] Apnis ased) pue painidnig PUgAH -9g 1e padojanap swyiobly  buisodindas brug  [69]
PSOLELOL
of
o l'/¥6'T O) 4d4dcold
‘DY BNIP JO UOIIDNIISUOD Y1 UO UOISSNDSIP 1enbapeu « 14 °4dNV DNV U# <, dayecoig PUgAH UO Paseq UOIIDRIIXD [ENUBN AK12A0DsIp brug  [8¥]
‘P3|ieIop 10U pue pawl| st |dd-NDD-1Y JO uohen|eAs ay] « 2Jnlelal|
'SO) pajesodiodul sy 000'0£9 =# 61-dINOD S} WOJ) paule1qo sH) XIs uo 61-dINOD 104
91e1631Ul 03 PAMO||0f UISIUBYISW DY UO UOISSNISIP JUSIDLYNSU[«  DYJNY PUR DNV 00001 :U# uo aInjeldN]  Paseg-ewayds Paseq UOIIdNIISUOD [enuUel Klanodsip bnig  [/¥]
‘DY pPa1elD31ul 1URY NS Y} UBY) Jayiel Buippaquua
Oy Uo paziseydwa [opow pasodoid ay3 Jo uolienieas ay| - XYpooo) pue
ubisap ABOJOIUQ 9Y3 UO UOISSNISIP PAYWIIT » ‘AWPaM ‘, ueg
‘DY 1UBY NS DY) UO SDIISIILIS JO DB 4y v/N -bnig ‘exepijip\ - PaSeg-ewayds Bulysiewl Azzny pue [enuey AI9A0DsIp bnug  [ot]
|9n97-uoneRy  [PA3-A1ug
(s)ainseay al sanbiuyday Ajeuonouny
(s)buiwodyioys uolenjeny s}e}IS DY (S)92unosay Dy Jo adAp uonoexy abpajmouy) oypadsny  y9Yy

uonoeas bnip asianpe pue ‘buisodindal Bnup ‘A1sA0dsIp bnup 104 saydeosdde UoIONIISUOD DY JO AlWWNS Y/ | d|qeL


https://go.drugbank.com/
https://bio2rdf.org/
https://www.benevolent.com/
http://ctdbase.org/downloads/

Page 14 of 32

(2023) 10:81

Abu-Salih et al. Journal of Big Data

/810-aypede-saerd//sdiy o
/op 1quua'syoapaapls//:dny ¢

/STUITARUOIO0D /YDIBISDI /A0S IU WU IGOU MMM/ /:5dNY o

SO JejIwis Bulxa Apuaund yum uoseduwod payw - GOg'/G o# yoeoudde
“UOIIDNIISUOD DY old [BNIXS] Yl O3 UOIIBIYLAA JO DT+ ADRINDDR pue ‘Y £96'0F U# siaded [edIpay 924-BWAYDS  Ppaseq-a|nJ buisn Ajjedrewoiny uonoe bnig  [5/]
poyiaul uonoenxa A1nus ayi buisn uo sjeuoel Jo 3. « (qluIIBWISQ)
‘uo1deIuUl bnip-Hnip 0} UoIUIL SYI S| APNIS 3y ] - Apnis ase) suonoeal
‘diysuonejai Juswiean-bnip e usamiaq puesisAleue  $S7'6E| P# [opow Bnip asianpe
21enuaJayyIp 1ouued sbuidnoib Jaylewolg-bnip paindwod ay] » 95U34IN220-0D 669'6 U# INIJIW  paseq-ewayds uelsakeg aAleu 0 SPIVL? Jo f1dn0dsIg [89)
(9ouejibiAeIpNg
“uosedwod yIewydUq pue syH3 ul suonoeal
TN 343 Ul pamo||oy AB60JOPOYISW SY3 UO UOISSNISIP JUSIDYNSU[+  UOlepIeA)ApNIS 78€'0/ o soseqelep [ein} Bnip asiaApe
‘yoeoidde UO[IDNIISUOD DY UO UOISSNISIP Je3|D ON - 35eD pue DNY 878'S U Y3qls Huegbnig 994-BUWIBYDS  -DNIIS WOJ) UOIDNIISUOD 1031l] jouomdipald  [99]
AInfuy Jan|
‘|9POW D3AZPIOM JO Indul 2y se oy ay1 Ul yied Jsbuol buisn Aq pasnpul-bnig aseqeiep Suonoeal
pabiejus 9q UeD Sa11UL AQ PaAIRdIad UONRWIOLUI JO 9d0Ss 3y » uoApnisasede  GEZYSLIOE  YIAIS pUe Sseq saseqelep [einy Bnup as1aApe
"1961e1 ui101d pue sbnip jo uonewojul sdys Oy Yl puBONY L4y d €/¥'7Lug  -erepyuegbniq 924)-BUWAYDS  -DNJIS WOJ) UOIDNIISUOD 1031IJ Jjouomdipaid /9]
did pue’; ¥3ais
“ulewop ayi buizijenidsduod (saed uegbnig
191190 pJemoy Abojoiuo urewlop [eulloy buisn Aq panoiduwil ag ued  aseasip-bnup bul 'DNYA DOIY
uonelba1ul e1EP JOJ PISN SeM Jey) [spoul elep pasodold syl -puld) Apnis ased V/N  ‘QLL'giowieyd  paseq-ewayds Bupusisal-ssoi)  buisodindas bnig  [gS]
(SIsAjeuy 19
“Alj1qejeds Jo swur upood  uojssaldxg auso) 2eT0L B "DINgRdoIng ‘g pIA abenbue uoissaidx3
SI (PRSe-[ENUBW) DY 941 12NJ1SUOD O} PIMO||0) UISIUBYDSW 3y » Apnis 958D L0V :u#  -0DUT‘PaNaNd SaJ)-ewayds  [ed1bojolg ul papodus Ajjenueyy  Buisodindss brug /6]
[oA9T-uoneRy  [9Ad-A1ug
(s)aanseay a sanbiuyday Ayjeuondung
(s)buiwodlioys uonenjeag slels DY (S)adunosay Dy Jo adAL uolpelxy abpajmouy| ypads oy Jay

(penunuod) | ajqey


https://www.ncbi.nlm.nih.gov/research/coronavirus/
http://sideeffects.embl.de/
https://ctakes.apache.org/

Page 15 of 32

(2023) 10:81

Abu-Salih et al. Journal of Big Data

IWDLA/ U oy mmm/ /ANy ¢
“sndrod-1pena/sadmosal/dyd-xopur/[udwsnuwisesa sonuewasoq//:sdny
‘/ATND.L/dno8 pprq//:dny |,

/SDIAIDS P TIP'SqI MMM/ /ANy

"STALAI/nm-unSuayd/wod qny3is//sdiy
/snjdwirous/sjoo,/d[uorq/yoressar/A0S yru wuigoummm//:sdny o

/wRyd w3 /S[00],/d[u01q/Yd1easa1/A0S YIu wuwIgdummm//:sdny

‘/WION/OWA(/NT/Y2Ieasa1g g /A0S Yru U Iqoummm//:sdiny o

/A0S s[erneoTuIR/ /:5d1Y ¢

“/aodyrurwu-daswas//sdny

9bpajmouy
[e2IpaW Jo dew aAIsUayaidwod 240w e pjing pue a1edljdal 01 N /S| o# 213 ‘ZHaV 143g-oig pue 61S33LMd ‘g SNIJWIOND
piey pue 1xa103 9saulyD 0} PN S| D) Pa1oNIISUOd sy - 14'44d A9p U -N3° L AIWDL 4 dID S9)-eWaYS  MFIAM MLIN '/ WaYDWI g WIONd a0ns  [08]
"SJUSWRRI0RSIP Pa1Uasald a1 SS2IPPE 01 PaMO)|0)
WISIUBYD3W 31 UO UOISSNISIP Pa|IeI9P OU U3 Sey 3oy « < SlenL el
"eWOUID/eD JejNn|[9301eday $95521pPe 1yl 967'slo#  pue‘@egoldn ‘'9q (J¥D-W1sTg-ny ewiouDIed
Apnis sed jl|-|eal Uo pajen|eas Auadoid Jou sem oy 3y « Adeinddy  8ZO'GiU#  -PINWSS ‘PINGN  PASE-BWRYDS  YUM)I|0lg puR’poyiaw paseq-aint’, daywas  Jenjj@doieday  [9/]
“sa|npow pasodoid ay1 BuieiBa1ul JO SSDUDAIIDDYS dY1 a1en
-[eAS 01 ApN1s 958D Pa|Ie19p e SauINbaJ oMWl [|RISAO 9y « v swelboibue ureiq (Paseg-a|ny) ("19'0V| ‘0915216 obeylioway
S$DI1S11R1S DY 9Y1 UO UOISSNISIPp PallwiT+  pue’|4'yd /N pUe $310U [EDIUID  PISe]-euIayS J1PWOINY  -O[0JUQ) SISA[eUR DUBWSS  plouydeledns [y
s3|npow
poppaquie
Syl Ul 09€'95C'CE spoylaw
Pa1oNpuUOd 2  obpsmouy| 1Uadxe Buiules| pssia
‘so|npouwl pasodoid syl Buneiba1ul JO SSOUSAINDIYS SY1 91N SIUONBN[BAS  $87'€6C'8  PUe 'Splepuels [ed -1adns pue ulewop
-|eAs 01 ApNis a5ed pa)|Ie1ap e Saiinbal yiomaulely |[elano ay] « Yyl Ug -IpaW 'SYNI ‘STAIN pUgAH  paseq-uianed 4D-WIST  Jenoseroipied  [G]
|aAs7-uone|RY [ons)-A1ug
(s)aanseapy a sanbjuydal  Ayjeuonduny
(s)buiwodlioys uonenjen  sjeis oy (s)@24nosay Dy Jo adA) uonoesxy sbpajmouy oypads oy joYy

SI9PIOSIP puUR $35R3S|P 104 saydroidde UoIIdNIISUOD DY JO AlPWWNS Y g 3jgeL


https://semrep.nlm.nih.gov/
https://clinicaltrials.gov/
https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/DNorm/
https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/tmchem/
https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/
https://github.com/chengkun-wu/PWTEES
http://www.cbs.dtu.dk/services/
http://bidd.group/TCMID/
https://biosemantics.erasmusmc.nl/index.php/resources/euadr-corpus
http://www.tcmip.cn/ETCM/

Page 16 of 32

(2023) 10:81

Abu-Salih et al. Journal of Big Data

|9POW 91 01 UOIIBN|PAS ||BIDAO JUSIDLYNSU] «

(s12eNSqe
dpIve pajefal

/a03yrurwiurigourpawiqnd/ /:sdny g,
/op[quua's3oayeapls//:dny
feonsuegSnIpmmm//isdiny g,

/810°spaederewt//:sdiy
“ArgOHo1g/310°pL1So1qayy speoumop//:sdny -

‘suoliefal paiefal A|[ednuews Ysinbunsip 01 3nduid « 76191 P -19pIosIp wnidads ++sueawy Japiosip wnil
‘PaUlRID-95180D 2R SUONR|SI PR1DRAIXT « NOUH £T89:U#  wshne) . .paNgNd 99Jj)-ewaYdS  pue weib-dps STNN/AN300] yseHuI -dads wsiny - [16]
STAN
'$21IS1e1S DY pue uoneibaiul 9bpa pue’,.43qls ‘elp
-|MOoUY J0 pasn ABOJOPOY1aW 91 410g UO UOISSNISIP JO e « -adpyipn oogbnig
‘sa1103150daJ [eDIpaW JueLIodWI JBY10 JO 3SN 1USDLYYNSU| - TTLT688  gpluegbnig el ‘suolssaidxa 19pIosIp
‘uonen|eAs Jadoud jo e $9580 35 o [ea1ulD ‘PaNgNd PLUOAH J1einBaJ1 YUM S21ISNY DIUBWISS ‘UR|PIINX uoissaidaq  [£6]
$31ISgoM
“UXeLIDPUN S| UoeNn|eAd Jadoid O |euolssajoid pue
'sdiysuonefas pue sannus V/N 2 'eipadifipn 9saulyD uonuaAald
10RJ1X9 01 PISN SWISIURYDSW JO SWIS) Ul PIGLIISIP 10U S| DY « N V/N:Ug ‘eipadoppAdug npleg  paseq-ewsyds 1duds uoyAd buisn dnewoiny eldoAw  [6/]
pa1eN[eAS 10U SI J|95)1 O Y1 JO UONDNIISUOD Y] « SlT's/Ts SUOINRIDOSSe
‘sdiysuoliejal pue o SPiedefey Quab-aseasip
SONUS 15B11X3 O} PIMO]|Of LUSIUBYIIW SY3 UO UOISSNISIP ON - V/N  ST9'E0L Uk ", /PUO0Ig ‘a1D 99J-_lsYS V/N V/N buifgnuap  [8/]
'$195P1BP 959U UO SIUSWILIAAXD YETVOT'L 'S9SeSIP Palefal
941 19NPUOD 01 PIMO||0) WISIUBYIDUI 9yl UO UOISSNISIP JOXDB| DV pue ‘14 o SEYMEIEM] -eluownaud
Uum papiroid e s1aselep UONJeAIXS Uohejas pue Aiud Y|« ¢ Audyidads  €66'0L U dYNUBIdS 6L-AIAOD oRJ-_elIsYS 1438-019 440 sniineuolo)  [gg]
g snneday |esn
O 941 12NJISUOD 01 PIMO||0) WISIUBYISUI UO UOISSNISIP ON * 968'96 o# (euyd ul JOJUusWIR)
"Pa12NPUOD Sem uolien|eAs Jadoid oN - V/N €95'g:ug  siuaned pHS8) YN PISeg-ewaydS /N VY/N  puesisoubeiq [//]
|aAs7-uone|RY [ELETRSTHTE
(s)aanseapy a sanbjuydal  Ayjeuonduny
(s)buiwodlioys uonenjen  sjeis oy (s)@24nosay Dy Jo adA) uonoesxy sbpajmouy oypads oy joYy

(penunuod) zsjqey


https://downloads.thebiogrid.org/BioGRID
https://malacards.org/
https://www.drugbank.ca/
http://sideeffects.embl.de/
https://pubmed.ncbi.nlm.nih.gov/

Page 17 of 32

(2023) 10:81

Abu-Salih et al. Journal of Big Data

Tuy doywag ANS~ gapoNwas dayuwag/sjooy/m/aof yrurwiuroqouy//:sdny ¢

‘DY UOISsa1dap aY1 JO AUSISAIP [PUOIIDUNY 178'sz/'s

9U3 UYD1US 01 palinbal aie spoyIawl UOJIDRIIXS DIIRWIOINY Y SUOJIBDOSSe

's9|NJ [e2160] 9Ts'vel's ainesay| (s3|nJ |es1bo] |euonipes) 1adxe uolssaidap
[euollpel} paleiodiodul SY3 0 SNP SIDUIBJUI SAIDBYSU|+  ApNnis ased) U# DYNUSIdS puB HDJY  Paseq-ewayds Ulewop Ag UOIIDBIIXS pUe UOIIRIND [enuBy -wsijoqeidly  [s6]

USA0Id-||9M 10U SeM DY JO A[IIN 3y - 0€ o# paand
Aujenb eyep 1ood - pledder GG0'E (U# '‘GAPINWDS  Paseq-eulayds poyaw pased-ajni pue FjuadQ'y,doyuias uolssaldsg  [#6)
|9Aa7-uone|ay [ELETRSTIE]

(s)ainseapy al sanbiuyday  Ajeuonsung

(s)buiwodyioys uolnenjeny s1e1s Dy (s)@d4nosay Dy jo adA| uondesxy abpajmouy sypads py  "j9y

(ponunuod) zajqeL


https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR/SemRep.html

Abu-Salih et al. Journal of Big Data (2023) 10:81 Page 18 of 32

lar software, namely BioDBLinker. This KG contains managed entities and relationships
captured from at least five biomedical databases, such as UniProt, REACTOME, KEGG,
DrugBank, SIDER, and Human Protein Atlas (HPA). He et al. [105] designed a KG for
intestinal cells. First, the authors built an ontology as a conceptual model followed by
extracting facts from the academic literature. Despite the problems with mechanisms
used to construct the actual KG, the work presents an important attempt toward con-
structing KGs specifically to study the intestinal field, facilitating much easier observation
of the processes of intestinal cytokines via various signalling channels. Constructing KGs
to benefit generic biomedical domain was the subject of [106—111].

Microbiology KGs offer an excellent mechanism to conceptualise our understanding
of microscopic organisms and their ecological traits. To this end, Joachimiak et al. [112]
developed KG-Microbe, an integrated KG that contains prokaryotic data for phenotypic
traits as well as supporting use cases in microbiology, biomedicine, and environmental
science. Liu et al. [113] conceptualised gut microbiota using a semantically enriched KG,
namely MiKG. MiKG integrates facts obtained from medical literature as well as other
medical knowledge bases, thereby offering an interface for detection of possible connec-
tions between gut microbiota, neurotransmitters, and mental disorders. Authors of [114]
developed a Microbe-Disease Knowledge Graph (MDKG) through an explorative study,
thus identifying the associations between bacteria and diseases. MDKG is populated with
entities and relations captured from textual content of Wikipedia as well as other seman-
tic knowledge bases. Modelling Coronavirus using KG technology has recently attracted
a lot of attention in the research community. For example, Zhang et al. [115] built a coro-
navirus KG by integrating entities captured from Analytical Graph and CORD-19 data-
bases. The aim of the proposed KG is to provide a tool for the exploration of coronavirus
on the entity level. Another attempt to help the biomedical research community compre-
hend the coronavirus using KGs is offered by Chen et al. [116]. The authors constructed
a designated KG to discover any associated diseases, potentially effective drugs or treat-
ments, and relevant genes and mutations. Using KG technology, modelling Coronavirus
relevant information was also implemented and discussed in [57, 117, 118]. Further uses
of KGs in microbiology are studied in [119]. Table 3 depicts a summary of KG construc-

tion approaches for the biomedical domain.

Miscellaneous healthcare

Constructing KGs from EMRs The ongoing efforts to leverage the proliferation of
EMRSs for multiple medical applications are well-documented in the scientific literature.
Extracting valuable knowledge from such data silos has been made easier by KG technol-
ogy. In this context, several studies attempted to construct medical KGs that can improve
specific areas, for example, clinical decision support systems. One such attempt was
undertaken by Li et al. [120], who followed a systematic approach consisting of eight steps
to build a medical KG from EMRs obtained during the patients’ visits. The authors con-
structed a quadruplet-based medical KG incorporating an additional item (properties)
which includes a set of characteristics to rank the embedded entities. The main objective
of this study is to ensure the robustness of facts in the KG related to the medical domain.
Evaluating the robustness of a constructed KG in healthcare is of utmost significance to
ensure the quality of the inferred knowledge. In this context [121], presented a meth-
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odology to measure and evaluate the robustness of knowledge relating to diseases and
symptoms, with data captured from existing health knowledge graphs as well as records
of patient visits to the Beth Israel Deaconess Medical Center (BIDMC). Postiglione et
al. [122] proposed an advanced entity recognition approach named PETER (Pattern-
Exploiting Training for Named Entity Recognition), that integrates Pattern-Exploiting
Training (PET) [123] to build an Italian-language KG for healthcare. EMRs represent a
fertile source of information for healthcare KGs, hence their use for construction of KGs
is becoming quite common, as exemplified in [124] and [125].

Query answering (QA) and question and answer (Q&A) Incorporating health KGs
into a QA system was discussed by Sahu et al. [126]. The authors proposed a system that
can be used to search for various health-based KGs and obtain a set of healthcare-related
response sub-graphs. The possibility of using medical KG’s to benefit QA applications
was also discussed in [127]. Zhao et al. [128] made use of EMRs obtained from hospital
patient records in Shanghai to build a medical knowledge graph based on the BILSTM-
CRF model. Here, a KG is used as a part of a QA system to provide support for establish-
ing medical diagnosis. Xie et al. [129] attempted to create a KG for Traditional Chinese
Medicine (TCM), yet the KG they ended up with is very limited in terms of entities and
relationship; thus, the applicability and utility of the graph is questionable. Another Chi-
nese medical KG was proposed by [130]. The authors developed this KG from various
structured, semi-structured, and unstructured resources and built a QA system that was
not adequately validated due to irrelevant results. Also, Huang et al. [131] designed a QA
system based on a constructed KG, with the information in the graph used to identify the
question’s intention. Deploying QA and Q&A systems based on medical and healthcare
KGs is also a relevant topic in [132].

Healthcare Management: In the literature, it has been frequently suggested that a KG
can be built to help with health management and to better address the most critical
health-related issues and chronic disorders [133—136]. For example, Huang et al. [133],
proposed a KG building approach that aids users who are seeking information about a
healthy diet. Domain ontology was presented by the authors as the basic structure of a
KG containing information about diet. Conditional Random Fields (CRF), Support Vec-
tor Machine (SVM), and Decision Tree (DT) methods were used to enrich the KG with
entities harvested from a variety of healthcare websites. Haussmann et al. [134] devel-
oped an integrated KG (FoodKG) that brings together information about healthy food,
recipes, and nutritional value. The authors used the RDF Nano publication to establish
the reliability of their findings [137]. Chi et al. [135] developed an inclusive healthy diet
KG by following a similar study path. In this case, the KG was comprised of five essential
concepts: the meal, the dish, the nutritional aspect, the symptom, and the crowd. The
proposed model was able to collect and import entities from a range of web resources
and deployed multiple NLP and machine learning methods with a semi-automated
extraction strategy. In addition, food domain-specific KGs were modelled in [138—140].
Another example of the use of KG-based technology to address difficulties in healthcare
systems was discussed in [141-143].

Miscellaneous KGs In healthcare, addressing the timing factor in KG creation is criti-
cal. Ma et al. [144] developed a temporal KG that is useful for studying episodic memory
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in cognitive tasks. The Integrated Conflict Early Warning System (ICEWS) dataset and
the Global Database of Events, Language, and Tone were used to create this temporal KG
(GDELT). Their work was unique in that it involved four substantial static KGs embed-
ding data to four-dimensional temporal/episodic KGs, which set them apart from other
efforts in this direction. Two new RESCAL generalisations were also proposed and con-
sidered. Another important effort that integrated plausible reasoning with fine-grained
biomedical ontologies to tackle the data incompleteness problem was undertaken by
Mohammadhassanzadeh et al. [42]. The authors proposed a Semantics-based Data ana-
lytics (SeDan) framework that performs an exploratory analysis of the KG using the OWL
extension and query rewriting algorithm. The framework incorporates data from various
knowledge bases, including the DrugBank, Disease Ontology, and the large-scale seman-
tic MEDLINE database (SemMedDB). Rastogi et al. [145] framed their personal health
KG as a combination of context, personalization, and integration with other knowledge
bases. Their study indicated that the literature on personalised health-related KGs is
incomplete and lacks a unified standard representation to adequately describe the des-
ignated domain. To provide an overview of effective medications, side effects, and target
populations relevant to COVID-19, the authors of [146] proposed a KG-based framework
to support COVID-19 clinical research. This framework benefited from Stanford’s Stanza
toolbox to extract KG’s entities and relationships that can be fed into a visualisation mod-
ule for querying information. The application of KGs in healthcare and medical domains
was documented in other relevant tasks including epidemic contact tracing [147], food
waste detection [109], drug similarity [148], clinical decision support systems [120], and
medical recommender systems [149, 150]. Table 4 shows a summary of KG construction
approaches used in various miscellaneous healthcare applications.

Summary

This paper examines the most recent works related to KG construction methodologies
in various healthcare domains, such as drugs (and their applications), diseases and dis-
orders, biomedicine, etc. A closer look into these important domains reveals crucial
research areas that benefit substantially from KG technology. This research demon-
strates the popularity of using KGs to solve real-world healthcare-related problems and
shows how KGs have proven to be an effective overall solution for reducing complex-
ity, ensuring flexibility, and establishing a common-ground architecture where data from
various sources can be readily incorporated. It is generally agreed that KG technology
allows for semantic integration of data acquired from many sources, which may exist in
different formats, and can then be fed into a single, coherent framework to be formally
used to conceptualise the designated domain.

Findings, open issues, and opportunities
Despite the popularity of KG technology in the healthcare domain, this study reveals
certain limitations that open new directions for future research.

+ KG data sources: various previous studies have concentrated on knowledge curation
and facts captured from a limited number of data sources. For example, certain
KGs were constructed using only biomedical scientific publications (e.g. PubMed
and SemMedDB) [94, 103, 105]. The extracted knowledge using such data sources
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lacks completeness, leading to poor descriptiveness of the entities and potentially
flawed relationships within a particular healthcare domain. This also limits the
capacity of the graph to deliver useful facts or rules to power data-driven methods
that can be used for making healthcare decisions [45]. To consolidate a healthcare
KG and establish a cohesive viewpoint of the domain, alternative sources need to be
incorporated and integrated including EMRs, PMRs, clinical trials, patient records,
epidemiological surveillance, sensor data, disease registries, wearable devices,
health workforce data, census data, implanted equipment, pill cameras, and all other
relevant sources. However, full integration of such heterogeneous data sources can
be a complicated and time-consuming task, especially when working with large-
scale datasets where traditional data assimilation and aggregation techniques are not
applicable. Therefore, there is still room for research to address the big data problem
in healthcare KGs by developing advanced and sophisticated data collection and
aggregation techniques.

+ Healthcare knowledge interoperability: Linked Open Data (LOD) and Semantic
Web technologies have made it possible to improve a variety of domain-specific
applications [14, 151-153]. KGs represent an expansion of these efforts and are
frequently connected with LOD initiatives because they improve data semantics by
enhancing the conceptual representations of entities [154]. As a result, appropriate
interlinking of entities gathered from different data sources facilitates information
interoperability, resulting in multimodal KGs. However, some of the methodologies
investigated in this study revealed difficulties in attaining the appropriate level of
knowledge expandability and interoperability. In particular, semantic expansion
strategies were underutilised, and their ability to take advantage of freely accessible
vocabulary and semantic resources is mostly ignored. The expansion of healthcare
knowledge with health records collected from different channels, such as hospital
admissions, family physician visits, prescription drugs, pharmacy requests,
laboratory blood analyses, and death certificates establishes a comprehensive
individual health (or disease) profile [155]. This holistic view carries enormous
implications for several research areas, such as epidemiology and precision medicine.
Basic structure of KGs facilitates better data integration, unification, and information
sharing. Semantic expansion adds context to the collected facts in the KGs and
enhances the quality of the aggregated knowledge, eliminates redundant records, and
detects missing entities. Based on success of existing healthcare semantic expansion
initiatives such as the Centre for Health Record Linkage (CHeReL) in Australia [156]
and Rochester Epidemiology Project in USA [157], more research in this direction
should be conducted.

+ KG construction mechanisms: The construction of the KG comprises several
activities which might vary depending on the type of knowledge base (schema-
based, schema-free, or hybrid), knowledge resources and their data types (structured
or unstructured), knowledge extraction techniques (entity-level and relation-
level), etc. Several of the examined studies failed to adequately disclose the internal
mechanisms they used to build and implement the KGs. A shortcoming that was
commonly observed was poor and/or limited discussion to explain either the overall
construction methodology [48, 55, 66] or the essential construction tasks such as the
ontology design [46, 100], entity and/or relation extraction [78, 83], and knowledge
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integration [47, 93]. Furthermore, many of the KGs described in those papers are not
publicly available for inspection. These drawbacks detract from knowledge sharing,
translation, and reusing, and make the replication of the proposed approaches
difficult. This is particularly problematic in the healthcare domain where knowledge
replicability can assist in consolidating the facts about certain scientific tests and
medical experiments [158]. Therefore, future studies must ensure that all steps of KG
construction are well-explained, and the resultant KG must be publically shared with
the community to reinforce FAIR principles (Findable, Accessible, Interoperable,
Reusable)!?,

+ KG evaluation: Despite the continuous propagation of KGs for the healthcare
domain and its sub-domains, this survey reports evident problems with KG
evaluation and/or case study implementation. Numerous KGs were constructed
with no proper concern for evaluation of their quality [77-79, 82]. Additionally,
there is only a limited utility in applying the constructed KGs to real-life applications.
Instead of practical applications, the proposed KGs mainly attempted to provide an
underlying conceptual structure of the domain utilising domain-specific entities,
concepts, relationships, and events. For example, the authors of [76] attempted to
build a KG for hepatocellular carcinoma with no verified utility in addressing the
designated disease. Designing and implementing actionable healthcare analytics
must be the essence of the KG construction philosophy, where relevant facts are
obtained with the objective to conceptualise the correct context and address a
domain problem, thereby achieving the hoped-for value. Future works must ensure
that KGs are assessed using one or more appropriate evaluation and refinement
methodologies such as (i) silver and gold standards [159]; (ii) theoretically proven
computational measures such as precision and recall; and (iii) domain experts. In
addition, the constructed KG must prove its utility and verify its applicability in real-
life scenarios and for the execution of downstream tasks.

+ Data Quality and PrivacyApplying healthcare KGs to downstream tasks such as
drug discovery, clinical decision support, and medical treatment relies profoundly
on the high quality of the embedded facts. Although some of the examined works
constructed their KGs using structural, verified and curated data sources [42, 94,
104], other KGs imported data from unstructured sources (such as scientific medical
literature or social media), with little regard for applying data quality measures
before incorporating the extracted information [56, 105]. Freely available texts such
as scientific medical literature commonly comprise ambiguous data, abbreviations,
and noisy data that includes words and phrases irrelevant to the designated context.
EMRs also comprise a vital source of embedded clinical data that can be either
mistakenly neglected or hard to collect due to confidentiality constraints. These
challenges raise concerns about the quality and reliability of KGs generated from
such data sources. Therefore, high-quality healthcare KGs should be constructed
by selecting high-quality data sources and developing quality measurement
techniques. Also, advanced NLP and deep learning algorithms that can efficiently
and automatically identify high-quality entities and relations should be implemented
wherever possible. Those tools should be used to improve data privacy, integrity,

Bhttps://www.go-fair.org/fair-principles/.
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and security, preventing malicious activities that attempt to abuse patients’ sensitive
medical information.

+ Recentness: Most of the examined studies did not consider the temporal factor;
their KGs are static in nature and often neglect the validity period of incorporated
triples. A healthcare KG built based on just one snapshot of the knowledge landscape
might not be a sustainable depiction of the designated domain, particularly with the
emergence of wearable medical devices, sensors, health monitoring systems, and
mobile applications [160] which make the construction of dynamic and frequently
updated KGs a necessity. Ignoring the dynamic nature of healthcare knowledge
degrades the quality and accuracy of facts embedded in KGs, consequently leading to
poor data analytics and decision making.

+ Healthcare KG reasoning: Reasoning of the KG aims to infer new facts and make
new conclusions based on the existing data. KG reasoning allows for deriving new
insights and enriches KGs with new relations. Several techniques have been proposed
in the literature for KG reasoning, including ontology reasoning, logic rules, and
random walk algorithm [161]. Recently, KG embedding approaches attracted a lot of
attention in the research community due to their capacity to provide generalizations
and infer new facts. KG embedding techniques aim to transform the KG into
semantically-continuous low-dimensional space. The embedded KG can be then
used for several downstream tasks including link prediction, knowledge discovery,
etc [162]. This study reveals a relative lack of successful KG embedding strategies in

the investigated papers.

Conclusion
The vast volume of healthcare data that is collected in a variety of formats and pertains
to a wide range of subject matters presents a critical challenge for analysts. Knowledge
Graphs (KGs) offer an effective answer to this challenge and open new possibilities for
machines to understand meanings, closing the semantic gap between them and people.
As a result, domain-specific knowledge graphs have been developed and applied to vari-
ous real-world problems. Healthcare industry has greatly benefited from this technology,
with numerous KGs created specifically to address different healthcare issues. However,
the deficiencies and limitations of the current KG construction techniques stand in the
way of obtaining the hoped-for value from this technology.

This paper offers a bird’s eye view of the healthcare KG domain and tries to define
a relevant construction paradigm. A critical review of the current construction
approaches is conducted considering the methods used for knowledge extraction, types
of knowledge bases and sources, and the adopted evaluation metrics. Finally, in conjunc-
tion with a summary of limitations and deficiencies, it provides pointers for potential
future research that we hope will inspire scholars in this field.
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