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Abstract 

Background:  Multiple organ dysfunction syndrome (MODS) is one of the leading 
causes of death in critically ill patients. MODS is the result of a dysregulated inflamma-
tory response that can be triggered by various causes. Owing to the lack of an effective 
treatment for patients with MODS, early identification and intervention are the most 
effective strategies. Therefore, we have developed a variety of early warning models 
whose prediction results can be interpreted by Kernel SHapley Additive exPlanations 
(Kernel-SHAP) and reversed by diverse counterfactual explanations (DiCE). So we can 
predict the probability of MODS 12 h in advance, quantify the risk factors, and auto-
matically recommend relevant interventions.

Methods:  We used various machine learning algorithms to complete the early risk 
assessment of MODS, and used a stacked ensemble to improve the prediction perfor-
mance. The kernel-SHAP algorithm was used to quantify the positive and minus factors 
corresponding to the individual prediction results, and finally, the DiCE method was 
used to automatically recommend interventions. We completed the model training 
and testing based on the MIMIC-III and MIMIC-IV databases, in which the sample fea-
tures in the model training included the patients’ vital signs, laboratory test results, test 
reports, and data related to the use of ventilators.

Results:  The customizable model called SuperLearner, which integrated multiple 
machine learning algorithms, had the highest authenticity of screening, and its 
Yordon index (YI), sensitivity, accuracy, and utility_score on the MIMIC-IV test set were 
0.813, 0.884, 0.893, and 0.763, respectively, which were all maximum values of eleven 
models. The area under the curve of the deep–wide neural network (DWNN) model 
on the MIMIC-IV test set was 0.960, and the specificity was 0.935, which were both 
the maximum values of all these models. The Kernel-SHAP algorithm combined with 
SuperLearner was used to determine the minimum value of glasgow coma scale (GCS) 
in the current hour (OR = 0.609, 95% CI   0.606–0.612), maximum value of MODS score 
corresponding to GCS in the past 24 h (OR = 2.632, 95% CI 2.588–2.676), and maximum 
score of MODS corresponding to creatinine in the past 24 h (OR = 3.281, 95% CI   3.267–
3.295) were generally the most influential factors.

Conclusion:  The MODS early warning model based on machine learning algorithms 
has considerable application value, and the prediction efficiency of SuperLearner is 
superior to those of SubSuperLearner, DWNN, and other eight common machine 
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learning models. Considering that the attribution analysis of Kernel-SHAP is a static 
analysis of the prediction results, we introduce the DiCE algorithm to automatically rec-
ommend counterfactuals to reverse the prediction results, which will be an important 
step towards the practical application of automatic MODS early intervention.

Keywords:  MODS, Stacked ensemble, Feature interpretation, Decision 
recommendation

Introduction
Multiple organ dysfunction syndrome (MODS) is defined as an acute and potentially 
reversible dysfunction of two or more organs induced by various factors. The incidence 
of MODS in adult patients admitted to ICU is 11–40%.[1, 2]. MODS is very common in 
critically ill patients, with a mortality rate of 44–76% [3–5]. The MODS mortality rate 
is related to the number of affected organs and the severity of each organ dysfunction. 
In cases of 2–4 organs failing, the mortality rate is 10–40%, whereas it is up to 50% in 
patients with cumulative five organ failure and 100% in patients with cumulative seven 
organ failure [6, 7].

MODS has a high mortality due to the lack of effective treatment, so early warning and 
intervention in the development of MODS is of great clinical importance [8]. Bose et al. 
determined the tags per min in the past 24 h according to IPSCC and the MODS stand-
ard proposed by Proulx et al. and added the waveform data features extracted using the 
spectral clustering method and used four algorithms to complete the early warning of 
MODS in children, in which the area under the ROC curve (AUC) of the random forest 
algorithm was ≥ 0.91, and the median early warning time was 22.7  h for random for-
est and 37 h for XGBoost models [9–12]. In addition to conventional model evaluation 
standards such as AUC, a new model prediction performance evaluation standard, util-
ity scores, has been proposed, which believes that early or late warning is not helpful. 
[13]. Li et  al. applied the utility scores to the performance comparison of sepsis early 
warning model for the first time; inspired by utility scores for sepsis, we proposed the 
utility scores of MODS [14]. In addition, the sample labels were determined based on 
the MODS diagnostic criterion [15, 16], and the features for model training were derived 
from the clinical and scoring characteristics [17–19]. Characteristics usually refer to 
the mathematical calculation of features, such as mean value and variance. In recent 
years, many studies have shown that stacked ensemble algorithms have greater predic-
tive advantages in clinical decision support. Fan et al. used a stacked ensemble algorithm 
to classify normal and delayed hospitalizations in 1599 critically ill patients with spinal 
cord injuries [20]. Fan et  al. selected three classifiers with the best performance from 
91 base classifiers, and subsequently further superimposed the three classifiers into an 
stacked ensemble model using logistic regression classification. The AUC of the stacked 
ensemble model was 0.864, which was 6% higher than that of the non-ensemble learn-
ing classifier. Ko et al. developed the stacked ensemble algorithm called EDRnet based 
on 361 COVID-19 patients in Wuhan and applied the model to predict the death of 106 
patients in three Korean medical institutions. The results demonstrated that the EDRnet 
provided 100% sensitivity, 91% specificity, and 92% accuracy [21]. The stacked ensem-
ble algorithms [20, 21] achieved a high prediction performance and generalization abil-
ity because it fully utilized base classifiers, such as XGBoost and lightGBM, which were 
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excellent for large sample sizes with multiple features, and the Bayesian neural network 
algorithm, which was suitable for small sample sets and effectively prevented overfitting. 
By integrating different classifiers, the disadvantages could be avoided, and the general-
ity of the stacked ensemble algorithm could be considerably improved [22–24]. We have 
been exploring the use of a customizable neural network algorithm and non-neural net-
work algorithms to integrate into a stacked adaptive algorithm, which has higher pre-
diction performance. First, we need to develop a neural network algorithm with high 
prediction performance. Generally, the deeper the neural network is, the higher the 
prediction performance of the model; however, too high depths often caused the gra-
dient disappearance or divergence of the weight of the loss function backpropagation. 
To solve the problem of gradient divergence, a batch normalization layer was added to 
the DWNN model used in this study; the batch normalization layer normalized the data 
before the input of each layer, which was conducive to eliminating gradient divergence 
and accelerating the training of the model, particularly for time-consuming stacked 
ensemble model training [25]. DWNN directly inputs the output of the middle layers to 
the “Concatenate”layer (Fig. 2), which solved the problem of the weight gradient disap-
pearance of the far layer neural network. The loss function could propagate the direct 
gradient to the farthest layer, which was no longer influenced by the network depth [26]. 
Second, the stacked ensemble enabled the integration of multiple models with sub-opti-
mal predictive performance into a model with optimal performance. A reasonable inte-
gration of multiple models could improve the generalization ability of the model. We 
use the Q-learning algorithm to determine the specific learners used by Stacked ensem-
ble [27]. The interpretation of the stacked ensemble algorithm prediction results helped 
screen high-impact features and assisted doctors to complete decision-making inter-
ventions. Kernel-SHAP was a combination of the Linear LIME and Shapley value algo-
rithms, which could be applied to all machine learning models, but Kernel-SHAP could 
not provide a scheme to reverse the outcome [28, 29]. Ramaravind et al. proposed that 
the DiCE (Diverse Counterfactual Explanations) algorithm provided various counterfac-
tuals to reverse prediction result [30]. Jia et al. used the DiCE method to complete the 
recommendation of the reversal scheme for extubation failure in the ICU, thereby con-
siderably reducing the risk of subjective intervention by doctors [31]. Compared with 
other relevant studies, our research has the following advantages. (1) Other scholars 
determine the stacked compensation based on experience or simply exhaustive, lacking 
theoretical support. However, we use the Q-learning algorithm to determine the stacked 
compensation algorithm. (2) There are two hypotheses in DiCE that other scholars have 
not tried to solve. However, we propose practical methods such as rule screening, which 
greatly weaken the defects of DiCE itself. (3) We propose the utility_score of MODS for 
the first time, which is more fair and objective for the model performance evaluation 
(Additional file 1: Section S1).

We mainly discussed the design scheme of model development, data processing and 
the idea of creating the stacked ensemble algorithm. And we also discussed Q-table for 
Q-learning, prediction results for models, analysis of risk factors for groups and indi-
viduals, and how to realize the integration of neural network and non-neural network 
models, how to use Kernel-SHAP in practical applications, and how to weaken limita-
tions of DiCE algorithm.
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Methods
Research program

As shown in Fig. 1, the study populations from 2001 to 2012 were 19,124 patients in the 
MIMIC-III data set, and they were ≥ 65 years old, admitted to the ICU for the first time 
for over 24 h, with a missing feature rate of less than 30% and had a clear outcome label; 
and 10,520 patients from 2013 to 2018 in the MIMIC-IV data set, who were ≥ 65 years 
old, admitted to the ICU for the first time for over 24 h, with a missing feature rate of 
less than 30% and had a clear outcome label. An entry is an sample, whose candidate fea-
tures comes from a patient in an hourly time window, with 2,389,841 entries for 19,124 
patients in MIMIC-III and 1,179,718 entries for 10,520 patients in MIMIC-IV. While the 
label of the entry is whether MODS occurred in the current hourly window, increasing 
in 12-h increments. When the label is occurrence of MODS, it was a positive entry, oth-
erwise, it was a negative entry. We randomly considered 80% of the entries correspond-
ing to the number of patients in MIMIC-III as the training set, and 20% as the internal 
validation data set. Entries corresponding to 10,520 patients in MIMIC-IV were used as 

Fig. 1  Flow Chart of research programme
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the test set. After completing the five-fold cross-validation training of 11 models such 
as SuperLearner, the evaluation of the models was completed on the internal validation 
set and the test set, and the evaluation indicators included AUC and accuracy. Finally, 
Kernel-SHAP and DiCE were used to complete the interpretation and intervention of 
the prediction results of the test set.

Feature selection and data processing

The candidate features were derived from the clinical features and scoring characteris-
tics. For the cohort data of each patient, the forward or backward interpolation method 
is used to complete the interpolation of clinical features such as total bilirubin and cre-
atinine. The scoring characteristics of the organs of MODS are calculated according to 
clinical features, so there is no interpolation for the scoring characteristics (Additional 
file 1: Section S2). To accelerate the convergence of the model training, it was required 
to standardize the entries and use the Gaussian distribution normalization method for 
obtaining the mean value, μ, and normal deviation, σ, of the MIMIC-III training set and 
subsequently apply the obtained μ and σ to the normalization of the MIMIC-III and 
MIMIC-IV test sets.

Machine learning

The deep neural network algorithm generally has a higher prediction performance than 
the single non-neural network algorithm, so we designed the MODS early warning 
algorithm, DWNN, strictly according to the requirements of neural network modeling 
(Fig. 2). In addition, we developed eight conventional machine learning algorithms based 
on the same MIMIC-III training set: KNN, lightgbm, Decision Tree, Naïve Bayes, ran-
dom forest, XGBoost, AdaBoosting, and Logistic Regression. These algorithms had five-
fold cross-validation and parameter optimization. The results of the MIMIC-III test set 
showed that DWNN model is one of the top three models with the best performance 
(Table  4). This study used the keras encapsulating interface of sklearn to encapsulate 
DWNN into the classifier interface of sklearn, and then used the interface module from 
sklearn to integrate multiple models. The stacked ensemble model could directly invoke 
and complete the general and individual sample interpretation using the Kernel-SHAP 
algorithm interface. The stacked ensemble enabled the integration of multiple models 
with sub-optimal predictive performance into a model with optimal performance. Con-
ventional non-neural network machine learning algorithms included eight types: logistic 
regression, random forest, Bayesian, XGBoost, lightGBM, etc. A limitation of stacked 
ensemble algorithm is the difficulty of optimizing the integration framework. Two 
stacked ensemble schemes were used in this study (Fig. 3).

Figure 3A is a two-layer stacked ensemble structure called SuperLearner composed 
of base learners and meta-learners, where base_1 ~ base_8 are the base learners, and 
the predictive probabilities of the base learners are used as the input features of the 
meta-learner. Figure  3B is a customizable three-layer stacked ensemble structure 
called SubSuperLearner. The predictive probabilities of base1_1 and base1_2 are used 
as the input features of meta1_1. The predictive probabilities of base1_3 and base1_4 
are used as the input features of meta1_2. The predictive probabilities of meta1_1, 
meta1_2, base2_1 and base2_2 are used as the input features of meta2. For Fig. 3A, 



Page 6 of 18Liu et al. Journal of Big Data           (2023) 10:55 

B, each learner can be selected from nine algorithms (excluding SuperLearner and 
SubSuperLearner). If you use the exhaustive method to determine which algorithm 
the learner is to achieve maximum AUC for SuperLearner or SubSuperLearner, you 
must exhaustive 9 ^ 9 = 387420489 times. The adoption of exhaustive selection is 

Fig. 2  Structure of DWNN
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time-intensive and was not in line with reality. Herein, we used the Q-learning algo-
rithm with ε-greedy strategy to determine each base learner and meta learner [32]. 
We have completed the pseudo-code of the Q-learning algorithm and its detailed 
description (Additional file 1: Sect. S3).

Statistical analysis

SPSS 20.0 software was used for statistical analysis, which was in line with the normal 
distribution characteristics and was expressed as ± standard deviation of the mean value 
( x ± s ), and the inter-group comparison was performed using the t test; comparisons of the 
counting data groups were examined using the X2 test. The dependent variable was whether 
patients had MODS or not, and the independent variable was the index screened by the 
Univariate Analysis of the influencing factors of MODS. The related index was screened 
using multivariate logistic regression analysis, and the difference was statistically significant 
when P < 0.001.

We used Python 3.6 analysis and loaded third-party modules, such as sklearn, XGBoost, 
torch, shap, and imblearn. The AUC, accuracy, sensitivity, specificity, YI, and the utility_
score of SuperLearner, SubSuperLearner, and DWNN models on the internal validation set 
and test set were calculated. To eliminate the random error of a single trial, this study was 
repeated 10 times. For the definition of utility_score, please refer to Additional file 1: Sec-
tion S1.

Fig. 3  Frameworks of stacked ensembles
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Results
Univariate factor logistic regression analysis between groups

The scores for the six organs of MODS can be addressed by clinical features (Addi-
tional file 1: Section S2). Candidate features include the mean, maximum and mini-
mum for all clinical features such as total bilirubin and creatinine, as well as the 
scoring characteristics for the six organs of MODS within an hourly window. The 
total number of candidate features listed in the latest manuscript was 37. After one-
way logistic regression analysis, 21 features were selected with statistical significance 
(P < 0.001) (Table 1). The factors with larger contribution values were currentMinGcs, 
gcs24HoursMods, and renal24HoursMods (Table 2).

Table 1  Comparison of characteristics between MODS and non-MODS groups

CurrentHour (h) indicates the cumulative duration of ICU admission; currentMaxHr (time/min) indicates the maximum 
heart rate in the current hour; currentMaxDopamine (UG/kg/min) indicates the maximum value of dopamine in the 
current hour; CurrentMinOi indicates the minimum oxygenation index in the current hour; currentMinGcs (1) indicated 
the minimum Glasgow index in the current hour; currentMaxLactate (mmol/L) indicates the maximum serum lactic 
acid in the current hour; CurrentMaxCreatinine (umol/L) indicates the maximum value of creatinine in the current hour; 
currentMaxBilirubin (umol/L) indicated the maximum value of total bilirubin in the current hour; CurrentMinPlatelet 
(109) indicates the minimum value of platelets in the current hour; CurrentCardiovas cularMods indicates the maximum 
value of the MODS score corresponding to the cardiovascular system in the current hour, that is, max (the MODS 
score corresponding to currentMaxDopamine, the MODS score corresponding to currentMaxLactate, the MODS score 
corresponding to currentMaxHr); currentRespiratoryMods indicates the MODS score corresponding to currentMinOi in the 
current hour; CurrentRenalMods indicates the MODS score corresponding to currentMaxCreatinine in the current hour; 
currentGcsMods indicates the MODS score corresponding to currentMinGcs in the current hour; currentHepaticMods 
indicates the MODS score corresponding to currentMaxBilirubin in the current hour; CurrentHematologicMods indicates 
the MODS score corresponding to currentMinPlatelet in the current hour; cardiovascular24HoursMods indicates the 
maximum value of currentCardiovas cularMods in the past 24 h; respiratory24HoursMods indicates the maximum value of 
currentRespiratoryMods in the past 24 h; renal24HoursMods indicates the maximum value of currentRenalMods in the past 
24 h; gcs24HoursMods indicates the maximum value of currentGcsMods in the past 24 h; hepatic24HoursMods indicates 
the maximum value of currentHepaticMods in the past 24 h; hematologic 24HoursMods indicates the maximum value of 
currentHematologicMods in the past 24 h

Features MODS-yes (n = 1,960,021) MODS-no (n = 429,820) χ2/t P

CurrentHour 172.26 ± 236.283 104.81 ± 157.329 − 182.856  < 0.001

CurrentMaxHr 85.248 ± 17.221 80.748 ± 14.839 162.591  < 0.001

CurrentMaxDopamine 5.573 ± 5.576 5.679 ± 5.792 11.491  < 0.001

CurrentMinOi 252.419 ± 108.505 249.183 ± 111.431 − 18.033  < 0.001

CurrentMinGcs 10.899 ± 3.5792 14.686 ± 1.1529 701.963  < 0.001

CurrentMaxLactate 1.744 ± 1.404 1.723 ± 1.4259 − 9.004  < 0.001

CurrentMaxCreatinine 140.735 ± 118.691 90.040 ± 54.246 − 280.231  < 0.001

CurrentMaxBilirubin 247.066 ± 120.868 148.548 ± 332.848 − 80.377  < 0.001

CurrentMinPlatelet 224.990 ± 130.619 247.066 ± 120.868 104.052  < 0.001

CurrentCardiovascularMods 0.105 ± 0.507 0.009 ± 0.122 − 125.529  < 0.001

CurrentRespiratoryMods 1.373 ± 1.122 1.330 ± 1.090 23.750  < 0.001

CurrentRenalMods 0.777 ± 0.974 0.288 ± 0.544 − 326.096  < 0.001

CurrentGcsMods 1.784 ± 1.343 0.203 ± 0.537 − 776.422  < 0.001

CurrentHepaticMods 1.792 ± 1.125 1.628 ± 1.002 90.782  < 0.001

CurrentHematologicMods 0.317 ± 0.717 0.082 ± 0.336 − 214.788  < 0.001

Cardiovascular24HoursMods 0.103 ± 0.487 0.007 ± 0.112 − 208.112  < 0.001

Respiratory24HoursMods 1.361 ± 1.105 1.325 ± 1.011 23.620  < 0.001

Renal24HoursMods 0.766 ± 0.954 0.276 ± 0.524 − 320.051  < 0.001

gcs24HoursMods 1.773 ± 1.329 0.201 ± 0.529 − 766.399  < 0.001

Hepatic24HoursMods 1.790 ± 1.113 1.615 ± 0.991 89.770  < 0.001

Hematologic24HoursMods 0.313 ± 0.713 0.0792 ± 0.333 − 209.780  < 0.001
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Q‑table and ROC curves

From the 2,389,841 samples of MIMIC-III, 50,0000 samples were randomly selected 
for Q-learning training, and the StackingClassifier of the third-party module mlx-
tend was used to build the stacked ensemble model. The value of each parameter was 
γ = 0.85, ε = 0.9, and α = 0.1 , and the Q-learning training was terminated after 5000 
iterations, and the Q-tables of SuperLearner and SubSuperLearner were obtained 
(Fig. 4).

The trained Q-learning algorithm would store the information selected by the learner 
that obtained the maximum reward in the Q-table, and we were only required to deter-
mine the learner corresponding to the maximum value of each row in the Q-table for 
determining which learner was selected in the rectangular box, as shown in Fig. 3A, B. 
As shown in Fig. 4, the color of AdaBoosting was the darkest in the state base_1 row, so 
the agent should select the AdaBoosting base learner at the base_1 position. Thus, the 
SuperLearner structure should be base_1 selecting AdaBoosting, base_2 selecting Na 
Naïve Bayes, base_3 selecting DWNN, base_4 selecting lightgbm, base_5 selecting KNN, 
base_6 selecting XGBoost, base_7 selecting decision tree, base_7 selecting random, and 
meta selecting logistic regression. As shown in Fig. 4B, the SubSuperLearner structure 
is base1_1 selecting DWNN, base1_2 selecting Decision Tree, base 1_3 selecting light-
gbm, base1_4 selecting AdaBoosting, base2_1 selecting random forest, base2_2 selecting 
XGBoost, meta1_1 selecting Na Naïve Bayes, meta1_2 selecting KNN, and meta2 select-
ing logistic regression.

After SuperLearner and SubSuperLearner were determined, 10 independent trials 
were completed, and the ROC curves for them obtained in the MIMIC-IV test set is 

Table 2  Logistic regression analysis of factors affecting MODS occurrence

Features β S.E Wald P OR 95%CI

currentHour 0.000 0.000 299.352  < 0.001 1.000 0.995–1.005

currentMaxHr 0.012 0.000 5256.416  < 0.001 1.009 1.006–1.012

currentMaxDopamine − 0.002 0.000 19.395  < 0.001 1.308 1.305–1.311

currentMinOi 0.000 0.000 52.850  < 0.001 0.881 0.878–0.884

currentMinGcs − 0.197 0.006 1178.851  < 0.001 0.609 0.606–0.612

currentMaxLactate − 0.018 0.002 93.723  < 0.001 1.208 1.204–1.212

currentMaxCreatinine 0.002 0.000 395.423  < 0.001 1.140 1.135–1.145

currentMaxBilirubin 0.000 0.000 1.353 0.245 1.000 0.996–1.004

currentMinPlatelet 0.000 0.000 0.788 0.375 1.001 0.994–1.008

currentCardiovascularMods 0.638 0.016 1589.776  < 0.001 1.892 1.834–1.953

currentRespiratoryMods − 0.060 0.005 166.921  < 0.001 1.160 1.163–1.157

currentRenalMods 0.243 0.010 577.973  < 0.001 1.275 1.250–1.300

currentGcsMods 0.826 0.012 4984.566  < 0.001 1.284 1.233–1.337

currentHepaticMods − 0.024 0.003 67.270  < 0.001 1.180 1.177–1.183

currentHematologicMods 0.334 0.010 1231.870  < 0.001 1.396 1.371–1.423

cardiovascular24HoursMods 0.801 0.005 21322.022  < 0.001 1.728 1.705–1.752

respiratory24HoursMods 0.668 0.003 37779.847  < 0.001 1.851 1.838–1.864

renal24HoursMods 1.290 0.006 42944.155  < 0.001 2.632 2.588–2.676

gcs24HoursMods 0.825 0.003 69569.494  < 0.001 3.281 3.267–3.295

hepatic24HoursMods 1.008 0.004 59456.583  < 0.001 1.941 1.919–1.963

hematologic24HoursMods 1.179 0.011 12531.788  < 0.001 1.550 1.583–1.517
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shown in Fig. 5. The sensitivity values corresponding to different specificities in Fig. 5 
are listed in Table 3.

As shown in Table  4, DWNN had the best performance in nine algorithms 
(excluding SuperLearner and SubSuperLearner). Figure  5 shows the ROC curves of 

Fig. 4  Q-table of SuperLearner and SubSuperLearner
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SuperLearner, SubSuperLearner, DWNN, and logistic regression, and the maximum 
AUC of DWNN was 0.9602. Table 3 shows that the SuperLearner sensitivity achieved 
the maximum value when the specificity was ≥ 85%, and the DWNN sensitivity 
achieved the maximum value when the specificity was ≤ 80%.

Model evaluation

The AUC, accuracy, sensitivity, specificity,YI, and utility_score of various machine learn-
ing models are listed in Table 4. As shown in Table 4, SuperLearner obtained the highest 
screening authenticity in Accuracy, Sensitivity, YI and utility_score for the SuperLearner 
model; DWNN achieved maximum values of AUC and specificity.

Explanation and intervention of SuperLearner

SuperLearner is a stacked ensemble model that contains eight non-neural network 
algorithms and one deep neural network algorithm. The Kernel-SHAP algorithm could 
quantify the contribution of the general (population) factors (Fig. 6) and local (individ-
ual) factors of SuperLearner (Fig. 7).

Figure  6A shows that currentMinGcs, gcs24HoursMods, and renal24HoursMods 
have the highest population contribution values, which is consistent with Table 2. The 

Fig. 5  Fig. 5 ROC curves

Table 3  Sensitivity values corresponding to different specificities

Model Specificities with different Sensitivities AUC​

0.95 0.90 0.85 0.80 0.75

SuperLearner 0.8746 0.9043 0.9224 0.9268 0.9315 0.9413 ± 0.014

SubSuperLearner 0.8701 0.9042 0.9151 0.9200 0.9251 0.9352 ± 0.012

DWNN 0.8520 0.8924 0.9160 0.9357 0.9510 0.9603 ± 0.013

Logistic Regression 0.8239 0.8735 0.9097 0.9294 0.9406 0.9441 ± 0.013
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Fig. 6  Contribution of group factors

Fig. 7  Contribution of individual factors
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blue in Fig. 6B indicates that the observed value of the feature factor is small, and the 
red indicates that the observed value of the feature factor is large. The abscissa is the 
SHAP value. Generally, the larger the SHAP value, the greater the MODS risk. Fig-
ure 6B shows that currentMinGcs is negatively correlated with MODS, and the cor-
responding OR in Table 3 is also less than 1. The factors for calculating MODS scores 
are positively correlated with MODS occurrence, and the corresponding OR values in 
Table 2 are also greater than 1.

Causality cannot be derived directly from the statistically determined risk factors. 
Therefore, we study the correlation between risk factors and the predicted outcomes. 
We can regard contributions as correlations. An entry is a sample. We use a simple 
sampling method to randomly select a sample with a predictied outcomes of MODS 
and a sample with a predicted outcome of no-MODS from test set. For Fig.  7, the 
abscissa represents the risk factor contribution value (SHAP value), and the ordi-
nate represents the risk factor (feature) with the observation value. If the risk factor 
contribution value is positive, it indicates that the factor is positively correlated with 
the prediction result, and the color is red; otherwise, the factor is negative correlated 
with the prediction result, and the color is blue. It should be noted that all samples 
in the test set are involved in SHAP analysis, and then the risk factor contribution 
value of each sample is obtained. f(x) in Fig.  7 contains the sum of SHAP values of 
all risk factors in the current sample (Additional file 1: Section S4); “E[f(x)] = 0.004” 
means the mean value of a of all samples including train set and the above test sam-
ples is 0.004 in Fig.  7. As shown in Fig.  7A, only currentCardiovascularMods is an 
unfavorable factor, and the rest are favorable factors. It was the 229th hour of ICU 
admission (currentHour = 229) for patient A, who had a mild cardiovascular disease 
(currentCardiovascularMods = 1). However, the consciousness was particularly clear, 
and the conversational and motor abilities were normal (currentMinGcs = 0 and 
gcs24HoursMods = 0) on the final day. So the patient A did not develop MODS at 
241 h, which was consistent with the patient’s symptoms. Figure 7B shows that it was 
the 60th hour of ICU admission (currentHour = 60) for patient B. Patient B had three 
adverse factors: in the past 24, patient B was unconscious and had severe impairments 
of movement and respiratory system (gcs24HoursMods = 8, currentMinGcs = 3, and 

Table 5  Example of generated counterfactual for the specific patient in Fig. 7B

Features Original input Counterfactual 
example

currentMinGcs 8 15

gcs24HoursMods 3 2

respiratory24HoursMods 2 1

renal24HoursMods 0 –

currentHour 60 –

currentMaxCreatinine 53.04 –

hepatic24HoursMods 0 –

cardiovascular24HoursMods 0 –

hematologic24HoursMods 0 –

12 other features – –

Predicted outcome 0.97 0.11
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respiratory24HoursMods = 2). So the patient B developed MODS at 72 h, which was 
consistent with the patient’s symptoms.

For patient B who required immediate intervention, we used the DiCE algorithm to 
automatically recommend counterfactuals for the doctors to select, one of which is 
shown in Table 5.

The dashes in Table 5 indicate that the factors remain unchanged. We could sample 
verbal arousal, physical stimulation, and medication to increase the patient’s current 
mental clarity, speech, and motor ability, changing the currentMinGcs value to 15 and 
the gcs24HoursMods value from 3 to 2. In addition, the respiratory24HoursMods was 
changed from 2 to 1 with ventilator use. After modification of the observed values of 
the above factors, the probability of MODS in patients was reduced from 0.97 to 0.11. In 
principle, patients would avoid MODS occurrence at the 72nd hour. Only one scheme 
was provided in Table  5. DiCE recommended multiple schemes, and doctors would 
select the most cost-effective scheme according to the actual situation of patients.

Discussion
In this study, we developed the SuperLearner algorithm that combined the non-neural 
network algorithms and deep learning algorithm. We first use the "kerasClassifier" inter-
face of tensorflow to package the customized DWNN model into a machine learning 
model available to sklearn. Then we use the "StackingClassifier" module of the third-
party library "mlxtend" to build the candidate stacked ensemble model. Then the stacked 
ensemble enabled the integration of multiple models with sub-optimal predictive perfor-
mance into a model with optimal performance. This study uses Q-learning to determine 
the SuperLearner and SubSuperLearner. Here we use the AUC of the candidate model as 
reward. Of course, we can also use YI or utility_score as reward. This study proposes for 
the first time to use the utility_score of MODS to evaluate the prediction performance 
for MODS early warning models. This research eliminates the imbalance of sample cat-
egories by setting category weights. In fact, the EasyEnsemble method can also be used 
to make full use of data to improve the classification ability of the model and reduce the 
bias of the model [33, 34]. In addition to Q-learning algorithm, genetic algorithm is also 
excellent in determining stacked ensemble algorithm.

There are supervised and unsupervised analyses when using Kernel-SHAP to ana-
lyze the attribution of the prediction results. The user first uses the training set and the 
trained early warning model to train the Kernel-SHAP model and this process is the 
supervised analysis for Kernel-SHAP. When conducting production application, our 
samples are not labeled and this process is unsupervised analysis for Kernel-SHAP. We 
need use not only the trained model to predict the results, but also the trained Kernel-
SHAP model to determine the individual risk factor contribution values corresponding 
to the prediction results. Of course, all production applications of the Shapley Value 
algorithm require the above steps. "E[f(x)] = 0.004" in Fig.  7 shows that the unlabeled 
samples from the production environment will train Kernel-SHAP again. If the same 
sample is tested many times by Kernel-SHAP, this will inevitably lead to model devia-
tion in Kernel-SHAP. Considering the complexity of the algorithm improvement, we 
directly use the backup trained Kernel-SHAP, and then cover the current Kernel-SHAP 
after predicting the individual sample of the production environment. In addition, if we 
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can establish the relationship between the value of f(x) such as in Fig. 7 and probability 
prediction results, we can only use Kernel-SHAP to complete production applications 
without deploying trained early warning models. So far, we can draw the conclusion that 
the larger f(x) is, the more likely MODS will occur. This is very interesting and will be the 
focus of the next research step.

DiCE provides counterfactuals for reversing predicted outcomes on the premise of 
considering plausibility and diversity (Additional file  1: Section S5). The use of DiCE 
requires two assumptions. First, DiCE assumes that there is no dependence between 
features. Second, DiCE assumes that the prediction results can be reversed as long as 
counterfactuals are implemented within the early warning period, ignoring the time 
dimension. For hypothesis 1, multiple rules can be set, such as currentMinGcs <  = 6, 
currentGcsMods = 4, etc. to conduct a second round of screening for counterfactuals. 
For hypothesis 2, it is difficult to implement the current algorithm. We can only suggest 
that patients to implement counterfactuals as soon as possible to increase the possibility 
of reversing the predicted outcome.

Conclusion
In this study, the non-neural network algorithm and customizable neural network algo-
rithm were integrated into a two-layer stacked ensemble structure called SuperLearner 
and a three-layer stacked ensemble structure called SubSuperLearner. Compared to the 
base learners, we found that the screening ability of the two stacked ensemble struc-
tures exceed any one of them. In terms of model performance evaluation, we added util-
ity_score of MODS for the first time in all MODS-related studies. In order to determine 
base learners in the two stacked ensemble structures, we innovatively used Q-learning 
to determinate them. In addition, we applied Kernel-SHAP to complete the attribution 
analysis of the prediction results of the stacked ensemble model, and give tips on the use 
of Kernel-SHAP for production applications. Considering that the attribution analysis 
of Kernel-SHAP is a static analysis of the prediction results, we introduced the DiCE 
algorithm to automatically recommend counterfactuals to reverse the prediction results, 
which will be an important step towards the practical application of fully automatic 
MODS early intervention.
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