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Abstract 

The purpose of click-through rate (CTR) prediction is to anticipate how likely a person 
is to click on an advertisement or item. It’s required for a lot of internet applications, 
such online advertising and recommendation systems. The previous click-through rate 
estimation approach suffered from the following two flaws. On the one hand, input 
characteristics (such as user id, user age, user age, item id, item category) are usually 
sparse and multidimensional, making them effective. High-level combination charac-
teristics are used for prediction. Obtaining it manually by domain experts takes a long 
time and is difficult to finish; also, customer interests are not all the same. The accuracy 
of the model findings will significantly increase if this immediately recognized com-
ponent is incorporated in the prediction model. As a consequence, this study creates 
an IARM (interactive attention rate estimation model) that incorporates user interest 
as well as a multi-head self-attention mechanism. The deep learning network is used 
in the model to determine the user’s interest expression based on user attributes. The 
multi-head self-attention mechanism with residual network is then employed to get 
feature interaction, which enhances the degree of effect of significant characteristics 
on the estimation result as well as its accuracy. The IARM model outperforms other 
recent prediction models in the assessment metrics AUC and LOSS, and it has superior 
accuracy, according to the results from the public experimental data set.

Keywords  User interest, Multi-head self-attention mechanism, Residual network, Click-
through rate prediction model

Introduction
The recommendation model’s main purpose is to automatically suggest possible 
things to the user based on the user’s personal and historical data [1, 2]. For exam-
ple, in real-world online purchasing, a system with a flawless recommendation model 
might boost not just user happiness but also sales volume [3, 4]. Each individual pro-
duces unique information data as a result of the effect of gender, age, employment, 
and other aspects, and the recommendation model uses this data to assess the user’s 
probable purchases. The information provided by the user then becomes crucial. The 
classic recommendation approach is based mostly on the attributes of a user’s item 
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rating. The user’s preferred category is decided based on the rating, and then a rec-
ommendation is issued [5, 6]. The following drawbacks are present: To begin with, 
many users in real life do not make assessments or intentionally praise or criticize 
others, instead relying on the rating feature to make suggestions. The model’s pre-
cision and generalization will suffer. The inability to change is worse [7, 8]; second, 
every individual in life will have a label that distinguishes them from others, and that 
label may be discovered [9–11]. Third, users and objects have many characteristics, 
which are not all the same and have diverse impacts on recommendation outcomes. 
Traditional models pay less attention to crucial types of characteristics, resulting in a 
waste of valuable data as well as a reduction in model accuracy [12–14].

Machine learning and deep learning technologies have become widely employed 
in the application of recommendation models, thanks to the fast growth of artificial 
intelligence technology [15]. A number of deep learning-based models have been pro-
posed during the last few years [16, 17]. PNN [18], xdeepFM [19], AFM [20], and a 
variety of other models are examples. Unlike traditional recommendation models, 
deep learning recommendation models can automatically capture the complex rela-
tionships within the data, as well as nonlinear interaction information between users 
and items, and obtain more complex and abstract high-level interactive feature rep-
resentations [21, 22]. Researchers developed the hypothesis of attention mechanism 
after being inspired by visual attention. It instructs the neural network to concentrate 
exclusively on the most significant aspects of the input information, therefore giving 
them more weight [23, 24]. The model will be able to capture not just the user but also 
the item in this manner. The crucial combination of features, as well as the weight val-
ues of each feature, may be shown, ensuring that the model is easy to understand in 
the recommendation task [25, 26].

In conclusion, having user interests and automatically producing feature matri-
ces with various weights can increase the accuracy of recommendation model out-
comes. As a result, a merger of user interest and multi-head attention mechanism is 
proposed in this research as a click-through rate estimate model (IARM). The IARM 
model takes into consideration not just the impact of user interest on recommenda-
tion outcomes, but also feature differences. To create feature matrices with various 
weights, it employs a multi-head self-attention mechanism and a residual network. 
The model makes the following major contributions:

1.	 We proposes a new IARM model. The model uses deep learning and multi-head self-
attention mechanism technology to automatically obtain various data information, 
making the data information further utilized.

2.	 The IARM model incorporates user interest. Expand the gap between users and 
improve the accuracy of the recommended results.

3.	 The IARM model employs a residual network and a multi-head self-attention mecha-
nism to identify cross-feature combinations that are unworthy of weighting, allowing 
key characteristics to play a larger part in the recommendation process and improv-
ing the model’s accuracy.

4.	 We ran comprehensive tests on a variety of real-world data sets. Our suggested tech-
nique not only beats existing state-of-the-art approaches for prediction, but also pro-
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vides strong model explainability, according to experimental findings on the problem 
of CTR prediction.

The following is a breakdown of how we structure our work: We describe the relevant 
work in "Related work". Our model’s structure was introduced in "IARM model". The 
experimental findings and extensive analysis are presented in "Experiment". In "Conclu-
sion", we wrap up this study and discuss the next steps.

Related work
User interest

User interest may intuitively represent each user’s unique qualities, hence it plays a 
critical role in the recommendation model [27–29]. For example, Google’s Wide & 
Deep model, which combines the benefits of a linear shallow model with a deep model, 
employs the shallow model’s memory properties to capture each user’s interest. The 
Alibaba Company’s suggested DIN [30] model combines the user’s previous behavior 
sequence and attention mechanism to dynamically compute the user’s interest changes, 
which increases the accuracy of the recommendation results to a degree.

Learning feature interactions

Learning feature interactions is a fundamental subject that has received a lot of research 
attention. Factorization Machines (FM), which were designed to primarily capture first- 
and second-order feature interactions and have been shown to be useful for a variety 
of tasks in recommender systems [31], are a well-known example. Following that, many 
factorization machine variations were suggested. Field-aware Factorization Machines 
(FFM), for instance, modeled fine-grained relationships between features from many 
fields. The relevance of various second-order feature interactions was studied in GBFM 
and AFM. All of these methods, on the other hand, are geared at simulating low-order 
feature interactions.

Recent research has attempted to predict high-order feature interactions. To simu-
late higher-order features, NFM built deep neural networks on top of the output of 
second-order feature interactions. Similarly, feed-forward neural networks were used 
to describe high-order feature interactions in PNN [32], FFM, DeepCrossing, Wide & 
Deep, and DeepFM. All of these methods, however, learn high-order feature interactions 
in an implicit manner, resulting in poor model explainability. On the other hand, there 
are three lines of study that explicitly learn feature interactions. First, Deep & Cross 
and xDeepFM took the bit-wise and vector-wise outer product of features, respectively. 
Although they execute explicit feature interactions, determining which combinations 
are advantageous is not straightforward. Second, certain tree-based techniques [33] 
integrated the strength of embedding-based and tree-based models, but the training 
procedure had to be broken down into many steps.

Self‑attention and residual networks

Attention and residual networks are two of the most recent deep learning approaches 
used in our proposed model. Attention was initially suggested in the context of neural 
machine translation, and it has since been demonstrated to be useful in a range of tasks, 



Page 4 of 15Zhang et al. Journal of Big Data           (2023) 10:11 

including question answering [34], text summarization and recommender systems. Vas-
wani et  al. went on to suggest multi-head self-attention as a way to simulate complex 
word relationships in machine translation [35]. In the ImageNet competition, residual 
networks earned state-of-the-art results. The residual connection, which can be written 
as y = F (x) + x, promotes gradient flow over interval layers, making it a common net-
work topology for training very deep neural networks [36, 37].

In summary, this research provides a model for estimating click-through rates that 
combines user interest with a multi-head attention mechanism. The model first employs 
deep learning technology to automatically collect each user’s unique interest expression 
in order to build a distinction between users; next, using the multi-head attention mech-
anism and residual network, it obtains feature combinations with various weights. The 
output layer then outputs the forecast result.

IARM model
The suggested IARM approach, which can automatically learn the feature interaction for 
CTR prediction, is initially described in this section. Following that, this article will show 
how to employ the multi-head attention mechanism to learn user interest representation 
and model high-order combination characteristics. The model’s structure is depicted in 
Fig. 1.

Overview

The IARM model’s purpose is to transfer the user’s long-term interest matrix, as well 
as high-order interaction characteristics and matrices with varying weight values, into 
a low-dimensional space. The approach suggested in this research takes the feature vec-
tor x as an input and projects all of the features into the same latitude space using an 
embedding layer. The interest layer then processes the user information to produce the 
user interest expression. To obtain a high-order cross feature matrix and features with 
varying weight information, input extensive field information into the interactive layer. 
Finally, the three feature matrices are merged to produce the final feature matrix, which 
is sent via the output layer.

Fig. 1  Overview of our proposed model IARM
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Input layer

We start with a sparse vector, which is the concatenation of all fields, to represent user 
profiles and item attributes. Specifically,

where M is the total number of feature fields and xi is the i-th field’s feature representa-
tion. If the i-th field is categorical, xi is a one-hot vector (e.g., × 1 in Fig. 2). If the i-th 
field is numerical, xi is a scalar value (e.g., xM in Fig. 2).

Embedding layer

Because categorical feature representations are sparse and high-dimensional, converting 
them to low-dimensional spaces is a typical practice (e.g., word embeddings). In particu-
lar, we use a low-dimensional vector to represent each categorical feature, i.e.

where Vi is a field I embedding matrix and xi is a one-hot vector. Categorical features are 
frequently multi-valued, i.e., xi is a multi-hot vector. Take, for example, movie watching 
prediction; there might be a feature field Genre that identifies the genres of movies and 
can be multi-valued (e.g., Drama and Romance for the movie "Titanic"). To make Eq. (2) 
compatible with multi-valued inputs, we extend it and express the multi-valued feature 
field as the average of related feature embedding vectors:

where q is the number of values a sample has for the i-th field and xi denotes the multi-
hot vector representation of this field.

We also encode numerical characteristics in the same low-dimensional feature space 
as category features to facilitate interaction between them. We represent the numerical 
characteristic as follows:

where vm is an embedding vector for field m, and xm is a scalar value.

(1)x = [x1; x2; ...; xM],

(2)ei = Vixi,

(3)ei = Vixi,

(4)
em = vmxm,

Fig. 2  Input and embedding layer illustration, with low-dimensional packed vectors representing both 
categorical and numerical fields
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The embedding layer’s output would thus be a concatenation of numerous embedding 
vectors, as seen in Fig. 2.

Interest acquisition layer

To begin, get the user information feature matrix, which is stated as follows:

Here this article uses a multi-layer perceptron method to obtain the user’s interest expres-
sion, the specific function is as follows:

Among them, Zi represents the output result of each layer of the network, Wi represents 
the training matrix of each layer of the network, bi represents the paranoia item of each 
layer, f represents the relu activation function, and u represents the user. The information 
feature matrix of U, U reflects the user’s interest feature matrix.

Interaction layer

Once the numerical and category characteristics are in the same low-dimensional space, we 
may move on to modeling high-order combinatorial features. The main issue is determin-
ing which characteristics should be merged to generate relevant high-order features. Tradi-
tionally, domain experts achieve this by creating meaningful combinations based on their 
knowledge. In this study, we address this issue using a unique approach called the multi-
head self-attention mechanism.

Recently, a multi-head self-attentive network shown amazing effectiveness in modeling 
intricate relationships. For example, it outperforms arbitrary word dependency modeling 
in machine translation and sentence embedding, and has been effectively extended to cap-
ture node similarities in graph embedding. In this paper, we expand the newest approach to 
describe the relationships between distinct feature fields. The structure of the interaction 
layer is shown in Fig. 3.

To be more specific, we use the key-value attention mechanism to decide which fea-
ture combinations are relevant. Using feature m as an example, we will show how to find 
many significant high-order features using feature m. We begin by defining the association 
between feature m and feature k under a certain attention head h as follows:

(5)u = [u1; u2; ...; un],

Z1 = f(W1u+ b1)

Z2 = f(W2Z1 + b2)

(6)Z3 = f(W3Z2 + b3)

U = f(W4Z3 + b4)

(7)α
(h)
m,k =

exp(ϕ(h)(em, ek))∑M
l=1exp(ϕ

(h)(em, el))
,
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where (h)(,)is an attention function that determines the similarity between the features 
m and k. It can be defined as a neural network or as a simple inner product, i.e.,. We 
used inner product in this task since it is simple and effective. W(h)Query,W(h)KeyRd’d 
in Eq. (5) are transformation matrices that convert the original embedding space Rd into 
a new space Rd′. Following that, we update the representation of feature m in subspace h 
by merging all relevant features led by coefficients(h)mk:

where W (h)
Value

 ∈ Rd′ × d, e(h)
m ∈ Rd′ denotes a new combinatorial feature acquired by our 

technique since it is a combination of feature m and its relevant features (under head h). 
In addition, a feature is likely to be implicated in many combinatorial features, which 
we do by employing multiple heads that form various subspaces and learn diverse fea-
ture interactions individually. In all subspaces, we gather the following combinatorial 
features:

where H is the number of total heads and is the concatenation operator. We use typical 
residual connections in our network to maintain previously learnt combinatorial charac-
teristics, such as raw individual (i.e., first-order) features. Formally

where ReLU(z) = max(0, z) is a non-linear activation function, and WResRd’Hd is the 
projection matrix in case of dimension mismatching [38]. The representation of each 

(8)ϕ(h)(em, ek) =< W
(h)
Queryem,W

(h)
Keyek >,

(9)ẽ(h)m =

M∑

k=1

α
(h)
m,k

(
W

(h)
Valueek

)
,

(10)ẽm = ẽ(1)m ⊕ ẽ(2)m ⊕ · · · ⊕ ẽ(H)
m ,

(11)eResm = ReLU
(
ẽm +WResem

)
,

Fig. 3  The architecture of interacting layer. Combinatorial features are conditioned on attention weights, i.e., 
α
(h)
m
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feature em will be modified into a new feature representation eResm, which is a repre-
sentation of high-order features, as a result of such an interaction layer. Multiple simi-
lar layers can be stacked, with the output of the previous interacting layer feeding into 
the next interacting layer. We can represent arbitrary-order combinatorial features as a 
result of this.

Output layer

The interaction layer produces a collection of feature vectors eConmMm = 1, which 
contain raw individual features reserved by the residual block as well as combinatorial 
features gained by the multi-head self-attention process. We just concatenate them all 
and then use a non-linear projection as follows for the final CTR prediction:

where wRd’HM is a column projection vector that linearly combines concatenated fea-
tures, b is the bias, and (x) = 1/(1 + ex) converts the values to users clicking probabilities.

Training

Our loss function is Log loss, which is defined as follows:

where yj and ŷj are ground truth of user clicks and estimated CTR respectively, j indexes 
the training samples, and N is the total number of training samples. The parameters to 
learn in our model are {Vi, Vm, W(h)

Query, W
(h)
Key, W

(h)
Value , W

Res, w, b}, which are updated via 
minimizing the total Logloss using gradient descent.

Experiment
Experimental setup

Experimental data set

Data Sets. Four publicly available real-world data sets are used in this study. Table  1 
summarizes the statistics for the data sets. Criteo3 This is a CTR prediction benchmark 
dataset with 45 million click records on shown adverts. It has 26 numerical and 13 cate-
gory feature fields. Avazu4 This dataset provides information on users’ mobile activities, 
such as whether or not they click on a presented mobile ad. It comprises 23 feature fields 
that range from user/device characteristics to ad properties. MovieLens-1M6 Users’ 
movie ratings are collected in this collection. We consider samples with a rating of less 

(12)ŷ = σ

(
wT

(
eCon1 ⊕ eCon2 ⊕ · · · ⊕ eConM

)
+ b

)
,

(13)Logloss = −
1

N

N∑

j=1

(
yjlog

(
ŷj
)
+

(
1− yj

)
log

(
1− ŷj

))
,

Table 1  Statistics of evaluation data sets

Data Samples Fields Features (sparse)

Criteo 45,840,617 39 998,960

Avazu 40,428,967 23 1,544,488

Movielens-1M 739,012 7 3529
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than 3 to be negative samples during binarization since a low score suggests that the user 
dislikes the film. Positive samples (those with a rating more than 3) are kept, whereas 
neutral samples (those with a rating of 3 or less) are discarded.

Evaluation metrics

To assess the effectiveness of all strategies, we employ two widely used criteria.
Area of the University of Chicago The likelihood that a CTR predictor would award a 

higher score to a randomly chosen positive item than a randomly chosen negative item 
is measured by the area under the ROC Curve (AUC). AUC is a measure of how well 
something works. The greater the AUC, the better.

We adopt Logloss as a clear measure since all models try to reduce the Logloss 
described by Eq. (10).

It’s worth noting that for the CTR prediction job, a slightly higher AUC or lower 
Logloss at the 0.001-level is considered significant, as has been previously mentioned.

Comparison model

FM models second-order feature interactions using factorization techniques.
AFM. AFM is one of the most advanced models for capturing the interplay of second-

order features. It extends FM by using the attention mechanism to discern between the 
relative relevance of second-order combination characteristics.

NFM. On the second-order feature interaction layer, NFM superimposes a deep neural 
network. The interplay of high-order features is implicitly captured by the nonlinearity 
of neural networks.

deepFM.deepFM utilizes the deep layer’s deep learning to gain high-level crossover 
features, FM collects low-level crossovers, and both high and low-level crossover fea-
tures are acquired at the same time.

Widedeep. The memory features of the broad layer learning model are used in the 
Widedeep model, while the deep layer learns the model’s generalization characteristics.

Deepcrossing. The Deepcrossing model incorporates a residual network based on 
deepfm, which enhances the model’s interpretability.

DCN. DCN can successfully capture a narrow range of effective feature interactions, 
learn highly nonlinear effects, and has a cheap computing cost. It does not involve 
human feature engineering traversal or search.

PNN. The PNN model obtains high-level and low-level cross features using the inner 
product and outer product to arrive at the final recommendation result.

Autoint. To produce weighted cross features, Autoint employs a multi-head self-atten-
tion technique.

Comparative experiment

In accordance with the Table 2 experimental findings. The following conclusions may be 
derived from the results of the experiment: (1) Attention mechanisms are investigated 
using FM and AFM models. The AFM model has a greater experimental impact than 
the FM model on all data sets, indicating that the attention mechanism is involved in 
the recommendation model. (2) As shown in the table above, several models that cap-
ture high-level cross-feature interactions have advantages and disadvantages. When 
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the deepfm model with high-order cross features is compared to the fm model without 
high-order cross features, the suggested model’s accuracy improves. (3) On three sepa-
rate data sets, the suggested IARM model has the greatest AUC and the lowest LOSS 
when compared to other models. It demonstrates that the IARM model provides more 
accurate and effective recommendations.

Ablation experiment of the model

This paper conducts an ablation investigation and compares multiple IARM variations 
in order to further validate and comprehend the paradigm described in this article.

The influence of personal interest on the model

The user interest module is integrated into the basic IARM paradigm, allowing it to learn 
about each user’s individual interests. This study isolates the interest module from the 
IARM model and keeps the status quo of other structures to establish an IARM* model 
in order to test the interest module’s efficacy. The performance of all data sets will suffer 
if the interest module is removed, as demonstrated in the Table 3. In particular, on the 
criteo, avazu, and movielens data sets, the IARM model outperforms the change model 
IARM*. This demonstrates that the interest module of the IARM model developed in 
this research contributes significantly to the accuracy of the recommendation outcomes.

Table 2  Effectiveness comparison of different algorithms

Model Criteo Movielens-1M Avazu

AUC​ LOSS AUC​ LOSS AUC​ LOSS

FM 0.6869 0.5286 0.5347 0.4462 0.5437 0.6221

Weidedeep 0.7066 0.4827 0.8328 0.3334 0.7424 0.4117

Deepfm 0.7283 0.4707 0.8340 0.3346 0.7461 0.4041

AFM 0.7220 0.4754 0.8295 0.3358 0.7567 0.4012

DCN 0.7094 0.4920 0.8249 0.3393 0.7349 0.4139

NFM 0.7027 0.5645 0.8297 0.3357 0.7400 0.4179

PNN 0.7084 0.4870 0.8312 0.3353 0.7374 0.4096

Autoint 0.7060 0.6049 0.8362 0.3393 0.7450 0.4496

Deepcrosing 0.7375 0.4732 0.8373 0.3305 0.7572 0.3989

IARM 0.7545 0.4830 0.8386 0.3296 0.7652 0.3994

Table 3  IARM’s performance was studied using ablation tests

IARM is a full model, whereas IARM* is a model that eliminates user interest

Data sets Model AUC​ LOSS

Criteo IARM 0.7545 0.4830

IARM* 0.7371 0.4965

Avazu IARM 0.7652 0.3994

IARM* 0.7591 0.3995

Movielens IARM 0.8386 0.3296

IARM* 0.8349 0.3344
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The influence of network layer parameters on the model

By superimposing numerous interacting layers on top of each other, the IARM model 
suggested in this study learns high-order feature combinations. As a result, the focus of 
this research is on how the model’s performance varies with the number of interaction 
layers, specifically if the model’s number of interaction layers influences the combina-
tion characteristics. It refers to the acquisition of high-level characteristics of non-pro-
gressive input from raw data if there is no interaction layer mentioned in this article. 
As illustrated in the diagram above, the findings are summarized. The performance of 
the movielens data set is greatly enhanced when an interaction layer is utilized, i.e., fea-
ture interaction is taken into account, demonstrating that the combined features give 
extremely relevant information for prediction. The model’s performance improves fur-
ther if the number of interaction layers is increased, taking into account high-order 
combination characteristics. When the number of layers approaches three, performance 
stabilizes, demonstrating that adding extremely high-order features does not give pre-
dictive information (Fig. 4).
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Fig. 4  Demonstrates the performance of IARM with various data types and network layers
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The influence of self‑attention mechanism

The IARM model has a multi-head self-attention mechanism that allows it to assign var-
ious weights to different variables, improve the influence of relevant features on recom-
mendation outcomes, and improve recommendation accuracy. This research provides 
an IRM model that eliminates the multi-head self-attention mechanism while leav-
ing other structures unaltered in order to test the usefulness of the module. The over-
all influence of the model on the criteo, avazu, and movielens data sets has diminished 
when the multi-head attention module is eliminated, as can be seen in the Table 4. This 
demonstrates that the IARM model’s multi-head self-attention mechanism had a role.

Influence of residual network

The residual network, which can learn all the combined features, is used in the typical 
IARM model in this article, enabling for the modeling of extremely high-order combi-
nations. This research removes the residual network from the standard model IARM in 
order to demonstrate its contribution to the model, while maintaining the status quo 
of other structures. The performance of all data sets will suffer if the residual network 
is removed, as seen in the Table 5. On the criteo, avazu, and MovieLens datasets, the 
entire model IARM performs much better than the version IARM-, demonstrating that 
residual connection is required for modeling high-order feature interactions in our pro-
posed technique.

Table 4  IARM performance is being investigated using ablation studies

IRM is a model without the multi-head attention mechanism, while IARM is a full model

Data sets Model AUC​ LOSS

Criteo IARM 0.7545 0.4830

IRM 0.7497 0.4902

Avazu IARM 0.7652 0.3994

IRM 0.7637 0.4019

Movielens IARM 0.8386 0.3296

IRM 0.8345 0.3292

Table 5  IARM’s performance was examined using ablation tests

IARM is a full model, whereas IARM- is a residual network-free model

Data sets Model AUC​ LOSS

Criteo IARM 0.7545 0.4830

IARM- 0.7511 0.4822

Avazu IARM 0.7652 0.3994

IARM- 0.7621 0.4086

Movielens IARM 0.8386 0.3296

IARM- 0.8236 0.3422
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Visual explanation

A good recommendation model can help improve not just the quality of recommenda-
tions, but also their interpretability. We’ll use movielens as an example in this section to 
explain how the IARM model provides a good cross-feature combination.

The association between several feature fields in the data is also examined in this arti-
cle. Based on the average attention scores of all characteristics in the data, this study 
calculates the correlation between them. The graph above summarizes the relationship 
between the various characteristics. It can be observed that the characteristics sex, age, 
and sex, age (that is, light-colored patches) have a high link, and this combination of fea-
tures will play a significant role in the recommendation outcomes (Fig. 5).

Model generalization

The term "model generalization" describes whether or not a model is similarly accu-
rate when applied to fresh data. The criteo data set is used in this section as an example 
of how to partition a data set into a training set and a test set with a ratio of 0.2 and 
0.3, respectively. The data set divided by the 0.3 column may be divided into multiple 
test sets, yielding more data for the model. As seen in the Table 6, AUC and LOSS alter 
according on the model’s division ratios. Overall, the IARM model has the highest AUC 
value while simultaneously having the lowest LOSS value. Furthermore, the model’s 
AUC varies relatively little as the test set grows, having the maximum AUC value at the 
end. This demonstrates that the IARM model still outperforms other models on the new 
data set and has a significant generalization ability.

Conclusion
This research provides a recommendation model that incorporates both user interest 
and a multi-head attention mechanism. This model can learn the user’s preferences and 
how high-level features interact automatically. The multi-head self-attention mecha-
nism’s newly added user interest layer and interaction layer, which allows each feature to 
interact with other features and assess feature significance through learning, are the key 

Table 6  Displays the IARM model’s performance on the Criteo dataset under various test sets

Model Criteo

Proportion 0.2 0.3 AVG. changes

AUC​ LOSS AUC​ LOSS AUC​ LOSS

FM 0.6869 0.5286 0.6785 0.5368 − 0.0084  + 0.0082

Weidedeep 0.7066 0.4827 0.7007 0.4846 − 0.0059  + 0.0019

Deepfm 0.7283 0.4707 0.7249 0.4792 − 0.0034  + 0.0085

AFM 0.7220 0.4754 0.7084 0.4877 − 0.0136  + 0.0123

DCN 0.7094 0.4920 0.7042 0.5010 − 0.0052  + 0.009

NFM 0.7027 0.5645 0.7005 0.5654 − 0.0022  + 0.0009

PNN 0.7084 0.4870 0.7013 0.4979 − 0.0071  + 0.0109

Autoint 0.7060 0.6049 0.6921 0.6552 − 0.0139  + 0.0503

Deepcrosing 0.7375 0.4732 0.7356 0.4792 −0.0019  + 0.006

IARM 0.7545 0.4830 0.7527 0.4993 − 0.0018  + 0.0163



Page 14 of 15Zhang et al. Journal of Big Data           (2023) 10:11 

to the technique in this study. The model’s structure, interpretability, and generalization 
are all discussed and analyzed in this article. The results of the experiments on three real 
data sets show that the model described in this research is more effective and accurate in 
its recommendations. In order to increase the recommendation model’s accuracy, we’d 
like to incorporate contextual information into our process in the future.
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