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Abstract
Beyond detecting brain lesions or tumors, comparatively little success has been 
attained in identifying brain disorders such as Alzheimer’s disease (AD), based on 
magnetic resonance imaging (MRI). Many machine learning algorithms to detect AD 
have been trained using limited training data, meaning they often generalize poorly 
when applied to scans from previously unseen scanners/populations. Therefore, 
we built a practical brain MRI-based AD diagnostic classifier using deep learning/
transfer learning on a dataset of unprecedented size and diversity. A retrospective 
MRI dataset pooled from more than 217 sites/scanners constituted one of the largest 
brain MRI samples to date (85,721 scans from 50,876 participants) between January 
2017 and August 2021. Next, a state-of-the-art deep convolutional neural network, 
Inception-ResNet-V2, was built as a sex classifier with high generalization capability. 
The sex classifier achieved 94.9% accuracy and served as a base model in transfer 
learning for the objective diagnosis of AD. After transfer learning, the model fine-
tuned for AD classification achieved 90.9% accuracy in leave-sites-out cross-validation 
on the Alzheimer’s Disease Neuroimaging Initiative (ADNI, 6,857 samples) dataset and 
94.5%/93.6%/91.1% accuracy for direct tests on three unseen independent datasets 
(AIBL, 669 samples / MIRIAD, 644 samples / OASIS, 1,123 samples). When this AD 
classifier was tested on brain images from unseen mild cognitive impairment (MCI) 
patients, MCI patients who converted to AD were 3 times more likely to be predicted 
as AD than MCI patients who did not convert (65.2% vs. 20.6%). Predicted scores 
from the AD classifier showed significant correlations with illness severity. In sum, 
the proposed AD classifier offers a medical-grade marker that has potential to be 
integrated into AD diagnostic practice.
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Introduction
Magnetic resonance imaging (MRI) is widely used in neuroradiology to detect brain 
lesions including stroke, vascular disease, and tumor tissue. Still, MRI has been less use-
ful in definitively identifying degenerative diseases including Alzheimer’s disease (AD), 
mainly because signatures of the disease are diffuse within the images and hard to dis-
tinguish from normal aging. Machine learning and deep learning methods have been 
trained on relatively small datasets, but limited training data often leads to poor general-
ization performance on new datasets not used in training the algorithms. In the current 
study, we aim to create a practical brain imaging-based AD classifier with high gener-
alization capability via deep learning/transfer learning on a diverse range of large-scale 
datasets.

In recently updated AD diagnostic criteria, such as those proposed by the International 
Working Group (IWG-2) Criteria for Alzheimer’s Disease Diagnosis and The National 
Institute on Aging – Alzheimer’s Association (NIA-AA) Alzheimer’s Diagnostic Frame-
work, markers such as amyloid measures from cerebrospinal fluid (CSF) and amyloid-
sensitive positron emission tomography (PET) have been integrated into the diagnosis 
of AD [1, 2]. Diagnostic sensitivity and specificity have been greatly improved by these 
markers [1, 3]. Even so, the invasive nature and lower availability of these markers limit 
their application in routine clinical settings. Thus, accurate diagnosis of AD and its early 
stage using a non-invasive and widely available technology is critically important. Struc-
tural MRI is a more promising candidate for imaging-based auxiliary diagnosis for AD 
considering its non-invasive nature and wider availability than PET. In addition, well-
developed MRI data preprocessing pipelines make it feasible to integrate MRI markers 
into automatic end-to-end deep learning algorithms. Deep learning has already been 
successfully deployed in real-world scenarios such as extreme weather condition predic-
tion [4], aftershock pattern prediction [5] and automatic speech recognition [6]. In clini-
cal scenarios, convolutional neural networks (CNN) – a widely-used architecture that 
is well-suited for image-based deep learning – have been successfully used for objective 
diagnosis of retinal diseases [7], skin cancer [8], and breast cancer screening [9].

However, prior attempts at MRI-based AD diagnosis have yet to attain clinical util-
ity. A major challenge for brain MRI-based algorithms, especially if they are trained on 
limited data, is their failure to generalize. For example, a brain imaging-based classifier 
may give precise predictions for testing samples from a specific hospital from which 
the training dataset came. However, performance of the classifier declines dramatically 
when directly applied to samples from another unknown hospital [10]. One critical rea-
son for performance discrepancy is that brain imaging data vary depending on scan-
ner characteristics such as scanner vendor, magnetic field strength, head coil hardware, 
pulse sequence, applied gradient fields, reconstruction methods, scanning parameters, 
voxel size, field of view, etc. Participants also differ in sex, age, race/ethnicity, and educa-
tion. Robust methods need to work well on diverse populations. These variations in the 
scans – and in the populations studied – make it hard for a brain imaging-based classi-
fier trained on data from a single site (or a few sites) to generalize to data from unseen 
sites/scanners. This has prevented brain imaging-based classifiers from becoming prac-
tically useful in clinical settings. Most brain MRI-based studies either did not include 
independent validation [11–13] or did not achieve satisfactory performance in indepen-
dent validations [14]. In fact, reviews of brain imaging-based AD classifiers suggest that 
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most machine learning methods have been trained on samples in the hundreds, with 
only 2 out of 81 studies [15], 0 out of 16 studies [16], and 6 out of 114 studies [17] (of 
those included in recent systematic reviews) including independent dataset validations, 
raising doubts about the generalizability of the models.

Another bottleneck in developing a practical brain imaging-based classifier involves 
the variety and comprehensiveness of training datasets. Directly training AD models on 
datasets that only contain several hundred samples may result in overfitting with poor 
generalization to unseen test data [15]. The transfer learning framework has been pro-
posed to solve this problem, by training a model on a certain characteristic for which 
abundant samples are available, and fine-tuning it to another characteristic, or for simi-
lar tasks, in smaller samples [18]. Published evidence shows that pretrained models 
can outperform models trained from scratch in classification accuracy and robustness 
[19, 20]. In medical imaging, transfer learning has been successfully applied to diag-
nose retinal disease [7] and skin cancer [8]. Nonetheless, in brain imaging, no study has 
encompassed the tens of thousands of openly shared brain images to promote the gen-
eralizability of an AD classifier. Thus, in the current study, we used one of the largest and 
most diverse samples to date (N = 85,721 from more than 217 sites/scanners, see Table1) 
to pre-train a brain imaging-based classifier with high generalizability. We chose a sex 
classifier rather than an age predictor as the base model for transfer learning, because 
age prediction error may contain biological meaning (e.g., increased predicted age may 
indicate accelerated aging [21]). Thus, it can be hard to measure the true performance of 
an age predictor while participant sex is more stable for classification. Subsequently, the 
pre-trained sex classifier was fine-tuned for AD classification and was validated through 
leave-sites-out cross-validation and three independent validations.

The goal of the present study was to build a practical AD classifier with high generaliz-
ability. We incorporated three design features to improve the method’s clinical utility. 
First, we trained and tested the algorithm on a dataset of unprecedented size and diver-
sity (from more than 217 sites/scanners). The variety of training samples was critical 
for improving model generalizability. Second, rigorous leave-datasets/sites-out cross-
validation and independent validations were implemented to assure that classifier accu-
racy would be robust to site/scanner variability. Third, compared to 2D modules (feature 
detectors) typically used in CNNs for natural images, here, fully 3D convolution filters 
were used to capture more sophisticated and distributed spatial features for diagnostic 
classification. We also openly share our preprocessed data, trained model, code, and 
have built an online predicting website for anyone interested in testing our classifier.

Methods
Data acquisition

We submitted data access applications to nearly all the open-access brain imaging data 
archives and received permissions from the administrators of 34 datasets. The full data-
set list is shown in Table1. Deidentified data were contributed from datasets collected 
with approvals from local Institutional Review Boards. The reanalysis of these data was 
approved by the Institutional Review Board of Institute of Psychology, Chinese Acad-
emy of Sciences. All participants had provided written informed consent at their local 
institution. All 50,876 participants (contributing 85,721 samples) had at least one ses-
sion with a T1-weighted structural brain image and information on their sex and age. 
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Full Name of Dataset Num-
ber 
of T1 
Scans

T1 
Scans 
after 
QC

Age 
(mean ± std)

Num-
ber of 
Subjects

Num-
ber of 
Sites

Manufacturers Field 
Strength

Adolescent Brain Cogni-
tion Development

31,176 30,222 13.76 ± 10.08 11,875 21 SIE/PHI/GE 3T

UK Biobank 20,124 19,744 63.1 ± 7.46 20,124 4 SIE 3T

Alzheimer’s Disease 
Neuroimaging Initiative

16,596 16,431 74.97 ± 7.4 2546 57 SIE/PHI/GE 3T/1.5T

Open Access Series of 
Imaging Studies

3150 3099 67.54 ± 20.64 1664 (5) SIE 3T/1.5T

REST-meta-MDD 
sample

2380 2363 36.2 ± 15.11 2380 17 SIE/PHI/GE 3T/1.5T

Brain Genomics Super-
struct Project

1570 1552 21.54 ± 2.89 1570 2 SIE 3T

Human Connectome 
Project

1267 1220 / 1267 1 SIE 7T/3T

Autism Brain Imaging 
Data Exchange

1102 1073 17.09 ± 8.06 1102 17 SIE/PHI/GE 3T/1.5T

Autism Brain Imaging 
Data Exchange II

1043 1019 15.16 ± 9.39 1043 19 SIE/PHI/GE 3T/1.5T

1000 Functional Con-
nectomes Project

897 864 25.8 ± 10.76 897 33 SIE/PHI/GE 3T/1.5T

ADHD-200 Sample 876 864 12.35 ± 3.28 876 8 SIE/PHI 3T/1.5T

Consortium for Reliabil-
ity and Reproducibility

714 691 23.45 ± 12.31 715 2 SIE/GE 3T

Cambridge Centre for 
Ageing Neuroscience 
(Cam-CAN)

652 523 54.36 ± 18.55 652 1 SIE 3T

Enhanced Nathan Kline 
Institute - Rockland 
Sample

646 616 38.63 ± 21.21 646 1 SIE 3T

Southwest University 
Longitudinal Imaging 
Multimodal

586 581 20.1 ± 1.3 586 1 SIE 3T

Child Mind Institute 
Healthy Brain Network

572 506 10.74 ± 3.65 572 3 SIE 3T/1.5T

Establishing Moderators 
and Biosignatures of 
Antidepressant

540 523 / 540 4 SIE/PHI/GE 3T

Southwest University 
Adult Lifespan Dataset

493 483 45.16 ± 17.45 493 1 SIE 3T

Max Planck Institute 
Leipzig Mind-Brain-
Body Dataset

316 291 / 316 1 SIE 3T

Beijing Enhanced 
Sample

180 176 21.22 ± 1.94 180 1 SIE 3T

Nathan Kline Institute - 
Rockland Sample

167 151 35.59 ± 20.71 167 1 SIE 3T

The Center for Biomedi-
cal Research Excellence

147 137 / 147 1 SIE 3T

The Age-ility Project 110 105 21.87 ± 5.39 110 1 SIE 3T

Parkinson’s Disease 
Datasets

68 65 66.18 ± 7.58 68 2 SIE 3T/1.5T

Power et al., 2012 Neu-
roimage Sample

63 62 14.25 ± 6.05 63 1 (2) SIE 3T

NYU Institute for Pediat-
ric Neuroscience

47 45 30.4 ± 8.98 47 1 SIE 3T

Table 1  Datasets used in the present study
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For participants with multiple sessions of structural images, each image was considered 
an independent sample for data augmentation in training. Importantly, scans from the 
same person were never split into training and testing sets, as that could artifactually 
inflate performance.

MRI preprocessing

We did not feed raw data into the classifier for training but used accepted pre-process-
ing pipelines that are known to generate useful features from brain scans. The brain 
structural data were segmented and normalized to acquire grey matter density (GMD) 
and grey matter volume (GMV) maps. Specifically, we used the voxel-based morphom-
etry (VBM) analysis module within Data Processing Assistant for Resting-State fMRI 
(DPARSF) [22], which is based on SPM [23], to segment individual T1-weighted images 
into grey matter, white matter, and cerebrospinal fluid (CSF). Then, the segmented 
images were transformed from individual native space to MNI-152 space (a coordi-
nate system created by Montreal Neurological Institute [24]) using the Diffeomorphic 
Anatomical Registration Through Exponentiated Lie algebra (DARTEL) tool [25]. Two 
voxel-based structural metrics, GMD and GMV were fed into the deep learning classi-
fier as two features for each participant. GMD is the output of the unmodulated tissue 
segmentation map in MNI space. GMV is calculated by multiplying the voxel value in 
GMD by the Jacobian determinants derived from the spatial normalization step (modu-
lated) [26]. Medical imaging-based classifiers could reach better or similar classification 
performances using an enhancing preprocessing procedure [27, 28].

Quality control

Poor quality raw structural images would produce distorted GMD and GMV maps dur-
ing segmentation and normalization. To remove such participants from affecting the 
training of the classifiers, we excluded participants in each dataset with a spatial cor-
relation exceeding the threshold defined by (mean − 2SD) of the Pearson’s correlation 
between each participant’s GMV map and the grand mean GMV template. The grand 

Full Name of Dataset Num-
ber 
of T1 
Scans

T1 
Scans 
after 
QC

Age 
(mean ± std)

Num-
ber of 
Subjects

Num-
ber of 
Sites

Manufacturers Field 
Strength

Beijing Eyes Open Eyes 
Closed Sample

46 44 22.54 ± 2.18 46 1 SIE 3T

Multi-Modal MRI Repro-
ducibility Resource

42 42 31.76 ± 9.35 42 1 PHI 3T

Adelstein et al., 2011, 
PLoS ONE Sample

39 36 29.59 ± 8.38 39 1 SIE 3T

Cleveland CCF 31 29 43.55 ± 11.14 31 1 SIE 3T

Virginia Tech Carilion 
Research Institute

25 24 26.84 ± 8.17 25 1 (3) SIE 3T

Beijing Short TR Sample 24 23 23.71 ± 6.74 24 1 SIE 3T

FIND Lab sample 13 12 24.08 ± 3.73 13 1 GE 3T

The Midnight Scan Club 
dataset

10 10 29.1 ± 3.35 10 1 SIE 3T

85,712 83,735 50,876 217
Note: Abbreviation: SIE = Siemens, Phi = Philips, GE = General Electric. Numbers in the bracket indicate the number of 
scanners.

Table 1  (continued) 
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mean GMV template was generated by randomly selecting 10 participants from each 
dataset (image quality visually checked for each participant) and averaging the GMV 
maps of all these 340 (from 34 datasets) participants. After quality control, 83,735 sam-
ples were retained for classifier training (Figure S1).

Deep learning: classifier training and testing for sex

As the feature maps of brain MRI were three-dimensional (3D) rather than two-dimen-
sional (2D), we could not directly use 2D pretrained models such as models trained 
based on ImageNet. In addition, few trained 3D CNN models based on large-scale datas-
ets, especially brain MRI datasets, exist. Therefore, we had to pretrain a brain MRI-based 
model for the further transfer learning procedure. It could have been more efficient to 
pretrain the model on another neurodegenerative disorder such as Parkinson’s disease 
[29, 30]. However, we were unable to locate other neurodegenerative disorder datasets 
with tens of thousands of samples. Hence, we chose the sex classification task to pre-
train the model because sex is a commonly available phenotype for any kind of datasets. 
We trained a 3-dimensional Inception-ResNet-v2[31] model adopted from its 2-dimen-
sional version in the Keras built-in application (see Fig.1A for its structure). This is a 
state-of-the-art pattern recognition model, which integrates two classical series of CNN 
models, Inception and ResNet. We replaced the convolution, pooling, and normaliza-
tion modules with their 3-dimensional versions and adjusted the number of layers and 
convolutional kernels to make them suitable for 3-dimensional MRI inputs (e.g., GMD 
and GMV as different input channels). The present model consists of one stem module, 
three groups of convolutional modules (Inception-ResNet-A/B/C) and two reduction 
modules (Reduction-A/B). The model can take advantage of convolutional kernels with 
different shapes and sizes, and can extract features of different sizes. The model also can 
mitigate vanishing gradients and exploding gradients by adding residual modules. We 
utilized the Keras built-in stochastic gradient descent optimizer with learning rate = 0.01, 
Nesterov momentum = 0.9, decay = 0.003 (e.g., learn rate = learn rate0 × (1 / (1 + decay × 
batch))). The loss function was set to binary cross-entropy. The batch size was set to 24 
and the training procedure lasted 10 epochs for each fold. To avoid potential overfitting, 
we randomly split 600 samples out of the training sample as a validation sample and set 
a checking point at the end of every epoch. We saved the model in which the epoch clas-
sifier showed the lowest validation loss. Thereafter, the testing sample was fed into this 
model to test the classifier.

While training the sex classifier, random cross-validation may share participants from 
the same sites between training and testing samples, so the model may not generalize 
well to datasets from unseen sites due to site information leakage during training. To 
ensure generalizability, we used cross-dataset validation. In the testing phase, all the data 
from a given dataset would never be seen during the classifier training phase. This also 
ensured the data from a given site (and thus a given scanner) were unseen by the clas-
sifier during training (see Fig.1B for an illustration). This strict setting can limit clas-
sifier performance, but it makes it feasible to generalize to any participant at any site 
(scanner). Five-fold cross-dataset validation was used to assess classifier accuracy. Of 
note, 3 datasets were always kept in the training sample due to the massive number of 
samples: Adolescent Brain Cognition Development (ABCD) (n = 31,176), UK Biobank 
(n = 20,124), and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (n = 16,596). 
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The remaining 31 datasets were randomly allocated to training and testing samples. The 
allocating schemas were the solution that balanced the sample size of 5 folds the best 
from 10,000 random allocating procedures. Both healthy normal control and brain-
related disorder patient samples in the 34 datasets were used to train the sex classifier.

Transfer learning: classifier training and testing for AD

After obtaining a highly robust and accurate brain imaging-based sex classifier as a 
base model, we used transfer learning to further fine-tune the AD classifier. Rather than 
retaining the intact sophisticated structure of the base model (Inception-ResNet-V2), 

Fig. 1  Flow diagram for the Alzheimer’s disease (AD) transfer learning framework and cross-validation procedure. 
(A) Schema for the 3D Inception-ResNet-V2 model and the transfer learning framework for the Alzheimer disease 
classifier. (B) Schematic diagram for the leave-datasets-out 5-fold cross-validation for the sex classifier. (C) Sche-
matic diagram for the leave-sites-out 5-fold cross-validation for the AD classifier
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we only leveraged the pre-trained weights in the stem module and simplified the upper 
layers (e.g., replacing Inception-ResNet modules with ordinary convolutional layers). 
The retained bottom structure of the model works as a feature extractor and can take 
advantage of the massive training of the sex classifier. The pruned upper structure of the 
AD model can avoid potential overfitting and promote generalizability by reducing the 
number of parameters (10million parameters for the AD classifier vs. 54million param-
eters for the sex classifier). This derived AD classifier was fine-tuned on the ADNI data-
set (2,186 samples from 380 AD patients and 4,671 samples from 698 normal controls 
(NCs), 76 ± 7 years, 3,493 samples from women). ADNI was launched in 2003 (Principal 
Investigator: Michael W. Weiner, MD) to investigate biological markers of the progres-
sion of MCI and early AD (see www.adni-info.org). We used the Keras built-in stochas-
tic gradient descent optimizer with learning rate = 0.0003, Nesterov momentum = 0.9, 
decay = 0.002. The loss function was set to binary cross-entropy. The batch size was set to 
24 and the training procedure lasted 10 epochs for each fold. Like the cross-dataset vali-
dation for sex classifier training, five-fold cross-site validation was used to assess classi-
fier accuracy (see Fig.1C for an illustration). By ensuring that the data from a given site 
(and thus a given scanner) were unseen by the classifier during training, this strict strat-
egy made the classifier generalizable with non-inflated accuracy, thus better simulating 
realistic clinical applications than traditional five-fold cross-validation. Other than using 
GMD + GMV as the input in transfer learning, we also used GMD, GMV or z-standard-
ized normalized raw T1-weighted images as the input for the sex/AD classifiers to verify 
the influence of input format (Table2). We also trained an age prediction model instead 
of the sex classifier in transfer learning to verify the influence of the base-model. We 
used the same structure as the sex classifier, except for adding a fully-connected layer 
with 128 neurons with “ELU” activation function before the final layer; we also changed 
the dropout rate from 0.5 to 0.2 following the parameters in the brain age prediction 
model reported by Jonsson et al. [21]. Finally, we compared the performance of Incep-
tion-ResNet-V2 structure with the performances of some light-weight structures such 
as VGG19, DenseNet-201 and MobileNet-V2. The performances of these structures are 
listed in Table S1. In sum, the performance of models with light-weight structures were 
lower than that of the Inception-ResNet-V2 model, so that we chose Inception-ResNet-
V2 for the model structure.

Furthermore, to test the generalizability of the AD classifier, we directly tested it on 
three unseen independent AD samples, i.e., the Australian Imaging, Marker and Life-
style Flagship Study of Ageing (AIBL) [32], the Minimal Interval Resonance Imaging 
in Alzheimer’s Disease cohort (MIRIAD) [33], and the Open Access Series of Imaging 
Studies (OASIS) [34]. We averaged the sigmoid activation output scores of the 5 AD 
classifiers in five-fold cross-validation on ADNI to obtain the final classification for each 
sample. We used diagnoses provided by the qualified physicians for the AIBL and MIR-
IAD datasets as the sample labels (115 samples from 82 AD patients and 554 samples 
from 324 NCs in AIBL, 74 ± 7 years, 374 samples from women; 409 samples from 46 
AD patients and 235 samples from 23 NCs in MIRIAD, 70 ± 7 years, 358 samples from 
women). As OASIS did not specify the criteria for an AD diagnosis, we adopted criteria 
of mini-mental state examination (MMSE) and clinical dementia rating (CDR) modified 
from the ADNI-1 protocol manual to define AD and NC samples. Specifically, criteria 
for AD are [1] MMSE ≤ 22 and [2] CDR ≥ 1.0, and criteria for NC are [1] MMSE > 26 and 

http://www.adni-info.org
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[2] CDR = 0. Thus, we tested the model on 137 samples from 34 AD patients and 986 
samples from 213 NC participants in the OASIS dataset after quality control, age 75 ± 10 
years, 772 samples from women. Of note, the scanning conditions and recruitment cri-
teria of these independent datasets differed much more than variations among differ-
ent ADNI sites (where scanning and recruitment was deliberately coordinated), so we 
expected the AD classifier to achieve lower performance. We created heterogeneous dis-
tributions by randomly selecting 50% samples in each independent testing datasets 1,000 
times to validate the stability of the model. The 95% confidence intervals of the classifica-
tion performance metrics were produced from the random selection procedure.

We further investigated whether the AD classifier could predict disease progression 
in people with mild cognitive impairment (MCI). MCI is a syndrome defined as rela-
tive cognitive decline without symptoms interfering with daily life; even so, more than 
half of MCI patients progress to dementia within 5 years [35]. The stable MCI (sMCI) 
samples were defined as “scans from an individual who was once diagnosed as MCI in 
any phase of ADNI and has not progressed to AD by the end of the ADNI follow-up”, 
and the progressive MCI (pMCI) samples were defined as “scans from a participant who 
was once diagnosed as MCI in any phase of ADNI and who has progressed to AD”. The 
scans labeled as “conversion” or “AD” (after conversion) for pMCI and the last scan for 
sMCI were excluded in the present study for precision. We screened imaging records of 
the MCI patients who converted to AD later in the ADNI 1/2/’GO’ phases, and collected 
2,371 images from 243 participants labeled as ‘pMCI’. We also assembled 4,018 samples 
from 524 participants labeled ‘sMCI’ without later progression for contrast. We directly 
fed all these MCI images into the AD classifier without further fine-tuning, thus evaluat-
ing the performance of the AD classifier on unseen MCI information.

Interpretation of the deep learning classifiers

To better understand the brain imaging-based deep learning classifier, we calculated 
occlusion maps for the classifiers. We repeatedly tested the images in the testing sample 
using the model with the highest accuracy within the 5 folds, while successively mask-
ing brain areas (volume = 18mm*18mm*18mm, step = 9mm) of all input images. The 
accuracy achieved on “intact” samples by the classifier minus the accuracy achieved on 
“defective” samples indicated the “importance” of the occluded brain area for the classi-
fier. The occlusion maps were calculated for both sex and AD classifiers. To investigate 
the clinical significance of the output of the AD classifier, we calculated the Spearman’s 
correlation coefficient between the predicted scores and MMSE scores of AD, NC, and 
MCI samples. We also used general linear models (GLM) to verify whether the pre-
dicted scores (or MMSE score) showed a group difference between people with sMCI 
and pMCI. The age and sex information of MCI participants were included in this GLM 
as covariates. We selected the T1-weighted images from the first visit for each MCI sub-
ject and finally collected data from 243 pMCI patients and 524 sMCI patients.

Results
Large-scale brain imaging data

Only brain imaging data with enough size and variety can make deep learning accu-
rate and robust enough to build a practical classifier. We received permissions from the 
administrators of 34 datasets (85,721 samples of 50,876 participants from more than 
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217 sites/scanners, see Table1; some datasets did not require applications). After qual-
ity control, all these samples were used to pre-train the stem module to achieve better 
generalization for further AD classifier training. The T1-weighted images were collected 
through Magnetization-Prepared Rapid Gradient-Echo Imaging (MPRAGE) or Inver-
sion Recovery Fast Spoiled Gradient Recalled Echo (IR-FSPGR) sequences of 1.5 tesla or 
3 tesla MR scanners. The raw acquisition voxel sizes ranged from 0.7mm×0.7mm×0.7 to 
1.3mm×1.3mm×1.2mm. For further fine-tuning of the AD classifier, ADNI, AIBL, MIR-
IAD, and OASIS were selected to train and test the model.

Performance of the sex classifier

We trained a 3-dimensional Inception-ResNet-v2 model adapted from its 2-dimensional 
version in the Keras built-in application (see Fig.1A for structure). As noted in Meth-
ods, we did not feed raw data into the classifier for training, but used prior knowledge 
regarding helpful analytic pipelines: GMD and GMV maps were fed as different input 
channels for models. To ensure generalizability, five-fold cross-dataset validation was 
used to assess classifier accuracy. The five-fold cross-dataset validation accuracies were: 
94.8%, 94.0%, 94.8%, 95.7%, and 95.8%. Taken together, accuracy was 94.9% in testing 
samples when pooling results across the five folds. The area under the curve (AUC) of 
the receiver operating characteristic (ROC) curve was the classifier performance index 
at various threshold settings [36, 37]. The AUC of the sex classifier reached 0.981 (Fig.2). 
In short, our model can classify the sex of a participant based on brain structural imag-
ing data from anyone on any scanner with an accuracy of about 95%. Interested readers 
can test this model on our online prediction website (http://brainimagenet.org).

Performance of the AD classifier

After creating a practical brain imaging-based classifier for sex with high cross-dataset 
accuracy, we used transfer learning to see if we could classify patients with AD. The AD 
classifier achieved an accuracy of 90.9% (accuracy = 93.2%, 90.3%, 92.0%, 94.4%, and 
86.7% in 5 cross-site folds) in the test samples. The 95% confidence interval of accuracy 
was [90.2%, 91.5%]. Average sensitivity and specificity were 0.838 and 0.942, respectively. 
The 95% confidence intervals of sensitivity and specificity were [0.824, 0.854] and [0.935, 
0.948], respectively. The ROC AUC reached 0.963 when results from the 5 testing sam-
ples were taken together (see Fig.3; Table2). The 95% confidence interval of ROC AUC 
was [0.958, 0.967]. The AD classifier achieved an average accuracy of 91.4% on 3T field 
strength MR testing samples and achieved an average accuracy of 91.1% on 1.5T MR 
testing samples. The accuracy in 3T MR testing sample did not differ significantly from 
that of 1.5T MR testing sample (p = 0.316, by permutation test of randomly allocating the 
testing samples into 1.5T or 3T groups and calculating the accuracy difference between 
the two groups 100,000 times, Figure S2). In addition, the AUCs of models taking other 
types of images as the input (e.g., raw T1-weighted images) were slightly lower than that 
of the GMD + GMV image-based model. The GMD and GMV maps contained a priori 
knowledge from brain science, which might partly explain the better performance of 
GMD + GMV derived models.

To test the generalizability of the AD classifier, we applied it to unseen independent 
AD datasets, i.e., AIBL, MIRIAD, and OASIS. The AD classifier achieved 94.5% accu-
racy in AIBL with 0.966 AUC (Fig.3D). Sensitivity and specificity were 0.881 and 0.958, 

http://brainimagenet.org
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respectively. The AD classifier achieved 93.6% accuracy in MIRIAD with 0.994 AUC 
(Fig.3E). Sensitivity and specificity were 0.897 and 1.000, respectively. The AD classifier 

Fig. 2  Performance of the sex classifier. (A) The receiver operating characteristic curve of the sex classifier. (B) The 
tensorboard monitor graph of the sex classifier in the training sample. The curve was smoothed for better visualiza-
tion. (C) The tensorboard monitor graph of the sex classifier in the validation sample
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achieved 91.1% accuracy in OASIS with 0.976 AUC (Fig.3F). Sensitivity and specificity 

Fig. 3  Performance of the Alzheimer’s disease (AD) classifier. Left panel shows the training and testing perfor-
mance of the AD classifier on ADNI sample. Right panel shows the testing performance of the AD classifier on 
independent samples. (A) The receiver operating characteristic curve of the AD classifier. (B) The tensorboard 
monitor panel of the AD classifier in the training sample. (C) The tensorboard monitor panel of the AD classifier in 
the validation sample. (D) The ROC curve of AD classifier tested on the AIBL sample. (E) The ROC curve of the AD 
classifier tested on the MIRIAD sample. (F) The ROC curve of the AD classifier tested on the OASIS sample. (G) The 
ROC curve of the AD classifier tested on the ADNI MCI sample
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were 0.932 and 0.908, respectively.
Importantly, although the AD classifier had never “seen” brain imaging data from sub-

jects with MCI, we directly tested it on the MCI dataset in ADNI to see if it would have 
the potential to predict the progression of MCI to AD. We reasoned that even though 
people with MCI do not yet have AD, their scans may appear closer to the AD class 
learned by the deep learning model. We found that the AD classifier predicted 65.2% of 
pMCI patients as being in the AD class but only 20.4% of sMCI patients were predicted 
as having AD (Fig.3F). If the percentage of pMCI patients who were predicted as AD 
was considered as the sensitivity and the percentage of sMCI patients who were pre-
dicted as AD was considered as 1-specificity, the AUC of the ROC curve of the AD clas-
sifier reached 0.82. These results suggest that the classifier is practical for screening MCI 
patients to determine the risk of progression to AD. In sum, we believe our AD classifier 
can provide important insights relevant to computer-aided diagnosis and prediction of 
AD, and we have freely provided it on the website http://brainimagenet.org. Importantly, 
classification results by the online classifier should be interpreted with extreme caution, 
as they are probabilistic and cannot replace diagnosis by licensed clinicians.

As a supplementary analysis, we also tested transfer learning of the AD classifier using 
the intact structure of the base model (Figure S3). The performance of the model was 
uniformly somewhat inferior to the optimized AD classifier. The “intact” AD classifier 
achieved an average accuracy of 88.4% with 0.938 AUC in the ADNI test samples (Figure 
S4). Average sensitivity and specificity were 0.814 and 0.917, respectively. When tested 
on independent samples, the AD classifier achieved 91.2% accuracy in AIBL with 0.948 
AUC. Sensitivity and specificity were 0.851 and 0.924, respectively. The AD classifier 
achieved 93.9% accuracy in MIRIAD with 0.995 AUC. Sensitivity and specificity were 
0.905 and 0.996, respectively (Figure S5). The AD classifier achieved 86.1% accuracy in 
OASIS with 0.921 AUC. Sensitivity and specificity were 0.789 and 0.881, respectively. 
When tested on MCI samples, 63.2% of pMCI patients were predicted as having AD and 
22.1% of sMCI patients were predicted as having AD by the AD classifier.

Interpretation of the deep learning classifiers

To better understand the brain imaging-based deep learning classifier, we calculated 
occlusion maps for the classifiers. The occlusion map showed that hypothalamus, supe-
rior vermis, pituitary, thalamus, amygdala, putamen, accumbens, hippocampus, and 
parahippocampal gyrus played critical roles in predicting sex (Fig.4A). The occlusion 
map for the AD classifier highlighted that the hippocampus and parahippocampal gyrus 
- especially in the left hemisphere - played important roles in predicting AD (Fig.4B, 
Figure S6). Another visualization technique, Gradient-weighted Class Activation Map-
ping (Grad-CAM) [38], also showed relatively high weights of these regions in the input 
feature maps (Figure S9).

To investigate the clinical significance of the output of the AD classifier, we calculated 
the Spearman’s correlation coefficient between the scores predicted by the classifier and 
MMSE scores in AD, NC, and MCI samples, although the classifier had not been trained 
with any MMSE information. This analysis confirmed significant negative correlations 
between the predicted scores and MMSE scores for AD (r = −0.37, p < 1 × 10− 55), NC (r 
= −0.11, p < 1 × 10− 11), MCI (r = −0.52, p < 1 × 10− 307), and the overall samples (r = −0.64, 
p < 1 × 10− 307) (Fig.5, Figure S7). As lower MMSE scores indicate more severe cognitive 

http://brainimagenet.org
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impairment in AD and MCI patients, we confirmed that the more severe the disease, 
the higher the classifier’s predicted score. In addition, both the predicted scores and 

Fig. 4  Interpretation of the deep learning classifiers with occlusion maps. Classifier performance dropped con-
siderably when the brain areas rendered in red were masked out of the model input. (A) Occlusion maps for the 
sex classifier. Hypothalamus and pituitary were marked in dashed line and solid line. (B) Occlusion maps for the 
Alzheimer disease classifier
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MMSE scores differed significantly between pMCI and sMCI (predicted scores: t = 13.88, 
p < 0.001, Cohen’s d = 1.08; MMSE scores: t = −9.42, p < 0.01, Cohen’s d = −0.73, Figure 
S8). Importantly, the effect sizes of the classifier’s predicted scores were much larger 
than those for the behavioral measure (MMSE scores).

Fig. 5  Correlations between the output of the Alzheimer’s disease (AD) classifier and severity of illness. The pre-
dicted scores from the AD classifier showed significant negative correlations with the mini-mental state exami-
nation (MMSE) scores of AD, normal control (NC) and mild cognitive impairment (MCI) samples. (A) Correlation 
between the predicted scores from the AD classifier and MMSE scores of AD samples. (B) Correlation between the 
predicted scores from the AD classifier and MMSE scores of MCI samples. (C) Correlation between the predicted 
scores from the AD classifier and MMSE scores of NC samples. (D) Correlation between the predicted scores from 
the AD classifier and the MMSE scores of AD, NC, and MCI samples, combined
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Discussion
Using an unprecedentedly diverse brain imaging sample, we pretrained a sex classifier 
with about 95% accuracy which served as a base-model for transfer learning to promote 
model generalizability. After transfer learning, the model fine-tuned to AD achieved 
90.9% accuracy in stringent leave-sites-out cross-validation and 94.2%/93.6%/91.1% 
accuracy for direct tests on three unseen independent datasets. Predicted scores from 
the AD classifier correlated significantly with illness severity. The AD classifier also 
showed the potential to predict the prognosis of MCI patients.

The high accuracy and generalizability of our deep neural network classifiers demon-
strate that brain imaging has the practical potential to be auxiliary to the diagnostic pro-
cess. One of the most prominent advantages of the present protocol is its outstanding 
generalizability, as validated by leave-sites-out validations and three independent-data-
set validations. Performance of the AD classifier remained consistent despite consider-
able scanner/participant variations across four datasets used in the present study (e.g., 
ADNI, AIBL, MIRIAD and OASIS). Specifically, accuracies always exceeded 90% and 
AUCs always exceeded 0.96 in all four datasets. The present model outperformed mod-
els in recent studies whose accuracies range from 72.3 to 95% [39] or from 77 to 87% 
[14] using the same independent datasets (e.g., AIBL, MIRIAD, and OASIS). In addition, 
the analogous accuracies achieved on 1.5T and 3T MR ADNI imaging data further sup-
ported the robustness of the present classifier.

Of note, the output of the deep neural network model is a continuous variable, so the 
threshold can be adjusted to change sensitivity and specificity for certain purposes. For 
example, when tested on the AIBL dataset, sensitivity and specificity results were 0.881 
and 0.958, respectively, as the default threshold was set at 0.5. However, for screening, 
the false-negative rate should be minimized even at the cost of higher false-positive 
rates. If we lower the threshold (e.g., to 0.2), sensitivity can be improved to 0.921 at a 
cost of decreasing specificity to 0.885. Thus, on our freely available AD prediction web-
site, users can obtain continuous outputs and adjust the threshold to suit their specific 
purposes. Here, the sensitivity-specificity tradeoff of the AD classifier was consistent 
across different testing sites, so that physicians in diverse clinical settings can have con-
sistent expectations for the classification tendencies of the classifier.

Beyond the feasibility of being integrated into the diagnostic process, the present AD 
model also showed potential to predict the progression of MCI patients. First, the pres-
ent model was able to quantify key disease milestones by predicting disease progres-
sion in MCI patients. To wit, people with pMCI were 3 times more likely to be classified 
as AD than sMCI (65.2% vs. 20.4%). Recently, a review on predicting progression from 
MCI noted that about 40% of studies had methodological issues, such as lack of a test 
dataset, data-leakage in feature selection or parameter tuning, and leave-one-out valida-
tion performance bias [40]. The present AD classifier was only trained on AD/NC sam-
ples and was not fine-tuned using MCI data, so data leakage was avoided. The estimated 
true AUC of current published state-of-art classifiers for predicting progression of MCI 
is about 0.75 [15, 40]. The proposed AD classifier here outperformed that benchmark 
(AUC = 0.82). Considering the discouraging clinical trial failures of AD treatments, early 
identification of people with MCI with high potential to progress to AD would help in 
the evaluation of early treatments [41].
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Although deep-learning algorithms have often been referred to as “black boxes” for 
their poor interpretability, our subsequent analyses showed that the current MRI-based 
AD marker was aligned with pathological findings and clinical insights. For example, 
AD-induced brain structural changes have been frequently reported by MRI studies. 
Among all the structural findings, hippocampal atrophy is the most prominent change 
and is used in imaging assisted diagnosis [42, 43]. Neurobiological changes in the hip-
pocampus typically precede progressive neocortical damage and AD symptoms. The 
convergence of our deep learning system and human physicians on alterations in hip-
pocampal structure for classifying AD patients is in line with the crucial role of the 
hippocampus in AD. On the other hand, its maximum absolute value was only about 
3.1%, which means that even if the most important brain area was eliminated from 
input, accuracy only dropped from 90.9% to about 87.8%. Interestingly, brain atrophy 
in AD has been frequently reported to be left lateralized [44, 45]. Compared to the un-
optimized AD classifier, a slight left hemisphere preference for input features may help 
explain the improved performance of the optimized AD classifier.

Rather than indiscriminately imitating the structure of the base model in transfer 
learning, the present AD classifier significantly simplified the model before the fine-tun-
ing procedure. To wit, the performance of the unoptimized AD classifier was far poorer 
than that of the optimized AD classifier in accuracy, sensitivity, specificity, and in inde-
pendent validation performance. Truncating or pruning models before transfer learning 
has been found to facilitate the performance of the transferred models [46, 47]. As the 
sample for training the AD classifier is considerably smaller than that used to train the 
sex classifier, the simplified model structure may have helped to avoid overfitting and 
improve generalizability.

By precisely predicting sex, the present study provides evidence of sex differences in 
human brains. Daphna and colleagues extracted hundreds of VBM features from struc-
tural MRI and concluded that “the so-called male/female brain” does not exist as no 
individual structural feature supports a sexually dimorphic view of human brains [48], 
which was supported by a recent large-scale review [49]. However, human brains may 
embody sexually dimorphic features in a multivariate manner. The high accuracy and 
generalizability of the present brain image-based sex classifier imply a “brain sex” is rec-
ognizable in a 1,981,440-dimension (96×120×86×2) feature space, which needs to be fur-
ther investigated in the future. Among those 1,981,440 features, the hypothalamus and 
pituitary played the most critical roles in predicting sex. The hypothalamus regulates 
testosterone secretion through the hypothalamic-pituitary-gonadal axis and thus plays 
a critical role in brain masculinization [50]. Men have significantly larger hypothalamus 
than women relative to cerebrum size [51]. In addition, cerebellum – especially the ver-
mis – strongly contributed to sex classification, in line with MRI morphology studies of 
sex differences in cerebellum [52, 53]. Taken together, our machine learning evidence 
suggests that male/female brain differences do exist, in the sense that accurate classifica-
tion is possible.

In the deep learning field, the emergence of ImageNet tremendously accelerated the 
evolution of computer vision [54]. ImageNet provided large amounts of well-labeled 
image data for researchers to pre-train their models. Studies have shown that pre-trained 
models can facilitate the performance and robustness of subsequently fine-tuned models 
[19]. The present study confirms that the “pre-train + fine-tuning” paradigm also works 
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for MRI-based auxiliary diagnosis. Unfortunately, no such a well-preprocessed dataset 
exists in the brain imaging domain. As data organization and preprocessing of MRI data 
require tremendous time, manpower and computational load, these constraints impede 
scientists in other fields utilizing brain imaging. Open access to large amounts of pre-
processed brain imaging data is fundamental to facilitating the participation of a broader 
range of researchers. Beyond building and sharing a practical brain imaging-based deep 
learning classifier, we openly shared all sharable preprocessed data to invite research-
ers (especially computer scientists) to join the efforts to create predictive models using 
brain images (http://rfmri.org/BrainImageNetData; preprocessed data of some datas-
ets will not be shared as the raw data owners do not allow sharing of data derivatives). 
We anticipate that this dataset may boost the clinical utility of brain imaging as Ima-
geNet has done in computer vision research. We openly share our models to allow other 
researchers to deploy them (https://github.com/Chaogan-Yan/BrainImageNet). Our 
code is openly shared as well, allowing other researchers to replicate the present results 
and further develop brain imaging-based classifiers based on our existing work. Finally, 
we have also built a demonstration website for classifying sex and AD (http://brainima-
genet.org). Users can upload raw T1-weighted or preprocessed GMD and GMV data to 
make predictions of sex or AD labels in real-time.

Limitations of the current study should be acknowledged. Considering the lower 
reproducibility of functional MRI compared to structural MRI, only structural MRI-
derived images were used in the present deep learning model. Even so, functional mea-
sures of physiology and activation may further improve the performance of sex and 
brain disorder classifiers. In future studies, functional MRI, especially resting-state 
functional MRI, may provide additional information for model training. Furthermore, 
with advances in software such as FreeSurfer[55], fmriprep[56], and DPABISurf, surface-
based algorithms have shown their superiority when compared with traditional volume-
based algorithms [57]. Surface-based algorithms are more time consuming to run in 
terms of computation load, but can provide more precise brain registration and repro-
ducibility. Future studies should take surface-based images as inputs for deep learning 
models. In addition, the present AD classification model was built based on labels pro-
vided by the ADNI database. Using post-mortem neuropathological data, the gold stan-
dard for AD diagnoses, could further advance the clinical value of MRI-based markers.

In summary, we pooled MRI data from more than 217 sites/scanners to constitute one 
of the largest brain MRI samples to date, with the preprocessed imaging data deriva-
tives openly shared with the scientific community whenever allowed. The brain imaging-
based AD classifier derived from transfer learning achieved both high rates of accuracy 
and generalizability, which were validated by strict cross-sites-validation and indepen-
dent datasets validation. The AD classifier was able to predict the progression of MCI 
patients non-invasively. The present study demonstrates the feasibility of the transfer 
learning framework in brain disorder applications. Future work should examine such a 
framework to assess psychiatric disorders, to predict treatment response, and individual 
differences more broadly.
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