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Introduction
The topic of autonomously producing descriptive sentences for images has stimulated 
interest in natural language processing and computer vision research in recent years. 
Image captioning is a key task that necessitates a semantic comprehension of images as 
well as the capacity to generate accurate and precise description sentences.

In the big data era, images are one of the most available data types on the Internet, and 
the need for annotating and labeling them increased. Thus, image captioning systems 
are an example of big data problems as they focus on the volume aspect of big data. For 
example, the MS COCO dataset contains around 123,000 images (25 GB). This adds the 
requirement of efficient use of resources and careful design of experiments.

Early approaches used template methods, trying to fill predefined templates of text by 
features extracted from images [1]. Current systems benefit from the available comput-
ing power and use deep learning techniques.
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One of the most successful methods for image captioning is implementing an Encoder-
Decoder architecture. It encodes images to a high-level representation then decodes 
this representation using a language generation model, like Long Short-Term Memory 
(LSTM) [2], Gated Recurrent Unit (GRU) [3] or one of their variants.

The attention mechanism has demonstrated its effectiveness in sequence-to-sequence 
applications, especially image captioning and machine translation. It increases accuracy 
by forcing the model to concentrate on the important parts of the input when generating 
output sequences [4].

To understand an image, many modern deep learning models use existing pre-trained 
Convolutional Neural Networks (CNNs) to extract matrices of features from the last 
convolutional layers. This helps to grasp many aspects of the objects and their relation-
ships in the picture and represent the image at a higher level [5].

Recently, some works tried to use object features for image captioning. Among the 
models used are the YOLOv3 [6], YOLOv4 [7] and YOLO9000 [8], which are known 
for their speed, accuracy and effectiveness for real-time applications. Object features 
are usually an array of object tags, where each object tag contains the bounding box 
information, object class and confidence rate. This work investigates the hypothesis that 
exploiting such features could increase accuracy in image captioning and that using all 
object features helps to accurately mimic the human visual understanding of scenes. 
This paper aims to present a model that makes use of this type of features through a sim-
ple architecture and evaluate the results.

Section two of the paper will tackle the related works in the domain. Section three 
presents our methodology, which includes the proposed model and the pre-processing 
that was performed on the data. In section four, the experiments design and results are 
elaborated, and a comparison to previous works is shown. Section five concludes the 
paper and presents plans for future works.

Related works
In [9], Yin and Ordonez suggested a sequence-to-sequence model in which an LSTM 
network encodes a series of objects and their positions as an input sequence and an 
LSTM language model decodes this representation to generate captions. Their model 
uses the YOLO [8] object detection model to extract object layouts from images (object 
categories and locations) and increase the accuracy of captions. They also present a vari-
ation that uses the VGG [10] image classification model pre-trained on ImageNet [11] to 
extract visual features. The encoder at each time step takes as input a pair of object cat-
egory (encoded as a one-hot vector), and the location configuration vector that contains 
the left-most position, top-most position, width and height of the bounding box corre-
sponding to the object, all normalized. The model is trained with back-propagation, but 
the error is not propagated to the object detection model. They showed that their model 
increased in accuracy when combined with CNN and YOLO modules. They did not use 
all available data from the object features produced by YOLO, such as object dimensions 
and confidence.

In [12] Vo-Ho et al. developed an image captioning system that extracts object features 
from YOLO9000 [8] and Faster R-CNN [13]. Each type of features is processed through 
an attention module to produce local features that represent the part that the model is 



Page 3 of 16Al‑Malla et al. Journal of Big Data            (2022) 9:20 	

currently focusing on. The two local feature sets are combined and fed into an LSTM 
model to generate the probabilities of the words in the vocabulary set at each time step. 
A beam search strategy is used to process the results, in order to choose the best candi-
date caption. They used the ResNet [14] CNN to extract the features from images. From 
a given image as input, they first extracted a list of tags using YOLO9000, then break 
each tag into words and eliminate redundant ones so the list will contain only unique 
words. Each word i, including the “null” token, is represented by a one-hot vector of the 
size of the vocabulary set. After that, they embed each word into a d-dimension space 
using the word embedding method. They used LSTM units for language generation. 
They only keep the top 20 tags with the highest probabilities.

In [15], Lanzendörfer et al. proposed a model for Visual Question Answering (VQA) 
based on iBOWIMG. The model extracts features from Inception V3 [16] as well as 
object features extracted from the YOLO [8] object detection model, and uses the atten-
tion mechanism. The outputs of YOLO are encoded as vectors of size 80 × 1 in order to 
give more informative features to the iBOWIMG model, with each column containing 
the number of detected objects of the given type. Three of these object vectors are pro-
duced for detection confidence thresholds of 25%, 50% and 75% and then concatenated 
with the image features and question features.

In [17], Herdade et al. proposed a spatial attention-based encoder-decoder model that 
explicitly integrates information about the spatial relationship between detected objects. 
They employed an object detector to extract appearance and geometry features from all 
detected objects in the image, then the Object Relation Transformer to generate caption 
text. They used Faster R-CNN [13] with ResNet-101 [14] as the base CNN for object 
detection and feature extraction. A Region Proposal Network (RPN) generates bound-
ing boxes for object proposals using intermediate feature maps from the ResNet-101 as 
inputs. Overlapping bounding boxes with an intersection-over-union (IoU) exceeding 
a threshold of 0.7 are discarded, using non-maximum suppression. All bounding boxes 
where the class prediction probability is below a threshold of 0.2 are also discarded. 
Then, for each object bounding box, they perform mean-pooling over the spatial dimen-
sion to build a 2048-dimensional feature vector. These feature vectors are then input to 
the Transformer model.

In [18] Wang et al. studied end-to-end image captioning with highly interpretable rep-
resentations obtained from explicit object detection. They performed a detailed review 
of the effectiveness of a number of object detection-based cues for image captioning. 
They discovered that frequency counts, object size, and location are all useful and com-
plement the accuracy of the captions produced. They also discovered that certain object 
categories had a greater effect than others on image captioning.

The work of Sharif et  al. [19] suggested to leverage the linguistic relations between 
objects in an image to boost image captioning quality. They leverage “word embeddings” 
to capture word semantics and capsulize the semantic relatedness of objects. The pro-
posed model uses linguistically-aware relationship embeddings to capture the spatial 
and semantic proximity of object pairs. It also uses NASNet to capture the image’s global 
semantics. As a result, true semantic relations that are not apparent in an image’s visual 
content can be learned, allowing the decoder to focus on the most important object rela-
tions and visual features, resulting in more semantically-meaningful captions.
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Variš et al. [20] investigated the possibility of textual and visual modalities sharing a 
common embedding space. They presented an approach that takes advantage of object 
detection labels’ textual nature as well as the possible expressiveness of visual object rep-
resentations built from them. They investigated whether grounding the representations 
in the captioning system’s word embedding space, rather than grounding words or sen-
tences in their associated images, could improve the captioning system’s efficiency. Their 
proposed grounding approaches ensure that the predicted object features and the term 
embedding space are mutually grounded.

Alkalouti and Masre [21] proposed a model to automate video captioning based on 
an Encoder-Decoder architecture. They first select the most important frames from 
the video and remove redundant ones. They used the YOLO model to detect objects in 
video frames and an LSTM model for language generation.

In [22], Ke et al. investigated the feature extraction performance of 16 popular CNNs 
on a dataset of chest X-ray images. They did not find a relationship between the per-
formance on ImageNet and the performance on the medical image dataset. However, 
they found out that the choice of CNN architecture influences performance more than 
the concrete model within the model family for medical tasks. They also noticed that 
ImageNet pre-training gives a boost to performance in all architectures, with a lower 
boost for bigger architectures. They also observed that ImageNet pre-training yields a 
statistically significant boost in performance across architectures, with a higher boost 
for smaller architectures.

In [23], Xu et al. proposed a novel Anchor-Captioner method. They started by iden-
tifying the significant tokens that should be given more attention and using them as 
anchors. The relevant texts for each chosen anchor were then grouped to create the 
associated anchor-centered graph (ACG). Finally, they implemented multi-view caption 
generation based on various ACGs in order to improve the content diversity of gener-
ated captions.

In [24], Chen et al. suggested Verb-specific Semantic Roles (VSR) as a new Control-
lable Image Captioning (CIC) control signal. VSR is made up of a verb and some seman-
tic roles that reflect a specific activity and the roles of the entities involved in it. They 
trained a Grounded Semantic Role Labeling (GSRL) model to locate and ground all enti-
ties associated with each role given a VSR. Then, to learn human-like descriptive seman-
tic structures, they suggested a Semantic Structure Planner (SSP). Lastly, they used a 
role-shift captioning model to generate the captions.

In [25], Cornia et al. presented a unique framework for image captioning, which allows 
both grounding and controllability to generate diverse descriptions. They produced the 
relevant caption using a recurrent architecture that explicitly predicts textual chunks 
based on regions and adheres to the control’s limitations, given a control signal in the 
form of a series or a collection of image regions. Experiments are carried out using 
Flickr30k Entities and COCO Entities, a more advanced version of COCO that includes 
semi-automated grounding annotations. Their findings showed that the method pro-
duces state-of-the-art outcomes in terms of caption quality and diversity for controllable 
image captioning.

Unlike previous works, our approach takes advantage of all object features available. 
The experiments section shows the effect of this scheme.
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Research methodology
The experimental method involves extracting object features from the YOLO model 
and introducing them along with CNN convolutional features to a simple deep learning 
model that uses the widespread Encoder-Decoder architecture with the attention mech-
anism. “Results and discussion” section compares the difference in results before and 
after adding the object features. Although previous research encoded object features as 
a vector, we add object features in a simple concatenation manner and achieved a good 
improvement. We also test the impact of sorting the object tags extracted from YOLO 
according to a metric that we propose here.

Datasets used

We test our method on two datasets used usually for image captioning: MS COCO 
and Flickr30k. Table  1 contains a brief comparison between them. They are both col-
lected from the Flickr photo sharing website and consist of real-life images, annotated by 
humans (five annotations per image).

It is worth noting that MS COCO does not publish the labels of the testing set.

Evaluation metrics

We use a set of evaluation metrics that are widely used in the image captioning field. 
BLEU [26] metrics are commonly used in automated text evaluation and quantify the 
correspondence between a machine translation output and a human translation; in the 
case of image captioning, the machine translation output corresponds to the automati-
cally produced caption, and the human translation corresponds to the human descrip-
tion of the image. METEOR [27] is computed using the harmonic mean of unigram 
precision and recall, with the recall having a higher weight than the precision, as follows:

ROUGE-L [28] uses a Longest Common Subsequence (LCS) score to assess the ade-
quacy and fluency of the produced text, while CIDEr [29] focuses on grammaticality and 
saliency. SPICE [30] evaluates the semantics of the produced text by creating a “scene 
graph” for both the original and generated captions, and then only matches the terms if 
their lemmatized WordNet representations are identical. BLEU, METEOR, and ROUGE 
have low correlations with human quality tests, while SPICE and CIDEr have a better 
correlation but are more difficult to optimize.

Model

Our model uses an attention-based Encoder-Decoder architecture. It has two meth-
ods of feature extraction for image captioning: an image classification CNN (Xception 
[31]), and an object detection model (YOLOv4 [7]). The outputs of these models are 

METEOR = [10 ∗ Precision ∗ Recall/(Recall + 9 ∗ Precision)]

Table 1  A comparison of the used datasets

Dataset Training split Validation split Testing split Total images

Flickr30k 28k 1k 1k 30k

MS COCO 83k 41k 41k 144k
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combined by concatenation to produce a feature matrix that carries more information 
to the language decoder to predict more accurate descriptions. Unlike others’ works 
that embedded object features before combining them with CNN features, we use raw 
object layout information directly. Language generation is done using an attention 
module (Bahdanau attention [32]), a GRU [3] and two fully connected layers. Our 
model is simple, fast to train and evaluate, and generates captions using attention.

We believe that if humans can benefit from object features (such as the class of 
object, its position, and size) to better understand an image, a computer model can 
benefit from this information as well. A scene containing a group of people standing 
close together, for example, may suggest a meeting, whereas sparse crowds can indi-
cate a public location. Figure 1 depicts our model.

Image encoding

A. Pre‑trained image classification CNN  In this work, we use the Xception CNN pre-
trained on ImageNet [11] to extract spatial features.

Xception [31] (Extreme version of Inception) is inspired by Inception V3 [16], but 
instead of Inception modules, it has 71 layers with a modified depth-wise separable 
convolution. It outperforms Inception V3 thanks to better model parameter usage.

We extract features from the last layer before the fully connected layer, following 
recent works in image captioning. This allows the overall model to gain insight about 
the objects in the image and the relationships between them instead of just focusing 
on the image class.

In a previous work, different feature extraction CNN models have been compared 
for image captioning applications. The results showed that Xception was among the 
most robust in extracting features and for this it was chosen as the feature extraction 

Fig. 1  A block diagram of the proposed model
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model in this study. The output of this stage is of shape (10 × 10 × 2048), which was 
squashed to (100 × 2048) for ease of matrix handling.

B. Object detection model  Our method uses the YOLOv4 [7] model because of its 
speed and good accuracy, which make it suitable for big data and real-time applica-
tions. The extracted features are a list of object features, with every object feature 
containing the X coordinate, Y coordinate, width, height, confidence rate (from 0 to 1 
inclusive), class number and a novel optional “importance factor”.

Following human intuition, foreground objects are normally larger and more 
important when describing an image, and background objects are normally smaller 
and less important. Furthermore, it makes sense to use more accurate pieces of infor-
mation than to use less accurate ones. Hence, our importance factor tries to balance 
the importance of the foreground large objects and objects with high confidence 
rates. The formula to calculate it for a single object is as follows:

The importance factor gives a higher score to foreground large objects over back-
ground small ones, and higher score to objects with a high confidence over objects 
with less confidence.

After extracting object features, the importance factor is calculated for each object 
and concatenated to its tag. Then, all objects in the list are sorted according to this 
importance factor using the quick sort algorithm. Unlike previous works, our method 
makes use of all of the image’s object information. Because of the size restriction in 
the output of the CNN, we use up to 292 objects, each with seven attributes (includ-
ing the importance factor), which is usually enough to represent important objects in 
an image.

The list of features is flattened into a 1D array, of length less than 2048. It is then pad-
ded with zeros to length 2048 to be compatible with the output of the CNN module. The 
output of this stage is an array (1 × 2048).

As for calculating the confidence score, YOLO divides an image into a grid. B bounding 
boxes and confidence scores for these boxes are predicted in each of these grid cells. The 
confidence score indicates how confident the model is that the box includes an object, as 
well as how accurate the model believes the box that predicted is. The object detection 
algorithm is evaluated using Intersection over Union (IoU) between the predicted box 
and the ground truth. It analyzes how similar the predicted box is to the ground truth 
by calculating the overlap between the ground truth and the predicted bounding box. A 
cell’s confidence score should be zero if no object exists in there. The formula for calcu-
lating the confidence score is:

C. Concatenation and  embedding  In order to take advantage of the image classifica-
tion features and the object detection features, we add this concatenation step, where we 
attach the output of the YOLOv4 subsystem as the last row in the output of stage 1. The 
output of this stage is of shape (101 × 2048).

Importance Factor = Confidence Rate×Object Width×Object Height

C = Pr
(

object
)

∗ IoU
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The embedding is done using one fully connected layer of length 256. This stage 
ensures a consistent size of the features and maps the feature space to a smaller space 
appropriate for the language decoder.

D. Attention  Our method uses the Bahdanau soft attention system [32]. This determin-
istic attention mechanism makes the model as a whole smooth and differentiable.

The term “attention” refers to a strategy that simulates cognitive attention. The effect 
highlights the most important parts of the input data while fading the rest. The concept 
is that the network should dedicate greater computer resources to that small but critical 
portion of the data. Which component of the data is more relevant than others is deter-
mined by the context and is learned by gradient descent using training data. Natural lan-
guage processing and computer vision use attention in a number of machine learning 
tasks.

The attention mechanism was created to increase the performance of the encoder-
decoder architecture for machine translation. And as image captioning can be viewed 
as a specific case of machine translation, attention proved useful when analyzing images 
as well. The attention mechanism was intended to allow the decoder to use the most rel-
evant parts of the input sequence in a flexible manner by combining all of the encoded 
input vectors into a weighted combination, with the most relevant vectors receiving the 
highest weights.

Attention follows the human intuition of focusing on different parts of an image when 
describing it. Using object detection features also follows the intuition that knowing 
about object classes and positions help to grasp more about the image than mere con-
volutional features. When attention is employed to both feature types, the system will 
focus on different features of both object classes and positions in the same image. Fig-
ure 2 depicts using attention for image captioning.

Language decoder

For decoding, a GRU [3] is used to exploit its speed and low memory usage. It produces 
a caption by generating one word at every time step, conditioned on a context vector, the 
previous hidden state, and the previously generated words. The model is trained using 
the backpropagation algorithm deterministically.

Fig. 2  Example of attending over an image to generate a caption. Image source: https://​www.​tenso​rflow.​
org/​tutor​ials/​text/​image_​capti​oning

https://www.tensorflow.org/tutorials/text/image_captioning
https://www.tensorflow.org/tutorials/text/image_captioning
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The GRU is followed by two fully connected layers. The first one is of length 512, and 
the second one is of the size of the vocabulary to produce output text.

The training process for the decoder is as follows:

1.	 The features are extracted then passed through the encoder.
2.	 The decoder receives the encoder output, hidden state (initialized to 0), and decoder 

input (which is the start token).
3.	 The decoder returns the predictions as well as the hidden state of the decoder.
4.	 The hidden state of the decoder is then passed back into the model, and the loss is 

calculated using the predictions.
5.	 To determine the next decoder input, “teacher forcing” is employed, which is a tech-

nique that passes the target word as the next input to the decoder.

Pre‑processing

This section presents the pre-processing algorithm that was performed on the data:

1.	 Sort the dataset at random into image-caption pairs. This helps the training process 
to converge fast and prevents any bias during the training. Therefore, preventing the 
model from learning the order of training.

2.	 Read and decode the images.
3.	 Resize the images to the CNN requirements: whatever the size of the image is, it is 

resized to 299 × 299 as required by the Xception CNN model.
4.	 Tokenization of the text. Tokenization breaks the raw text into words, that are sepa-

rated by punctuations, special characters, or white spaces. The separators are dis-
carded.

5.	 Count the tokens, sort them by frequency and choose the top 15,000 most common 
words as the system’s vocabulary. This avoids over-fitting by eliminating terms that 
are not likely to be useful.

6.	 Generate word-to-index and index-to-word structures. They are then used to trans-
late token sequences into word identifier sequences.

7.	 Padding. As sentences can be different in length, we need to have the inputs with the 
same size, this is where the padding is necessary. Here, identifier sequences are pad-
ded at the end with null tokens to ensure that they are all the of same length.

Results and discussion
Our code is written in the Python programming language using TensorFlow1. library 
The CNN implementation and trained model were imported from Keras2. library, and a 
YOLOv4 model pre-trained on MS COCO was imported from the yolov4 library3. This 
work uses the MS COCO evaluation tool to calculate scores4.

1  Available at https://​www.​tenso​rflow.​org.
2  Available at https://​keras.​io/​api/​appli​catio​ns.
3  Available at https://​pypi.​org/​proje​ct/​yolov4.
4  Available at https://​github.​com/​tylin/​coco-​capti​on.

https://www.tensorflow.org
https://keras.io/api/applications
https://pypi.org/project/yolov4
https://github.com/tylin/coco-caption
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Tests are conducted on two widely used datasets for image caption generation: MS 
COCO and Flickr30k. Every image has five reference captions in these two datasets, 
which contain 123,000 and 31,000 images, respectively. For MS COCO, 5000 images are 
reserved for validation and 5000 images are reserved for checking according to Karpa-
thy’s split [33]. In the case of Flicker30k dataset, 29,000 images are used for preparation, 
1000 for validation, and 1000 for testing. The model was trained for 20 epochs and used 
Sparse Categorical Cross Entropy as the loss function. For the optimizer, Adam opti-
mizer was employed.

Table 2 presents the results of the proposed model on MS COCO Karpathy split and 
compares them to the results of the baseline model with features only from Xception. 
It can be noticed how well the evaluation scores increase after adding object features 
to the model, especially the CIDEr score, which increased by 15.04%. This reflects 
good improvement in correlation with human judgment when using full object fea-
tures, and boosted grammatical integrity and saliency. It appears that the importance 
factor increases the BLEU metrics and decreases METEOR slightly, whereas the other 
metric values stay the same. Unlike the findings of Herdade et al. [17], our artificial 
positional encoding scheme did not decrease the CIDEr score. They tested multiple 
artificial positional encoding schemes and compared them to their geometric atten-
tion mechanism.

To show the effectiveness of our method, we compare our increase in results (with 
the importance factor) to the increase in results of Yin and Ordonez [9] on MS 
COCO Karpathy split in Table  3. They also measured the effects of incorporating 
object features on image captioning results. Their object feature extraction method 
extracts object layouts from the YOLO9000 model, encodes them through an LSTM 

Table 2  Results of adding object features to the baseline model on MS COCO Karpathy split

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L SPICE

Baseline model 0.463 0.273 0.156 0.087 0.157 0.339 0.345 0.102

Ours (with YOLO bounding 
boxes, without the importance 
factor)

0.486 0.293 0.173 0.099 0.164 0.390 0.358 0.108

Ours (with YOLO bounding boxes 
and the importance factor)

0.492 0.296 0.174 0.101 0.163 0.390 0.358 0.108

Increase due to the importance 
factor (%)

1.23 1.02 0.57 2.02 − 0.99 0 0 0

Increase over the baseline model 
(%)

6.26 8.42 11.53 16.09 3.82 15.04 3.76 5.88

Table 3  Comparison with the results of Yin and Ordonez [9] on MS COCO Karpathy testing split

Values in boldface represent the higher increase in the column

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L SPICE

Yin and Ordonez [9] baseline 
model

NA NA NA 0.21 0.215 0.759 0.464 NA

Yin and Ordonez [9] results with 
object features

NA NA NA 0.253 0.238 0.922 0.507 NA

Yin and Ordonez [9] increase (%) NA NA NA 20.47 10.69 21.47 9.26 NA

Our increase (%) 6.26 8.42 11.53 16.09 3.82 15.04 3.76 5.88
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unit, extracts CNN features from the VGG16 CNN, encodes CNN features through 
another LSTM unit, and sums up the resulting two encoded vectors. We, on the 
other hand, use raw object features and concatenate them to the CNN features before 
embedding. We performed the experiments on MS COCO Karpathy [33] testing 
split (5000 testing images). The highest score difference in each column is written in 
boldface. Their model gives equal importance to CNN features and object features by 
passing each type of features to a separate encoding LSTM and then adding them up. 
Their baseline model has higher accuracy than ours, which may justify the difference 
between our scores and theirs. They did not report the BLEU-1, BLEU-2, BLEU-3 or 
SPICE score.

We notice in Table 3 that our results are somewhat comparable to those of Yin and 
Ordonez [9]. We report all eight standard evaluation scores. The introduction of this 
type of feature extraction improves all evaluation scores over our baseline model. 
The increase in the SPICE score (5.88%) reflects increased semantic correlation 
when using object features, an expected consequence of feeding object tags into the 
model. SPICE is one of those metrics that are harder to optimize. The score difference 
between our model and theirs may be related to the feature combination and encod-
ing method. They encode each feature type in a vector, and then add the two vectors, 
while our model concatenates the two feature sets directly.

We also compare our work with the work of Sharif et  al. [19], who tried to ben-
efit from linguistic relations between objects in an image, and we present a compari-
son between our model and theirs on the Flickr30k dataset [34] in Table 4. We can 
notice in Table 4 that our method also yields improvement on Flickr30k, with the big-
ger improvement being in the METEOR score. Sharif et al. benefited from linguistic 
information in addition to object detection features.

Figure 3 displays a comparison between the baseline model and the model enhanced 
with object features, on MS COCO Karpathy split [33] validation testing sets. We see 
a clear increase in the results on all evaluation metrics on both sets, which indicates 
low generalization error and proves our hypothesis that enhancing the vision model 
with object detection features improves accuracy.

In order to qualitatively compare the textual outputs of the approach, we present in 
Fig.  4 a qualitative comparison between the results with object features and without 
them. We notice that the difference is remarkable, and the addition of the object features 
makes the sentences more salient grammatically, and with less object mistakes. In (a) for 
example, a skier was identified instead of just the skiing boots. In (b), the model before 

Table 4  A comparison with the results of Sharif et al. [19] on Flickr30k testing split

Values in boldface represent the higher increase in the column

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L SPICE

Sharif et al.’s baseline model 0.4368 NA NA NA 0.1297 0.2517 0.2997 0.0700

Sharif et al.’s suggested model 0.4462 NA NA NA 0.1350 0.2835 0.3116 0.0741

Our baseline model 0.3990 0.2200 0.1170 0.0620 0.1230 0.1480 0.2930 0.0740

Our model (with the importance 
factor)

0.3980 0.2210 0.1160 0.0610 0.1290 0.1500 0.2980 0.0740

Sharif et al.’s increase (%) 2.15 NA NA NA 4.08 12.63 3.97 5.85
Our increase (%) − 0.25 0.45 − 0.86 − 1.63 4.87 1.35 1.7 0
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incorporating object features had mixed up people and snow boards. In (c), the two cows 
were correctly identified after adding object features. In (d), The model without object 
features falsely identified a man in the picture. In (e), the model could not identify the 
third bear without object features. In (f ), object features helped to identify a group of 
people instead of only two women.

Conclusions
In this paper, we presented an attention-based Encoder-Decoder image captioning 
model that uses two methods of feature extraction, an image classification CNN (Xcep-
tion) and an object detection module (YOLOv4), and proved the effectiveness of this 
scheme. We introduced the importance factor, which prioritizes foreground large 
objects over background small ones, and favors objects with high confidence over those 
with low confidence and demonstrated its effect on increasing scores. We showed 
how our method improved the scores and compared it to previous works in the score 
increase, especially the CIDEr metric which increased by 15.04%, reflecting improved 
grammatical saliency.

Unlike previous works, our work suggested to benefit from all object detection fea-
tures extracted from YOLO and showed the effect of sorting the extracted object tags. 
This can be further improved by better methods for combining object detection features 

Fig. 3  Comparison between our baseline model (without object features) and our proposed model. a 
Results on MS COCO testing set. b Results on MS COCO development set
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Fig. 4  Qualitative examples from MS COCO comparing the generated captions before and after using our 
object features method, trained on MS COCO (with the importance factor). a Baseline model: this is up in 
snow pants jumping on a big snowy mountain at night. With object features: a skier performing a jump 
against some snow. b Baseline model: two people on skis sitting on a snowy surface. With object features: 
a person standing next to snowboards attached. c Baseline model: a cow is standing in a open field as it 
grazes. With object features: cows eat alone grazing on grasses in a hill. d Baseline model: man walking next 
to an old fashioned planes. With object features: a small black and white picture of a prop plane sitting on 
the runway. e Baseline model: a brown bears perch in front of their mom and another animal. With object 
features: a brown bear is standing behind a group of brown bears. f Baseline model: two women make 
homemade my diners can be judged on a table. With object features: a group of people sitting at a blue table 
of food
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with convolutional features. Future work can also benefit from rich object semantic 
information from caption texts instead of just object layouts, which can increase image 
captioning accuracy. Furthermore, more sophisticated methods can be used to encode 
object features before inputting them into the decoder, and more complex language 
models, such as Meshed-Memory Transformers [35] can be employed.
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