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Introduction
The IoT is a network of physical objects with limited computing capability [1]. In 
recent years, there has been rapid growth in the use of these smart devices, as well as 
an increasing security risk from malicious network traffic. Several datasets have been 
created for the purpose of training machine learning classifiers to identify attack traffic. 
One of the more recent datasets for network intrusion detection is Bot-IoT [2].

The Bot-IoT dataset contains instances of various attack categories: denial-of-service 
(DoS), distributed denial-of-service (DDoS), reconnaissance, and information theft. The 
processed full dataset was generated by the Argus network security tool [3] and is avail-
able from an online repository of several comma-separated values (CSV) files. Bot-IoT 
has 29 features and 73,370,443 instances. Table 1 shows the categories and subcategories 
of IoT network traffic for the full dataset.
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In this work, we identify normal and attack type classes of Bot-IoT. The attack types 
we identify are from the information theft category and from its data exfiltration and 
keylogging subcategories. Hence, we evaluate three datasets, one composed of normal 
and information theft attack instances, another composed of normal and data exfiltra-
tion attack instances, and a third composed of normal and keylogging attack instances. 
The keylogging [4] subcategory refers to the interception of information sent from input 
devices, while the data exfiltration [5] subcategory broadly refers to the unauthorized 
transfer of data from a computer.

Each of the three datasets has 9543 instances labeled as Normal traffic. In addition, 
the Information Theft dataset has 1587 instances labeled as the information theft attack 
type, the data exfiltration dataset has 118 instances labeled as the data exfiltration attack 
type, and the keylogging dataset has 1469 instances labeled as the keylogging attack type. 
Based on the minority-to-majority class ratios (i.e., ratios of attack-to-normal instances), 
all three datasets have a class imbalance. To address the class imbalance, we use the ran-
dom undersampling (RUS) [6] technique.

In all experiments, we employ the following eight learners: CatBoost [7], Light GBM 
[8], XGBoost [9], RF [10], DT [11], LR [12], NB [13], and a MLP [14]. To gauge the per-
formance of these classifiers, the AUC and AUPRC metrics are used. Also, during train-
ing for some experiments, we apply hyperparameter tuning.

The crux of this study involves the comparison of results from experimentation with 
and without ensemble feature selection for the information theft, data exfiltration, and 
keylogging attack types. Feature selection reduces computational burden (i.e., speeds up 
training time) and provides data clarity (i.e., facilitates visual detection of patterns). In 
some cases, feature selection can improve classification performance and mitigate the 
effects of class imbalance [6]. Ensemble FSTs incorporate multiple feature ranking tech-
niques to produce a combined method that is more efficient than its individual compo-
nents [15]. Our ensemble FSTs are derived from both supervised and filter-based feature 
ranking techniques [16].

As far as we are aware, this is the first paper that exclusively evaluates the effect of 
ensemble feature selection on the Bot-IoT information theft category and subcategories. 
Furthermore, our use of eight different classifiers boosts the validity of our results.

Table 1  Bot-IoT: full set

Category Subcategory No. of instances

Normal Normal 9543

DoS TCP 12,315,997

UDP 20,659,491

HTTP 29,706

DDoS TCP 19,547,603

UDP 18,965,106

HTTP 19,771

Reconnaissance OS fingerprinting 358,275

Service scanning 1,463,364

Information theft Keylogging 1469

Data exfiltration 118
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The remainder of this paper is organized as follows: "Bot-Iot developmental environ-
ment" section describes the developmental environment and tools used to create Bot-
IoT; "Related works" section discusses related Bot-IoT literature; "Methodology" section 
discusses preprocessing and classification tasks; "Results and discussion" section pre-
sents and analyzes our results; and "Conclusion" section concludes with the main points 
of this paper. In addition, Appendix A provides a list of features and their definitions, 
Appendix B contains tables of selected features, and Appendix C contains tables of 
tuned parameter values.

Bot‑Iot developmental environment
Created in 2018 by the University of New South Wales (UNSW), Bot-IoT was designed 
to be a realistic representation of botnet attacks on IoT devices. The dataset was devel-
oped in a virtualized environment, with ten virtual machines hosted by an ESXi [17] 
hypervisor that accessed the Internet through a packet-filtering firewall. Fig 1 shows a 
schematic of the network within which Bot-IoT was created.

Fig. 1  Network diagram
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The virtual machines were divided into three groups: IoT, Bots, and Supporting. Nor-
mal network traffic was generated by the Ostinato [18] tool, and IoT traffic was gener-
ated by the Node-Red [19] tool, along with several scripts run on a group of the virtual 
machines. Node-Red was used to simulate five IoT scenarios: a weather station, a smart 
refrigerator, motion activated lights, a smart garage door, and a smart thermostat. Attack 
traffic was generated using a variety of tools from the Kali Linux [20] suite, an open-
source Linux distribution popular with penetration testers and others in the information 
security industry.

The IoT group of virtual machines comprised four machines running different operat-
ing systems. An Ubuntu server [21], which hosted some basic network services as well 
as the Message Queuing Telemetry Transport (MQTT) [22] protocol broker, was one of 
the most essential IoT virtual machines. In IoT networks, the MQTT protocol is used 
to share data between IoT devices and other clients using a publish/subscribe approach. 
It is utilized in a range of industries and provides a lightweight communications solu-
tion that uses less bandwidth. Mosquito MQTT [23] is the MQTT broker used in this 
testbed. Fig 2 provides an illustrative example of the MQTT broker involved in a data 
sharing task.

The other three IoT virtual machines ran Ubuntu Mobile [24], Windows 7, and Metas-
ploitable [25], among other operating systems. Ubuntu Mobile is a Linux-based mobile 
phone operating system that is based on the Ubuntu desktop operating system. Win-
dows 7 is a deprecated version of the Microsoft Windows operating system. Rapid7 cre-
ated and published Metasploitable, a Linux-based virtual machine with many built-in 
vulnerabilities. The flaws were purposely built into Metasploitable to allow it to be uti-
lized in penetration testing laboratories. These three virtual machines used Node-Red to 
act as IoT clients and devices, communicating with the Ubuntu server using the MQTT 
protocol. These four machines combined served as the attack surface for the Bots group 
of virtual machines.

The Bots group was made up of four virtual machines intended to simulate a botnet, 
which is a collection of machines controlled and used by a criminal actor. The Kali Linux 
operating system was installed on each of the four machines. They were equipped with a 
large toolkit that was used to conduct various assaults against the IoT group. The Theft 
attacks were carried out with the help of exploits and tools from the Metasploit penetra-
tion testing framework [26].

The Supporting group assisted in the generation and collection of data within the test-
bed. These machines consisted of an Ubuntu tap and a pfSense [27] firewall. The Ubuntu 
tap virtual machine sat on the same virtual network as the IoT and Bots groups. It uti-
lized a conventional Ubuntu operating system, but was configured with a promiscuous 

Fig. 2  MQTT example
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network interface controller (NIC) to operate in promiscuous mode. The automatic fil-
tering of network traffic not intended for the host is disabled when the NIC is set to 
promiscuous mode. This allows packet analyzers like tcpdump [28] to record all traffic 
passing through the NIC. All communication to and from any of the IoT or Bots group 
of virtual machines was captured by the Ubuntu tap virtual machine. The pfSense fire-
wall, which is the other virtual machine in the Supporting group, had both a local area 
network (LAN) interface and a wide area network (WAN) interface. The pfSense device 
served as the primary gateway out of the virtual network.

Related works
In this section, we highlight works associated with detecting malicious traffic in Bot-IoT. 
To the best of our knowledge, none of the related works have exclusively focused on 
detecting instances of information theft with ensemble FSTs.

Koroniotis et al. [29] proposed a network forensics model that authenticates network 
data flows and uses a deep neural network (DNN) [30] based on particle swarm optimi-
zation (PSO) [31] to identify traffic anomalies. The authors used the 5% Bot-IoT dataset, 
which they split in an 80:20 ratio for training and testing. The logistic cost function [32] 
was utilized, as it has been shown to be efficient at separating normal from attack traffic. 
The cost function is defined by the following equation [29]:

To treat class imbalance, weights for normal traffic w0 and attack traffic w1 were incorpo-
rated into this cost function. This modified equation is defined as follows: equation [29]:

The best scores obtained by the model for accuracy, precision, recall, and F-measure 
were 99.90%, 100%, 99.90%, and 99.90%, respectively. Model performance was evaluated 
against the reported performance of models from other studies. The authors state that 
their model outperformed these other models (NB, MLP, association rule mining (ARM) 
[33], DT, support vector machine (SVM) [34], recurrent neural network (RNN) [35], and 
long short-term memory (LSTM) [36]). Evaluating model performance from one study 
against reported model performance from a non-identical study is problematic, since 
there may be too many factors of variation in the external study to account for.

Using a convolutional neural network (CNN) [37] and CUDA deep neural network 
LSTM (cuDNNLSTM)1 hybrid, Liaqat et al. [38] set out to prove that their proposed 
model could outperform a Deep Neural Network-Gated Recurrent Unit (DNN-GRU) 
[39] hybrid, as well as a long short-term memory-gated re-current unit (LSTM-GRU) 
[39] hybrid. The dataset sample contained 477 normal instances and 668,522 attack 
instances from Bot-IoT. During data preprocessing, the data was normalized, feature 
extraction was performed, and to address class imbalance, the number of normal 

(1)−
1

m

m∑

i=1

(yilog(ŷi)+ (1− yi)log(1− ŷi))

(2)−
1

m

m∑

i=1

(w1yilog(ŷi)+ w0(1− yi)log(1− ŷi))

1  https://​devel​oper.​nvidia.​com/​cudnn.

https://developer.nvidia.com/cudnn
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instances was up-sampled to 2,400. The hybrid CNN-cuDNNLSTM model was shown 
to be the best performer with top scores of 99.99%, 99.83%, 99.33%, and 99.33% for 
accuracy, precision, recall and F-measure, respectively. We point out that the use 
of up-sampling techniques can sometimes result in overfitted models [40]. For this 
study, the authors have not provided adequate information on their up-sampling 
technique and the model-building process in order for us to rule out the occurrence 
of overfitting. Therefore, we believe that their proposed model should also be evalu-
ated on out-of-sample data to reaffirm their results.

Mulyanto et  al. [41] proposed a cost-sensitive neural network based on focal loss 
[42]. The cross-entropy loss function [43], which is widely used in neural network 
classification models, is integrated with focal loss to reduce the influence of the 
majority class(es) for binary and multi-class classification. A CNN and a DNN served 
as the neural network classifiers for this approach. The networks were trained on the 
NSL-KDD [44], UNSW-NB15, and Bot-IoT datasets. The Bot-IoT dataset sample 
contained about 3,000,000 instances. For binary classification, the cost-sensitive neu-
ral networks based on focal loss outperformed neural networks where the synthetic 
minority oversampling technique (SMOTE) [45] technique was applied and also 
outperformed plain neural networks. For Bot-IoT, top scores were obtained for the 
DNN cost-sensitive, focal-loss model: 99.83% (accuracy), 99.93% (precision), 96.89% 
(recall), and 98.30 (F-measure). We note that there is an inadequate amount of infor-
mation provided on the preprocessing stage for Bot-IoT.

Ge et  al. [46] trained a feedforward neural network [47] and an SVM on Bot-IoT 
to evaluate performance for binary and multi-class classification. About 11,175,000 
Bot-IoT instances were selected. After feature extraction and data preprocessing, 
the dataset was split in a 64:16:20 ratio for training, validation, and testing, respec-
tively. To address class imbalance, higher weights were assigned to underrepresented 
classes. Class weights for the training data were obtained by dividing the packet count 
for each class by the total packet count and then inverting the quotient. Classification 
results show that the neural network outperformed the SVM. For binary classification 
with the neural network, the best score for accuracy was 100%, while the best scores 
for precision, recall, and F-measure were all 99.90%. While multi-class classification 
scores were provided for the SVM classifier, binary classification scores were not. 
Hence, the binary classification scores for the neural network cannot be compared 
with classification scores for the SVM. This detracts from the authors’ conclusion that 
the feedforward neural network is the better classifier.

Finally, to detect DDoS attacks, Soe et  al. [48] trained a feedforward neural net-
work on 477 normal instances and about 1,900,000 DDoS instances from Bot-IoT. The 
dataset was split in a ratio of 66:34 for training and testing, and the SMOTE algo-
rithm was utilized to address class imbalance. After the application of SMOTE during 
data preprocessing, the training dataset contained about 1,300,000 instances for each 
class, while the test dataset contained 655,809 normal instances and 654,285 DDoS 
instances. The data was then normalized. Precision, Recall, and F-measure scores 
were all 100%. We point out that there is a lack of information on data cleaning in 
the study. In addition, it is unclear why the authors believe that balancing the classes 
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(positive to negative class ratio of 50:50) is the optimal solution. Also, in their paper, 
only the DT classifier is used, i.e., reliance on only one classifier.

We again note that after reviewing these five works, none were found to be solely 
based on Bot-IoT information theft detection. In addition, we use ensemble feature 
selection for building our predictive models.

Methodology
Data cleaning

As discussed in the next three paragraphs, there are six features in Bot-IoT that do not 
provide generalizable information [49].

The pkSeqID and seq features were removed because they are row or sequence identifi-
ers and only provide information regarding order. Removing pkSeqID was obvious based 
on the definition provided by Koroniotis et al. [2]. However, removing seq was less so, 
as seq has been highly utilized in many studies [49]. Based on our consultation with the 
developers of the Argus network security tool and on our own investigation, we discov-
ered that seq is a monotonically increasing sequence number pertaining to the records 
processed by the tool. With this clarification, we determined that it did not provide any 
additional relevant or generalizable information for our models.

The features stime and ltime are timestamps corresponding to the start packet time 
and last packet time for each instance. While they are useful for determining key fea-
tures like duration or rate, this information is already provided by the features dur, rate, 
srate, and drate. With that information already present, we believe that both stime and 
ltime are unlikely to provide any additional information and may contribute to the over-
fitting of data by our models.

The saddr and daddr features pertain to the source and destination Internet Protocol 
(IP) addresses for each of the instances. While this information can provide highly rel-
evant contextual information for security analysts, we chose to exclude it because pri-
vate IP addresses can vary from network to network. Should a model learn to attribute a 
behavior based entirely or partially on the source or destination IP, it would be ineffec-
tive if tested against a dataset generated with different IP addresses.

We also discovered that many instances using Internet Control Message Protocol (c) 
have a hexadecimal value for the sport and dport features or are missing values for these 
features. Because of this, we changed all missing and hexadecimal ICMP values for sport 
and dport to -1 to indicate an invalid port value.

Data transformations

The flgs_number, fproto_number, sport, dport, and state_number categorical features 
were one-hot encoded. The one-hot encoding process, which was implemented by Cat-
Boost’s Ordered Target Statistics2, transforms categorical features into dummy variables. 
We also performed feature scaling to provide a [0,1] normalized range for all numerical 
features.

2  https://​contr​ib.​scikit-​learn.​org/​categ​ory_​encod​ers/​catbo​ost.​html.

https://contrib.scikit-learn.org/category_encoders/catboost.html
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Data sampling

RUS is a technique to deal with class imbalance where we discard members of the major-
ity class until the ratio of instances of majority and minority class members reaches a 
desired level. If the experiment involved RUS, we applied it to the training data only. 
The desired minority-to-majority class ratios we used RUS to obtain are those from [50], 
where the authors report yield strong results. These ratios are 1:1, 1:3, and 1:9. However, 
given the initial ratios of minority-to-majority class in the Information Theft dataset 
(1587:9543), it was only possible to do RUS for the 1:1 and 1:3 ratios.

Ensemble feature selection

A further preprocessing step we employed for some experiments is our ensemble FST. 
The FST is a two-step process. For the first step, we employed three filter-based feature 
ranking techniques. They are the information gain [51], information gain ratio [52], and 
Chi squared (Chi 2) [53] feature ranking techniques. We also ranked features according 
to four supervised learning-based feature ranking techniques. Feature importance lists 
from RF, CatBoost, XGBoost, and LightGBM served as the basis for the supervised fea-
ture ranking techniques.

We then took the 20 highest ranked attributes. We decided to use 20 features based 
on results of previous studies [54]. Therefore, we searched for features occurring in a set 
number of 7 rankings, where that number ranges from 4 to 7. Put another way, since we 
have 7 rankings, we require a majority of rankings to agree that a feature is among the 
20 most important features in order to select it. This yielded 4 datasets sets of selected 
features, which we called the 4 Agree, 5 Agree, 6 Agree, and 7 Agree datasets. The tables 
in Appendix A show the features selected for the supervised-based feature ranking tech-
niques, the filter-based feature ranking techniques, and the 4, 5, 6 and 7 Agree datasets.

Classifiers and performance metrics

This study involves four ensemble classifiers (CatBoost, Light GBM, XGBoost, and RF) 
and four non-ensemble classifiers (DT, LR, NB, and an MLP). These classifiers belong to 
various machine learning families of algorithms and are widely considered to be reliable 
[55]. CatBoost, Light GBM, and XGBoost were implemented with their respective self-
named Python libraries, while the other classifiers were implemented with Scikit-learn.3

CatBoost, Light GBM, and XGBoost are gradient-boosted decision trees (GBDTs) 
[56], which are ensembles of sequentially trained trees. An ensemble classifier combines 
weak algorithms, or instances of an algorithm, into a strong learner. CatBoost relies on 
ordered boosting to order the instances used for fitting DTs. Light GBM is characterized 
by gradient-based one-side sampling and exclusive feature bundling. One-side sampling 
disregards a significant fraction of instances with small gradients, and exclusive feature 
bundling categorizes mutually exclusive features to reduce variable count. XGBoost uti-
lizes a sparsity-aware algorithm and a weighted quantile sketch. Sparsity is defined by 
zero or missing values, and a weighted quantile sketch benefits from approximate tree 

3  https://​scikit-​learn.​org/​stable/.

https://scikit-learn.org/stable/
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learning [57] to support pruning and merging tasks. RF is also an ensemble of DTs, but 
unlike the GBDTs, it uses a bagging technique [58].

DT is a non-parametric approach that offers a simplistic tree-like representation of 
observed data. Each internal node represents a test on a specified feature, and each 
branch represents the outcome of a particular test. Each leaf node represents a class 
label. LR uses a sigmoidal function to generate probability values. Predictions for class 
membership are centered on a specified probability threshold. NB uses conditional 
probability to determine class membership. This classifier is considered “naive” because 
it operates on the assumption that features are independent of each other. An MLP is 
a type of artificial neural network with fully connected nodes. It utilizes a non-linear 
activation function and contains an input layer, one or more hidden layers and an output 
layer.

In our work, we used more than one performance metric (AUC and AUPRC) to better 
assess the challenge of evaluating classifiers. AUC is the area under the receiver operat-
ing characteristic (ROC) curve, which is a plot of true positive rate (TPR) versus false 
positive rate (FPR). This metric incorporates all classification thresholds represented by 
the curve [59] and is essentially a summary of overall model performance. AUPRC is the 
area under the Precision-Recall curve. This metric shows the trade-off between preci-
sion and recall for specific classification thresholds [60].

Parameters and cross validation

Before we trained our classifiers, we used default hyperparameters and/or tuned hyper-
parameters to help control the learning process. Hyperparameter tuning was effected 
by RandomizedSearchCV4, a module of Scikit-learn. We list these tuned parameters in 
Appendix B.

During training, we implemented ten iterations of stratified five-fold cross-validation, 
which means there are 50 performance scores obtained per classifier for each metric. For 
k-fold cross-validation, every instance is placed in a validation set once and placed in a 
training set k-1 times. This means that for five-fold cross-validation, every instance gets 
to be in a validation set once and in a training set four times. The stratified component 
of cross-validation aims to ensure that each class is equally represented across each fold 
[61]. Because we randomly shuffled instances before cross-validation, certain algorithms 
such as LR may yield different results when the order of instances is changed [62]. One 
way of addressing the undesirable effect of this randomness is by performing several 
iterations, as we have done [63]. Note that each AUC or AUPRC value shown in the clas-
sification performance tables is an average of the 50 performance scores.

High‑level methodology overview

For each of the attack types (information theft, data exfiltration, and keylogging), we 
divided our experiments into those that did not use ensemble FSTs and those that 
used them. For the tasks that did not involve ensemble FSTs, we first performed 
experimentation where we did not use hyperparameter tuning or data sampling. 

4  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​model_​selec​tion.​Rando​mized​Searc​hCV.​html.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
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Second, we performed experimentation where we applied data sampling. Third, we 
performed experimentation where we applied both data sampling and hyperparam-
eter tuning. For the tasks that involved ensemble FSTs, feature selection was a neces-
sary component for all three experimentation steps.

Results and discussion
In this section, we present results for classification performance, with and without the 
application of FSTs, and also present statistical analyses. Results are compartmental-
ized by attack type (information theft, data exfiltration, and keylogging).

Experiment names indicate the classifier used, whether we apply RUS (and in what 
ratio), and whether we apply hyperparameter tuning. For example, the experiment 
name “MLP Tuned RUS 1:3 6 Agree” indicates we use the MLP classifier, with hyper-
parameters tuned by RandomizedSearchCV, with RUS to a 1:3 ratio, and the 6 Agree 
FST. If there is no mention of RUS or a ratio in the experiment name this means we 
did not apply RUS.

Information theft

Information theft without ensemble feature selection

Table 2 contains results for experiments with default hyperparameters and no RUS. 
For AUC, the highest score of 0.99703 was obtained by CatBoost. For AUPRC, the 
highest score of 0.99984 was obtained by CatBoost.

Table  3 contains results for experiments with default hyperparameters after RUS 
is applied. For AUC, the highest score of 0.99842 was obtained by CatBoost with a 
balanced class ratio of 1:1. For AUPRC, the highest score of 0.99983 was obtained by 
CatBoost with a balanced class ratio of 1:1.

Table 4 contains results for experiments after RUS and hyperparameter tuning are 
applied. For AUC, CatBoost with a balanced class ratio of 1:1 obtained the highest 
score of 0.99803. For AUPRC, CatBoost with a minority-to-majority class ratio of 1:3 
obtained the highest score of 0.99980.

Table 2  Classification results for the information theft dataset no sampling default hyperparameter 
values experiments; mean and standard deviations of AUC and AUPRC, (10 iterations of 5-fold cross-
validation)

Experiment name Mean SD Mean SD
AUC​ AUC​ AUPRC AUPRC

CatBoost 0.99703 0.00199 0.99984 0.00027

DT 0.99575 0.00216 0.99393 0.00275

Light GBM 0.99670 0.00219 0.99936 0.00114

LR 0.99285 0.00287 0.99691 0.00238

MLP 0.99483 0.00261 0.99851 0.00155

NB 0.99291 0.00254 0.97743 0.00523

RF 0.99553 0.00235 0.99969 0.00056

XGBoost 0.99649 0.00223 0.99958 0.00066
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Information theft with ensemble feature selection

Due to the number of experiments performed, Tables  5 and 6 only report the best 
performance by classifier, over all combinations of RUS, hyperparameter tuning, and 
ensemble FSTs. Table 5 shows AUC scores obtained. CatBoost, with a class ratio of 

Table 3  Classification results for the information theft dataset with sampling and default 
hyperparameters experiments; mean and standard deviations of AUC and AUPRC, (10 iterations of 
5-fold cross-validation)

Experiment name Mean SD Mean SD
AUC​ AUC​ AUPRC AUPRC

CatBoost RUS 1:3 0.99836 0.00124 0.99982 0.00030

CatBoost RUS 1:1 0.99842 0.00130 0.99983 0.00029

DT RUS 1:3 0.99560 0.00253 0.99115 0.00358

DT RUS 1:1 0.99567 0.00201 0.98735 0.00468

Light GBM RUS 1:3 0.99723 0.00190 0.99934 0.00111

Light GBM RUS 1:1 0.99759 0.00188 0.99954 0.00079

LR RUS 1:3 0.99304 0.00280 0.99704 0.00228

LR RUS 1:1 0.99394 0.00258 0.99641 0.00419

MLP RUS 1:3 0.99498 0.00247 0.99844 0.00170

MLP RUS 1:1 0.99476 0.00241 0.99649 0.01032

NB RUS 1:3 0.99266 0.00254 0.97693 0.00522

NB RUS 1:1 0.99247 0.00276 0.97723 0.00736

RF RUS 1:3 0.99682 0.00207 0.99972 0.00050

RF RUS 1:1 0.99727 0.00172 0.99968 0.00057

XGBoost RUS 1:3 0.99711 0.00182 0.99956 0.00068

XGBoost RUS 1:1 0.99723 0.00163 0.99958 0.00061

Table 4  Classification results for the information theft dataset with sampling and tuned 
hyperparameters experiments; mean and standard deviations of AUC and AUPRC, (10 iterations of 
5-fold cross-validation)

Experiment name Mean SD Mean SD
AUC​ AUC​ AUPRC AUPRC

CatBoost Tuned RUS 1:3 0.99727 0.00188 0.99980 0.00032

CatBoost Tuned RUS 1:1 0.99803 0.00149 0.99979 0.00035

DT Tuned RUS 1:3 0.99362 0.00330 0.99524 0.00281

DT Tuned RUS 1:1 0.99357 0.00395 0.99337 0.00424

Light GBM Tuned RUS 1:3 0.99539 0.00305 0.99915 0.00106

Light GBM Tuned RUS 1:1 0.99569 0.00240 0.99925 0.00073

LR Tuned RUS 1:3 0.99495 0.00241 0.99872 0.00082

LR Tuned RUS 1:1 0.99499 0.00231 0.99658 0.01024

MLP Tuned RUS 1:3 0.99398 0.00372 0.99782 0.00188

MLP Tuned RUS 1:1 0.99420 0.00363 0.99710 0.00555

NB Tuned RUS 1:3 0.99266 0.00254 0.97693 0.00522

NB Tuned RUS 1:1 0.99247 0.00276 0.97723 0.00736

RF Tuned RUS 1:3 0.99671 0.00213 0.99960 0.00060

RF Tuned RUS 1:1 0.99719 0.00181 0.99967 0.00051

XGBoost Tuned RUS 1:3 0.99688 0.00198 0.99957 0.00071

XGBoost Tuned RUS 1:1 0.99711 0.00183 0.99957 0.00063
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Table 5  Maximum AUC by classifier for the information theft attack type; mean and standard 
deviations of AUC, (10 iterations of 5-fold cross-validation)

Experiment name Mean SD
AUC​ AUC​

LR Tuned 7 Agree 0.99504 0.00218

CatBoost RUS 1:3 5 Agree 0.99838 0.00131

DT 4 Agree 0.99589 0.00199

Light GBM RUS 1:1 6 Agree 0.99757 0.00192

RF RUS 1:1 4 Agree 0.99732 0.00182

MLP Tuned 6 Agree 0.99537 0.00242

NB 7 Agree 0.99324 0.00203

XGBoost RUS 1:1 4 Agree 0.99731 0.00169

Table 6  Maximum AUPRC by classifier for the information theft attack type; mean and standard 
deviations of AUPRC, (10 iterations of 5-fold cross-validation)

Experiment name Mean SD
AUPRC AUPRC

LR Tuned RUS 1:3 5 Agree 0.99872 0.00082

CatBoost Tuned 7 Agree 0.99986 0.00019

DT Tuned 6 Agree 0.99733 0.00169

Light GBM Tuned 7 Agree 0.99956 0.00058

RF RUS 1:3 6 Agree 0.99976 0.00042

MLP Tuned 7 Agree 0.99908 0.00108

NB Tuned RUS 1:1 7 Agree 0.97858 0.00625

XGBoost RUS 1:3 7 Agree 0.99964 0.00050

Table 7  ANOVA for classifier, RUS, hyperparameters and FST as factors of performance in terms of 
AUC​

Df Sum Sq Mean Sq F value Pr(>F)

Classifier 7 2.66 0.38 5531.44 0.0000

RUS 2 0.04 0.02 326.04 0.0000

Hyperparameters 1 0.01 0.01 113.22 0.0000

FST 4 0.01 0.00 19.18 0.0000

Residuals 11985 0.82 0.00

Table 8  ANOVA for classifier, RUS, hyperparameters and FST as factors of performance in terms of 
AUPRC

Df Sum Sq Mean Sq F value Pr(>F)

Classifier 7 13.34 1.91 5767.49 0.0000

RUS 2 0.16 0.08 249.67 0.0000

Hyperparameters 1 0.00 0.00 8.15 0.0043

FST 4 0.17 0.04 131.17 0.0000

Residuals 11985 3.96 0.00
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1:3 and 5 Agree FST, yielded the highest score in this table of 0.99838. Table 6 shows 
AUPRC scores obtained. CatBoost with a 7 Agree FST and no RUS produced the 
highest score in this table of 0.99986.

Information theft statistical analysis

To understand the statistical significance of the classification performance scores, we 
run analysis of variance (ANOVA) tests. ANOVA establishes whether there is a signifi-
cant difference between group means [64]. A 99% ( α = 0.01) confidence level is used for 
our ANOVA tests. The results are shown in Tables 7 and 8, where Df is the degrees of 
freedom, Sum Sq is the sum of squares, Mean Sq is the mean sum of squares, F value is 
the F-statistic, and Pr(>F) is the p-value.

The first ANOVA test we run for Information Theft evaluates the impact of factors on 
performance in terms of AUC. As shown in Table 7, the p-value associated with every 
factor is practically 0. Therefore, we conclude all factors have a significant impact on 
performance in terms of AUC.

The second ANOVA test we run for information theft evaluates the impact of factors 
on performance in terms of AUPRC. As shown in Table 8, the p-value associated with 
every factor is practically 0. Therefore, we conclude all factors have a significant impact 
on performance in terms of AUPRC

Since all factors significantly impact performance for both AUC and AUPRC, Tukey’s 
Honestly Significant Difference (HSD) tests [65] are performed to determine which 
groups are significantly different from each other. Letter groups assigned via the Tukey 
method indicate similarity or significant differences in performance results within a 
factor.

Table 9  HSD test groupings after ANOVA of AUC for the Classifier factor

Group a consists of: CatBoost

Group ab consists of: LightGBM

Group bc consists of: XGBoost

Group c consists of: RF

Group d consists of: DT

Group e consists of: MLP

Group f consists of: LR

Group g consists of: NB

Table 10  HSD test groupings after ANOVA of AUC for the RUS factor

Group a consists of: 1:1, 1:3

Group b consists of: none

Table 11  HSD test groupings after ANOVA of AUC for the hyperparameters factor

Group a consists of: Tuned

Group b consists of: Default
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With regard to AUC, we first apply the HSD test to the group classifier factor, with the 
results shown in Table 9. In this table, the highest ranked classifiers are the GBDT classi-
fiers, followed by RF. Next, we cover the HSD test for the RUS factor. The results of this 
test, as shown in Table 10, reveal that undersampling, either to the 1:1 or 1:3 minority-to 
majority-class ratios yield similar performance, which is better than not using under-
sampling. For the hyperparameter tuning factor, the results of the HSD test provided in 
Table 11 indicate that hyperparameter tuning is generally better than the default hyper-
parameter values. Table 12 shows the HSD test results for the FST factor. Here, we find 
the only FST that has significantly worse performance than the others is the 7 Agree. 
Otherwise, using all features or any other FST yields similar results. Since the 6 Agree 
FST yields the smallest number of features in group ‘a’, we recommend using the features 
that the 6 Agree FST selects. Classifiers usually train faster on datasets with compara-
tively fewer features.

In terms of AUPRC, the HSD test results for the group classifier factor, as shown in 
Table 13, indicate that the GBDT classifiers yield the best performance. However, unlike 

Table 12  HSD test groupings after ANOVA of AUC for the FST factor

Group a consists of: All Features, 4 Agree, 5 Agree, 6 Agree

Group b consists of: 7 Agree

Table 13  HSD test groupings after ANOVA of AUPRC for the Classifier factor

Group a consists of: CatBoost, RF, XGBoost, LightGBM

Group b consists of: MLP

Group c consists of: DT

Group d consists of: LR

Group e consists of: NB

Table 14  HSD test groupings after ANOVA of AUPRC for the RUS factor

Group a consists of: none

Group b consists of: 1:3

Group c consists of: 1:1

Table 15  HSD test groupings after ANOVA of AUPRC for the hyperparameters factor

Group a consists of: Default

Group b consists of: Tuned

Table 16  HSD test groupings after ANOVA of AUPRC for the FST factor

Group a consists of: 5 Agree, 6 Agree, 4 Agree, All Features

Group b consists of: 7 Agree
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the case for performance in terms of AUC, the performance of RF, which is not a GBDT 
classifier, is not significantly less than that of the GBDT classifiers. The HSD test results 
for the RUS factor are provided in Table 14. It turns out that not doing RUS is the best 
choice. As shown in Table 15, the HSD test results for the hyperparameter tuning fac-
tor indicate that default hyperparameter values are the better choice. Finally, Table 16 
provides HSD test results for the FST factor. These results are similar to those we see for 
performance in terms of AUC. Only the 7 agree FST yields a lower performance than 
other levels of FST. Therefore, the 6 Agree FST is preferred, since it has fewer features 
than the 4 Agree and 5 Agree FSTs.

Information theft conclusion

The GBDT classifiers, and in some cases RF, yield similar performance. HSD test results 
indicate their performance is better than that of the other classifiers. While the ANOVA 
tests reveal that hyperparameter tuning is a significant factor, we see that hyperpa-
rameter tuning yields better performance in terms of AUC, but worse performance in 
terms of AUPRC. Therefore, we conclude that hyperparameter tuning is only necessary 
for optimizing performance in terms of AUC. For the case of performance in terms of 
AUC, undersampling has a positive impact on performance. However, for performance 
in terms of AUPRC, we see that the best strategy for RUS is to not use it. We find there 
is no impact on performance in terms of AUC or AUPRC when we apply the 4, 5, or 6 
Agree FSTs, since the HSD test ranks these in the best performing group, along with the 
technique where we use all features. Furthermore, these techniques all outperform the 
7 Agree FST. Since using fewer features yields performance equivalent to using all fea-
tures, we conclude that we should use the 6 Agree FST in future work. The 6 Agree FST 
yields the smallest number of features, and model training is usually faster with fewer 
features.

Data exfiltration

Data exfiltration without ensemble feature selection

Table 17 contains results for experiments with default hyperparameters and no RUS. For 
AUC, the highest score of 0.98126 was obtained by CatBoost. For AUPRC, the highest 
score of 0.99446 was obtained by CatBoost.

Table 17  Classification results for the data exfiltration dataset no sampling default hyperparameter 
values experiments; mean and standard deviations of AUC and AUPRC, (10 iterations of 5-fold cross-
validation)

Experiment name Mean SD Mean SD
AUC​ AUC​ AUPRC AUPRC

CatBoost 0.98126 0.02518 0.99446 0.00787

DT 0.97395 0.02657 0.96053 0.02803

Light GBM 0.98043 0.02721 0.98507 0.02160

LR 0.94149 0.03630 0.92768 0.07234

MLP 0.95924 0.03355 0.95868 0.04305

NB 0.97410 0.02317 0.82526 0.04383

RF 0.96438 0.03388 0.99208 0.01231

XGBoost 0.97747 0.02833 0.98798 0.01983
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Table 18 contains results for experiments with default hyperparameters after RUS 
is applied. For AUC, the highest score of 0.99011 was obtained by RF with a balanced 
class ratio of 1:1. For AUPRC, the highest score of 0.99148 was obtained by CatBoost 
with a minority-to-majority class ratio of 1:9.

Table 19 contains results for experiments after RUS and hyperparameter tuning are 
applied. For AUC, CatBoost with a minority-to-majority class ratio of 1:9 obtained 
the highest score of 0.99281. For AUPRC, CatBoost with a minority-to-majority class 
ratio of 1:9 obtained the highest score of 0.99292.

Data exfiltration with ensemble feature selection

Due to the number of experiments performed, Tables 20 and 21 only report the best 
performance by classifier, over all combinations of RUS, hyperparameter tuning, and 
ensemble FSTs. Table 20 shows AUC scores obtained. CatBoost, with a minority-to-
majority class ratio of 1:9 and 4 Agree FST, yielded the highest score in this table of 
0.99076. Table 21 shows AUPRC scores obtained. CatBoost with a 5 Agree FST and 
no RUS produced the highest score in this table of 0.99448.

Table 18  Classification results for the data exfiltration dataset with sampling and default 
hyperparameters experiments; mean and standard deviations of AUC and AUPRC, (10 iterations of 
5-fold cross-validation)

Experiment name Mean SD Mean SD
AUC​ AUC​ AUPRC AUPRC

CatBoost RUS 1:9 0.98588 0.02077 0.99148 0.01393

CatBoost RUS 1:3 0.98990 0.01378 0.99000 0.01384

CatBoost RUS 1:1 0.98918 0.01093 0.98100 0.03626

DT RUS 1:9 0.97883 0.02418 0.87681 0.04482

DT RUS 1:3 0.98413 0.01617 0.78582 0.06857

DT RUS 1:1 0.98131 0.01206 0.70475 0.07812

Light GBM RUS 1:9 0.98499 0.01852 0.98983 0.01417

Light GBM RUS 1:3 0.98947 0.01300 0.98032 0.03246

Light GBM RUS 1:1 0.98744 0.01019 0.94426 0.11722

LR RUS 1:9 0.95021 0.03785 0.90353 0.10087

LR RUS 1:3 0.95646 0.03519 0.80981 0.14864

LR RUS 1:1 0.96741 0.02800 0.71585 0.13645

MLP RUS 1:9 0.96662 0.02902 0.92406 0.10731

MLP RUS 1:3 0.96939 0.02808 0.81506 0.16246

MLP RUS 1:1 0.96725 0.02679 0.66960 0.13862

NB RUS 1:9 0.97480 0.02199 0.81701 0.05655

NB RUS 1:3 0.97185 0.02087 0.70617 0.06592

NB RUS 1:1 0.96574 0.02068 0.64355 0.06437

RF RUS 1:9 0.97567 0.02542 0.98981 0.01413

RF RUS 1:3 0.98787 0.01476 0.98985 0.01436

RF RUS 1:1 0.99011 0.01116 0.98924 0.01605

XGBoost RUS 1:9 0.98642 0.01975 0.98677 0.02014

XGBoost RUS 1:3 0.98707 0.01486 0.97802 0.04477

XGBoost RUS 1:1 0.98684 0.01235 0.94733 0.08212
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Data exfiltration statistical analysis

As done previously for the Information Theft statistical analysis, we perform ANOVA 
tests for the Data Exfiltration dataset. The results are shown in Tables  22 and 23, 

Table 19  Classification results for the data exfiltration dataset with sampling and tuned 
hyperparameters experiments; mean and standard deviations of AUC and AUPRC, (10 iterations of 
5-fold cross-validation)

Experiment name Mean SD Mean SD
AUC​ AUC​ AUPRC AUPRC

CatBoost Tuned RUS 1:9 0.99281 0.00986 0.99292 0.01192

CatBoost Tuned RUS 1:3 0.98816 0.01388 0.98791 0.01652

CatBoost Tuned RUS 1:1 0.98728 0.01193 0.98444 0.01864

DT Tuned RUS 1:9 0.96722 0.03625 0.91543 0.07238

DT Tuned RUS 1:3 0.96993 0.03208 0.84267 0.08491

DT Tuned RUS 1:1 0.97706 0.01870 0.74923 0.08163

Light GBM Tuned RUS 1:9 0.98769 0.01770 0.98951 0.01959

Light GBM Tuned RUS 1:3 0.98960 0.01336 0.95978 0.08703

Light GBM Tuned RUS 1:1 0.98446 0.01508 0.91785 0.09834

LR Tuned RUS 1:9 0.95866 0.03334 0.90807 0.10925

LR Tuned RUS 1:3 0.96372 0.03201 0.81231 0.15087

LR Tuned RUS 1:1 0.96302 0.02723 0.67686 0.15659

MLP Tuned RUS 1:9 0.87040 0.11157 0.93840 0.07158

MLP Tuned RUS 1:3 0.95885 0.03652 0.85402 0.14352

MLP Tuned RUS 1:1 0.96377 0.02815 0.72101 0.15642

NB Tuned RUS 1:9 0.97481 0.02199 0.81701 0.05655

NB Tuned RUS 1:3 0.97188 0.02087 0.70621 0.06589

NB Tuned RUS 1:1 0.96574 0.02068 0.64355 0.06437

RF Tuned RUS 1:9 0.98592 0.01871 0.98808 0.01699

RF Tuned RUS 1:3 0.98663 0.01519 0.98461 0.01831

RF Tuned RUS 1:1 0.98708 0.01384 0.97930 0.02606

XGBoost Tuned RUS 1:9 0.98292 0.02143 0.98610 0.02217

XGBoost Tuned RUS 1:3 0.98713 0.01487 0.97596 0.03204

XGBoost Tuned RUS 1:1 0.98634 0.01371 0.93328 0.08744

Table 20  Maximum AUC by classifier for the data exfiltration attack type; mean and standard 
deviations of AUC, (10 iterations of 5-fold cross-validation)

Experiment name Mean SD
AUC​ AUC​

LR Tuned RUS 1:1 7 Agree 0.96968 0.02346

CatBoost Tuned RUS 1:9 4 Agree 0.99076 0.01461

DT RUS 1:3 4 Agree 0.98398 0.01531

Light GBM Tuned RUS 1:3 5 Agree 0.98947 0.01328

RF RUS 1:1 6 Agree 0.99024 0.01120

MLP RUS 1:3 4 Agree 0.96914 0.02814

NB Tuned RUS 1:3 7 Agree 0.97958 0.01523

XGBoost RUS 1:3 6 Agree 0.98737 0.01497
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where Df is the degrees of freedom, Sum Sq is the sum of squares, Mean Sq is the 
mean sum of squares, F value is the F-statistic, and Pr(>F) is the p-value.

The first ANOVA test we run for Data Exfiltration evaluates the impact of factors on 
performance in terms of AUC. As shown in Table 22, the p-value associated with every 

Table 21  Maximum AUPRC by classifier for the data exfiltration attack type; mean and standard 
deviations of AUPRC, (10 iterations of 5-fold cross-validation)

Experiment name Mean SD
AUPRC AUPRC

LR Tuned RUS 1:9 6 Agree 0.93654 0.06464

CatBoost 5 Agree 0.99448 0.00784

DT Tuned 6 Agree 0.96776 0.02877

Light GBM RUS 1:9 6 Agree 0.99079 0.01350

RF 4 Agree 0.99199 0.01341

MLP 4 Agree 0.95897 0.04293

NB Tuned RUS 1:9 7 Agree 0.84859 0.04161

XGBoost 5 Agree 0.98823 0.01938

Table 22  ANOVA for classifier, RUS, hyperparameters and FST as factors of performance in terms of 
AUC​

Df Sum Sq Mean Sq F value Pr(>F)

Classifier 7 137.67 19.67 3564.07 0.0000

RUS 3 4.05 1.35 244.86 0.0000

Hyperparameters 1 0.95 0.95 171.29 0.0000

FST 4 0.48 0.12 21.65 0.0000

Residuals 15984 88.20 0.01

Table 23  ANOVA for classifier, RUS, hyperparameters and FST as factors of performance in terms of 
AUPRC

Df Sum Sq Mean Sq F value Pr(>F)

Classifier 7 891.99 127.43 7741.19 0.0000

RUS 3 67.63 22.54 1369.58 0.0000

Hyperparameters 1 0.99 0.99 60.31 0.0000

FST 4 4.94 1.24 75.07 0.0000

Residuals 15984 263.11 0.02

Table 24  HSD test groupings after ANOVA of AUC for the classifier factor

Group a consists of: CatBoost

Group ab consists of: LightGBM, XGBoost, RF

Group b consists of: DT

Group c consists of: MLP

Group d consists of: LR

Group e consists of: NB
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factor is practically 0. Therefore, we conclude all factors have a significant impact on 
performance in terms of AUC.

The second ANOVA test we run for data exfiltration evaluates the impact of factors 
on performance in terms of AUPRC. As shown in Table 23, the p-value associated with 
every factor is practically 0. Therefore, we conclude all factors have a significant impact 
on performance in terms of AUPRC

With regard to AUC, we begin with the HSD test applied to the group classifier 
factor, with the results shown in Table  24. In this table, the GBDT classifiers and 
RF show the best performance. However, CatBoost is ranked above all others. Next, 
we address the HSD test for the RUS factor. The results of this test, as shown in 
Table 25, indicate that the 1:1 or 1:3 class ratios yield the best performance. For the 
hyperparameter tuning factor, the results of the HSD test provided in Table 26 indi-
cate that hyperparameter tuning is a better alternative than the default hyperparam-
eter values. Table 27 shows the HSD test results for the FST factor. Here, we find the 

Table 25  HSD test groupings after ANOVA of AUC for the RUS factor

Group a consists of: 1:3, 1:1

Group b consists of: 1:9

Group c consists of: none

Table 26  HSD test groupings after ANOVA of AUC for the hyperparameters factor

Group a consists of: Tuned

Group b consists of: Default

Table 27  HSD test groupings after ANOVA of AUC for the FST factor

Group a consists of: 7 Agree

Group b consists of: 5 Agree, All Features, 4 Agree, 6 Agree

Table 28  HSD test groupings after ANOVA of AUPRC for the classifier factor

Group a consists of: CatBoost, RF, LightGBM, XGBoost

Group b consists of: DT

Group c consists of: MLP

Group d consists of: NB, LR

Table 29  HSD test groupings after ANOVA of AUPRC for the RUS factor

Group a consists of: none

Group b consists of: 1:9

Group c consists of: 1:3

Group d consists of: 1:1
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7 Agree FST yields better performance than any other FST. This is an ideal result, 
since the less complex model with fewer features outperforms the models that have 
more features.

In terms of AUPRC, the HSD test results for the group classifier factor, as shown in 
Table 28, indicate that the GBDT classifiers and RF yield the best performance. The HSD 
test results for the RUS factor are provided in Table 29. It turns out that not doing RUS 
is the best choice. As shown in Table 30, the HSD test results for the hyperparameter 
tuning factor indicate that hyperparameter tuning is a better alternative than the default 
hyperparameter values. Finally, Table  31 provides HSD test results for the FST factor. 
Since the 6 Agree technique yields fewer features than the 4 Agree and 5 Agree tech-
niques, we prefer the 6 Agree.

Data exfiltration conclusion

Similar to results for classifying the Information Theft attack type data, the GBDT clas-
sifiers yield the best performance, along with RF. For classifying the data exfiltration 
attack type, we find results for AUC and AUPRC with hyperparameter tuning are higher 
than those where we use default parameter tuning. As in the case with classifying the 
Information Theft dataset, there are mixed results for the application of RUS. For perfor-
mance in terms of AUC, applying RUS to the data before training improves performance. 
However, for performance in terms of AUPRC, not using RUS yields better results. For 

Table 30  HSD test groupings after ANOVA of AUPRC for the hyperparameters factor

Group a consists of: Tuned

Group b consists of: Default

Table 31  HSD test groupings after ANOVA of AUPRC for the FST factor

Group a consists of: 6 Agree, 5 Agree, All Features, 4 Agree

Group b consists of: 7 Agree

Table 32  Classification results for the keylogging dataset no sampling default hyperparameter 
values experiments; mean and standard deviations of AUC and AUPRC, (10 iterations of 5-fold cross-
validation)

Experiment name Mean SD Mean SD
AUC​ AUC​ AUPRC AUPRC

CatBoost 0.99624 0.00218 0.99987 0.00025

DT 0.99605 0.00225 0.99484 0.00229

Light GBM 0.99643 0.00218 0.99925 0.00131

LR 0.99415 0.00234 0.99718 0.00282

MLP 0.99574 0.00236 0.99875 0.00145

NB 0.99191 0.00201 0.97511 0.00533

RF 0.99573 0.00219 0.99978 0.00040

XGBoost 0.99608 0.00210 0.99957 0.00069
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classifying data exfiltration attack type data, if AUC is the more important metric, then 
the best FST for classification performance is the 7 Agree FST. However, if AUPRC is the 
more important metric, then the 6 Agree FST yields a dataset with the fewest features, 
but yields performance similar to using all features.

Table 33  Classification results for the keylogging dataset with sampling and default 
hyperparameters experiments; mean and standard deviations of AUC and AUPRC, (10 iterations of 
5-fold cross-validation)

Experiment name Mean SD Mean SD
AUC​ AUC​ AUPRC AUPRC

CatBoost RUS 1:3 0.99779 0.00151 0.99980 0.00034

CatBoost RUS 1:1 0.99796 0.00165 0.99981 0.00036

DT RUS 1:3 0.99557 0.00230 0.99103 0.00343

DT RUS 1:1 0.99573 0.00206 0.98674 0.00620

Light GBM RUS 1:3 0.99674 0.00201 0.99944 0.00099

Light GBM RUS 1:1 0.99720 0.00199 0.99962 0.00053

LR RUS 1:3 0.99455 0.00236 0.99720 0.00283

LR RUS 1:1 0.99524 0.00233 0.99650 0.00576

MLP RUS 1:3 0.99591 0.00212 0.99877 0.00148

MLP RUS 1:1 0.99617 0.00192 0.99750 0.00985

NB RUS 1:3 0.99176 0.00211 0.97408 0.00570

NB RUS 1:1 0.99189 0.00212 0.97173 0.00698

RF RUS 1:3 0.99649 0.00209 0.99971 0.00049

RF RUS 1:1 0.99688 0.00193 0.99961 0.00062

XGBoost RUS 1:3 0.99662 0.00197 0.99955 0.00065

XGBoost RUS 1:1 0.99685 0.00188 0.99956 0.00063

Table 34  Classification results for the keylogging dataset with sampling and tuned 
hyperparameters experiments; mean and standard deviations of AUC and AUPRC, (10 iterations of 
5-fold cross-validation)

Experiment name Mean SD Mean SD
AUC​ AUC​ AUPRC AUPRC

CatBoost Tuned RUS 1:3 0.99709 0.00191 0.99968 0.00054

CatBoost Tuned RUS 1:1 0.99749 0.00170 0.99971 0.00051

DT Tuned RUS 1:3 0.99468 0.00347 0.99405 0.00362

DT Tuned RUS 1:1 0.99412 0.00270 0.99259 0.00661

Light GBM Tuned RUS 1:3 0.99675 0.00200 0.99932 0.00097

Light GBM Tuned RUS 1:1 0.99674 0.00198 0.99957 0.00066

LR Tuned RUS 1:3 0.99589 0.00240 0.99786 0.00223

LR Tuned RUS 1:1 0.99609 0.00214 0.99688 0.00992

MLP Tuned RUS 1:3 0.99489 0.00220 0.99785 0.00203

MLP Tuned RUS 1:1 0.99187 0.01955 0.99679 0.00440

NB Tuned RUS 1:3 0.99240 0.00182 0.97520 0.00536

NB Tuned RUS 1:1 0.99259 0.00208 0.97334 0.00680

RF Tuned RUS 1:3 0.99702 0.00194 0.99945 0.00077

RF Tuned RUS 1:1 0.99668 0.00210 0.99963 0.00047

XGBoost Tuned RUS 1:3 0.99640 0.00190 0.99956 0.00058

XGBoost Tuned RUS 1:1 0.99677 0.00184 0.99957 0.00057
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Keylogging

Keylogging without ensemble feature selection

Table 32 contains results for experiments with default hyperparameters and no RUS. For 
AUC, the highest score of 0.99643 was obtained by Light GBM. For AUPRC, the highest 
score of 0.99987 was obtained by CatBoost.

Table 33 contains results for experiments with default hyperparameters after RUS is 
applied. For AUC, the highest score of 0.99796 was obtained by CatBoost with a bal-
anced class ratio of 1:1. For AUPRC, the highest score of 0.99981 was obtained by Cat-
Boost with a balanced class ratio of 1:1.

Table  34 contains results for experiments after RUS and hyperparameter tuning are 
applied. For AUC, CatBoost with a balanced class ratio of 1:1 obtained the highest score 
of 0.99749. For AUPRC, CatBoost with a balanced class ratio of 1:1 also obtained the 
highest score of 0.99971.

Keylogging with ensemble feature selection

Due to the number of experiments performed, Tables  35 and 36 only report the best 
performance by classifier, over all combinations of RUS, hyperparameter tuning, and 
ensemble FSTs. Table 35 shows AUC scores obtained. CatBoost with a 6 Agree FST and 

Table 35  Maximum AUC by classifier for the keylogging attack type; mean and standard deviations 
of AUC, (10 iterations of 5-fold cross-validation)

Experiment name Mean SD
AUC​ AUC​

LR Tuned RUS 1:3 7 Agree 0.99639 0.00227

CatBoost RUS 1:1 6 Agree 0.99807 0.00165

DT 4 Agree 0.99608 0.00232

Light GBM RUS 1:1 6 Agree 0.99737 0.00176

RF Tuned RUS 1:3 4 Agree 0.99707 0.00190

MLP RUS 1:3 7 Agree 0.99630 0.00212

NB Tuned RUS 1:3 7 Agree 0.99516 0.00173

XGBoost RUS 1:1 5 Agree 0.99693 0.00192

Table 36  Maximum AUPRC by classifier for the keylogging attack type; mean and standard 
deviations of AUPRC, (10 iterations of 5-fold cross-validation)

Experiment name Mean SD
AUPRC AUPRC

LR Tuned 6 Agree 0.99836 0.00166

CatBoost 6 Agree 0.99988 0.00022

DT Tuned 4 Agree 0.99773 0.00166

Light GBM RUS 1:1 6 Agree 0.99965 0.00048

RF RUS 1:3 4 Agree 0.99972 0.00051

MLP RUS 1:1 7 Agree 0.99891 0.00102

NB RUS 1:1 7 Agree 0.98416 0.00628

XGBoost 4 Agree 0.99959 0.00064
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a balanced class ratio of 1:1 yielded the highest score in this table of 0.99807. Table 36 
shows AUPRC scores obtained. CatBoost with a 6 Agree FST and no RUS produced the 
highest score in this table of 0.99988.

Keylogging statistical analysis

As done previously for the Information Theft and data exfiltration datasets, we perform 
ANOVA tests for the Keylogging dataset. The results are shown in Tables  37 and 38, 
where Df is the degrees of freedom, Sum Sq is the sum of squares, Mean Sq is the mean 
sum of squares, F value is the F-statistic, and Pr(>F) is the p-value.

The first ANOVA test we run for keylogging evaluates the impact of factors on perfor-
mance in terms of AUC. As shown in Table 37, the p-value associated with every factor 
is practically 0. Therefore, we conclude all factors have a significant impact on perfor-
mance in terms of AUC.

The second ANOVA test we run for keylogging evaluates the impact of factors on per-
formance in terms of AUPRC. As shown in Table 38, the p-value associated with all fac-
tors, except hyperparameter tuning (0.8137) is practically 0. Therefore, we conclude that 

Table 37  ANOVA for classifier, RUS, hyperparameters and FST as factors of performance in terms of 
AUC​

Df Sum Sq Mean Sq F value Pr(>F)

Classifier 7 1.64 0.23 6477.60 0.0000

RUS 2 0.01 0.01 172.54 0.0000

Hyperparameters 1 0.01 0.01 164.64 0.0000

FST 4 0.00 0.00 33.30 0.0000

Residuals 11985 0.43 0.00

Table 38  ANOVA for classifier, RUS, hperparameters and FST as factors of performance in terms of 
AUPRC

Df Sum Sq Mean Sq F value Pr(>F)

Classifier 7 9.21 1.32 7851.99 0.0000

RUS 2 0.07 0.03 203.36 0.0000

Hyperparameters 1 0.00 0.00 0.06 0.8137

FST 4 0.08 0.02 126.09 0.0000

Residuals 11985 2.01 0.00

Table 39  HSD test groupings after ANOVA of AUC for the classifier factor

Group a consists of: CatBoost, LightGBM

Group ab consists of: XGBoost

Group b consists of: RF

Group c consists of: DT

Group d consists of: MLP

Group e consists of: NB

Group f consists of: LR
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only hyperparameter tuning does not have a significant impact on performance in terms 
of AUPRC.

With regard to AUC, we begin with the HSD test applied to the group classifier fac-
tor, with the results shown in Table 39. In this table, the GBDT classifiers and RF show 
the best performance. Next, we cover the HSD test for the RUS factor. The results of 
this test, as shown in Table 40, indicate that the 1:1 or 1:3 class ratios yield the best per-
formance. For the hyperparameter tuning factor, the results of the HSD test provided 
in Table 41 indicate that hyperparameter tuning is a better alternative than the default 

Table 40  HSD test groupings after ANOVA of AUC for the RUS factor

Group a consists of: 1:1

Group b consists of: 1:3

Group c consists of: none

Table 41  HSD test groupings after ANOVA of AUC for the hyperparameters factor

Group a consists of: Tuned

Group b consists of: Default

Table 42  HSD test groupings after ANOVA of AUC for the FST factor

Group a consists of: All Features

Group ab consists of: 4 Agree, 5 Agree

Group b consists of: 6 Agree

Group c consists of: 7 Agree

Table 43  HSD test groupings after ANOVA of AUPRC for the classifier factor

Group a consists of: CatBoost, RF, XGBoost, LightGBM

Group b consists of: MLP

Group c consists of: DT

Group d consists of: LR

Group e consists of: NB

Table 44  HSD test groupings after ANOVA of AUPRC for the RUS factor

Group a consists of: none, 1:3

Group b consists of: 1:1

Table 45  HSD test groupings after ANOVA of AUPRC for the FST factor

Group a consists of: 5 Agree, 4 Agree, 6 Agree, All Features

Group b consists of: 7 Agree
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hyperparameter values. Table 42 shows the HSD test results for the FST factor. Here, we 
see that using the dataset with a larger number of features yields the best result.

In terms of AUPRC, the HSD test results for the group classifier factor, as shown in 
Table 43, indicate that the GBDT classifiers and RF yield the best performance. The HSD 
test results for the RUS factor are provided in Table 44. It turns out that not doing RUS is 
the best choice. Finally, Table 45 provides HSD test results for the FST factor. We prefer 
the 6 Agree FST since it yields performance similar to using all features, and it has the 
fewest features.

Keylogging conclusion

As with other attack types, we see the GBDT classifiers yield the best performance. The 
HSD tests for the influence of hyperparameter tuning on results in terms of AUC show 
that hyperparameter tuning yields better performance. However, for performance in 
terms of AUPRC, hyperparameter tuning is not significant. Similar to what we observe 
with results for classifying data exfiltration attack types, we see that if performance in 
terms of AUC is most important, then data sampling yields better results. However, for 
results in terms of AUPRC, we find that not applying data sampling gives better results. 
For performance in terms of AUPRC, we obtain similar results when using the 4 Agree, 5 
Agree, 6 Agree FSTs or using all features, since all are in the HSD group ‘a’. However, for 
performance in terms of AUC, the 4 Agree and 5 Agree FSTs are in category ‘ab’, while 
All Features is in category ‘a’. This indicates that for AUC, the ensemble FSTs slightly 
impact performance.

Conclusion
The Bot-IoT dataset is geared toward the training of classifiers for the identification of 
malicious traffic in IOT networks. In this study, we examine the effect of ensemble FSTs 
on classification performance for information theft attack types. An ensemble feature 
selection approach is usually more efficient than its individual FSTs.

To accomplish our research goal, we investigate three datasets, one composed of Nor-
mal and Information Theft attack instances, another composed of Normal and data 
exfiltration attack instances, and a third composed of normal and keylogging attack 
instances. In general, we observed that our ensemble FSTs do not affect classification 
performance scores. However, our technique is useful because feature reduction lessens 
computational burden and provides clarity.

Future work will assess other classifiers that are trained on the identical datasets used 
in our study. There is also an opportunity to evaluate classifier performance, with respect 
to information theft detection, on other IOT intrusion detection datasets.

Appendix A
In this section, we provide a list of features and their definitions for the full processed 
Bot-IoT dataset (Table 46).
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Appendix B
Here, we report classification results where we use our ensemble FSTs. First, we 
report the 20 highest ranked features from each ranking technique in Tables 17 and 
18. Throughout this case study the reader may notice a supervised feature ranking 
technique such as CatBoost or XGBoost may fail to yield 20 features. This is due to 
the fact that in some instances, classifiers do not assign importance to all features in a 
dataset. These rankings are followed by a report of which features are in each of the 4 
Agree, 5 Agree, 6 Agree, and 7 Agree datasets (Tables 47, 48, 49, 50, 51, 52, 53, 54, 55, 
56, 57, 58).

Table 46  Features and descriptions

* Dependent feature

Feature Description

pkSeqID Row identifier

stime Record start time

flgs Flow state flags seen in transactions

proto Textual representation of transaction protocol

saddr Source IP address

sport Source port number

daddr Destination IP address

dport Destination port number

pkts Total count of packets in transaction

bytes Total number of bytes in transaction

state Transaction state

ltime Record last time

seq Argus sequence number

dur Record total duration

mean Average duration of aggregated records

stddev Standard deviation of aggregated records

sum Total duration of aggregated records

min Minimum duration of aggregated records

max Maximum duration of aggregated records

spkts Source-to-destination packet count

dpkts Destination-to-source packet count

sbytes Source-to-destination byte count

dbytes Destination-to-source byte count

rate Total packets per second in transaction

srate Source-to-destination packets per second

drate Destination-to-source packets per second

attack* Class label: 0 for Normal traffic, 1 for Attack traffic

category* Traffic category

subcategory* Traffic subcategory
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Feature selection for information theft

Table 47  Features by supervised ranking feature importance

XGBoost CatBoost Light GBM RF

dport dport flgs_number state_number

state_number state_number proto_number dport

proto_number max dport dur

pkts bytes state_number max

rate dur dur flgs_number

stddev drate sport bytes

drate dbytes mean dpkts

flgs_number flgs_number drate dbytes

mean pkts rate rate

dbytes sport min stddev

dur dpkts sbytes proto_number

dpkts sbytes dpkts sbytes

max proto_number srate srate

sport pkts sport

sum dbytes mean

min stddev drate

spkts max min

srate bytes spkts

sbytes sum

spkts

Table 48  Features by filter-based feature importance

Information gain Information gain ratio Chi 2

proto_number proto_number sbytes

state_number state_number dbytes

flgs_number flgs_number bytes

dport dport rate

bytes bytes pkts

sbytes sbytes spkts

rate rate drate

dur dur srate

sum sum dpkts

min min dur

mean mean sum

max max dport

dbytes dbytes state_number

srate srate proto_number

dpkts dpkts max

spkts spkts mean

drate drate min

pkts pkts stddev

sport sport flgs_number

stddev stddev sport
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Table 49  Results of the 4-Agree and 5-Agree FSTs

4-Agree 5-Agree

dbytes dbytes

sum sum

srate srate

max max

drate drate

mean mean

pkts pkts

rate rate

flgs_number flgs_number

dpkts dpkts

sport sport

proto_number proto_number

bytes bytes

min min

dport dport

state_number state_number

spkts spkts

sbytes sbytes

stddev stddev

dur dur

Table 50  Results of the 6-Agree and 7-Agree FSTs

6-Agree 7-Agree

dbytes proto_number

sum flgs_number

srate min

max dport

drate state_number

mean rate

rate stddev

flgs_number dur

dpkts

sport

proto_number

bytes

min

dport

state_number

spkts

sbytes

stddev

dur
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Feature selection for data exfiltration

Table 51  Features by supervised ranking feature importance

XGBoost CatBoost Light GBM RF

dport sbytes flgs_number dport

bytes dport dport state_number

dbytes bytes dur bytes

rate max bytes drate

dpkts drate state_number srate

drate dbytes proto_number dpkts

stddev flgs_number drate dbytes

proto_number stddev rate flgs_number

sum min stddev proto_number

flgs_number dpkts sport sum

dur dur dpkts spkts

state_number pkts max

mean mean dur

spkts dbytes mean

pkts min sbytes

sport max min

max sum pkts

srate sport

spkts rate

sbytes

Table 52  Features by filter-based feature importance

Information gain Information gain ratio Chi 2

drate drate dbytes

dur dur bytes

sum sum sbytes

srate srate drate

rate rate dpkts

dbytes dbytes rate

proto_number proto_number spkts

sbytes sbytes pkts

flgs_number flgs_number dport

state_number state_number srate

max max sum

min min dur

bytes bytes state_number

mean mean min

dport dport mean

pkts pkts max

spkts spkts proto_number

dpkts dpkts flgs_number

stddev stddev stddev

sport sport sport
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Table 53  Results of the 4-Agree and 5-Agree FSTs

4-Agree 5-Agree

dbytes dbytes

sum sum

srate srate

max max

drate drate

mean mean

pkts pkts

rate rate

flgs_number flgs_number

dpkts dpkts

sport sport

proto_number proto_number

bytes bytes

min min

dport dport

state_number state_number

spkts spkts

sbytes sbytes

stddev stddev

dur dur

Table 54  Results of the 6-Agree and 7-Agree FSTs

6-Agree 7-Agree

sum proto_number

max flgs_number

flgs_number drate

proto_number sport

bytes dport

dpkts state_number

drate dur

mean

sport

dbytes

dport

state_number

pkts

spkts

sbytes

rate

stddev

dur
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Feature selection for keylogging

Table 55  Features by supervised ranking feature importance

XGBoost CatBoost Light GBM RF

dport dport dport state_number

state_number state_number dur dport

stddev bytes flgs_number bytes

pkts dur proto_number dur

proto_number max drate flgs_number

sum proto_number state_number rate

dur dbytes sport sbytes

dbytes mean rate dbytes

flgs_number sport srate dpkts

mean pkts mean sum

rate sbytes drate

dpkts min min

sport sum proto_number

max dbytes sport

spkts pkts srate

drate stddev mean

srate bytes spkts

min spkts max

dpkts

max

Table 56  Features by filter-based feature importance

Information gain Information gain ratio Chi 2

proto_number proto_number bytes

state_number state_number sbytes

flgs_number flgs_number dbytes

dport dport rate

bytes bytes pkts

sbytes sbytes spkts

rate rate drate

dur dur dpkts

sum sum srate

min min dur

mean mean sum

max max dport

dbytes dbytes state_number

srate srate proto_number

dpkts dpkts max

spkts spkts mean

drate drate min

pkts pkts stddev

sport sport flgs_number

stddev stddev sport
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Appendix C
In this section, we report tuned hyperparameter values. Due to the number of experi-
ments, we do not report hyperparameter values for every experiment. We report hyper-
parameter values for classifiers that yields best performance in terms of AUC or AUPRC 
over the possible levels of data sampling we employ. Since RandomizedSearchCV 

Table 57  Results of the 4-Agree and 5-Agree FSTs

4-Agree 5-Agree

dbytes dbytes

sum sum

srate srate

max max

drate drate

mean mean

pkts pkts

rate rate

flgs_number flgs_number

dpkts dpkts

sport sport

proto_number proto_number

bytes bytes

min min

dport dport

state_number state_number

spkts spkts

sbytes sbytes

stddev stddev

dur dur

Table 58  Results of the 6-Agree and 7-Agree FSTs

6-Agree 7-Agree

sum proto_number

srate max

max sport

flgs_number mean

proto_number dbytes

bytes dport

dpkts state_number

drate dur

min

mean

sport

dbytes

dport

state_number

pkts

spkts

rate

dur
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employs stochastic techniques for discovering hyperparameters, it may discover dif-
ferent settings for hyperparameter values over 10 iterations of 5-fold cross validation. 
Therefore, we report the mode (most frequently occurring) value of hyperparameters 
that RandomizedSearchCV discovers.

If RandomizedSearchCV does not discover hyperparameter values different from a 
classifier’s default values, we do not report a table of hyperparameters for that classi-
fier. For default values of MLP, NB, DT, LR, and RF classifiers’ hyperparameters please 
see the Scikit-learn classifier documentation  5, for XGBoost’s default hyperparame-
ter values we refer to XGBoost documentation  6, for CatBoost default hyperparam-
eter values we refer the reader to the CatBoost documentation 7, and for Light GBM 
default hyperparameter values, please consult their documentation 8.

Information theft hyperparameters

Information theft without ensemble feature selection

Here, we report hyperparameter values for classifiers that yield results we report in 
Tables 2, 3 and 4 (Tables 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70).

Table 59  Modes of DT tuned hyperparameter values for experiments with the information theft 
dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

criterion gini

max_depth 16

max_features sqrt

min_samples_leaf 5

Table 60  Modes of DT tuned hyperparameter values for experiments with the theft dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUC​

Parameter name Value

criterion gini

max_depth None

max_features sqrt

min_samples_leaf 7

5  https://​scikit-​learn.​org/​stable/​auto_​examp​les/​class​ifica​tion/​plot_​class​ifier_​compa​rison.​html.
6  https://​xgboo​st.​readt​hedocs.​io/​en/​latest/​param​eter.​html.
7  https://​catbo​ost.​ai/​docs/​conce​pts/​python-​refer​ence_​catbo​ostcl​assif​ier.​html.
8  https://​light​gbm.​readt​hedocs.​io/​en/​latest/​Param​eters.​html.

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://xgboost.readthedocs.io/en/latest/parameter.html
https://catboost.ai/docs/concepts/python-reference_catboostclassifier.html
https://lightgbm.readthedocs.io/en/latest/Parameters.html
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Table 61  Modes of XGBoost tuned hyperparameter values for experiments with the information 
theft dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

max_depth 19

min_child_weight 1

reg_lambda 0

subsample 0.70258

Table 62  Modes of XGBoost tuned hyperparameter values for experiments with the information 
theft dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

max_depth 43

min_child_weight 0.01000

reg_lambda 0

subsample 0.58748

Table 63  Modes of LR tuned hyperparameter values for experiments with the information theft 
dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUC​

Parameter name Value

penalty l2

class_weight None

C 5.95900

Table 64  Modes of LR tuned hyperparameter values for experiments with the information theft 
dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUC​

Parameter name Value

penalty l2

class_weight None

C 2.06300

Table 65  Modes of MLP tuned hyperparameter values for experiments with the information theft 
dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

activation tanh

alpha 0.80469

hidden_layer_sizes [441, 538]

learning_rate constant

solver lbfgs
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Table 66  Modes of MLP tuned hyperparameter values for experiments with the information theft 
dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

activation tanh

alpha 0.12062

hidden_layer_sizes [480]

learning_rate constant

solver lbfgs

Table 67  Modes of RF tuned hyperparameter values for experiments with the information theft 
dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

bootstrap False

class_weight balanced_
subsample

criterion gini

max_depth 8

max_features log2

min_impurity_decrease 0.00016

min_samples_leaf 2

min_samples_split 2

n_estimators 155

Table 68  Modes of RF tuned hyperparameter values for experiments with the information theft 
dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

bootstrap False

class_weight balanced_
subsample

criterion gini

max_depth 8

max_features log2

min_impurity_decrease 0.00016

min_samples_leaf 2

min_samples_split 2

n_estimators 155
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Information theft with ensemble feature selection

Here, we report hyperparameter values for classifiers that yield results we report in 
Tables 5 and 6 , after the application of ensemble FSTs (Tables 71, 72, 73, 74, 75 ).

Table 69  Modes of XGBoost tuned hyperparameter values for experiments with the information 
theft dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUPRC

Parameter name Value

n_estimators 100

min_child_weight 1

max_depth 8

learning_rate 0.30000

gamma None

Table 70  Modes of XGBoost tuned hyperparameter values for experiments with the information 
theft dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUC​

Parameter name Value

n_estimators 200

min_child_weight 1

max_depth 5

learning_rate 0.30000

gamma None

Table 71  Modes of DT tuned hyperparameter values for experiments with the information theft 
dataset

"None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUPRC

Parameter name Value

criterion gini

max_depth 16

max_features None

min_samples_leaf 5

Table 72  Modes of LR tuned hyperparameter values for experiments with the information theft 
dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUPRC

Parameter name Value

penalty None

class_weight None

C 9.35500
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Data exfiltration hyperparameters

Data exfiltration without ensemble feature selection

Here, we report hyperparameter values for classifiers that yield results we report in 
Tables 17, 18 and 19 (Tables 76, 77, 78, 79, 80, 81, 82 83, 84, 85, 86, 87, ).

Table 73  Modes of LR tuned hyperparameter values for experiments with the information theft 
dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUC​

Parameter name Value

penalty l2

class_weight None

C 5.74700

Table 74  Modes of MLP tuned hyperparameter values for experiments with the information theft 
dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

activation relu

alpha 0.19409

hidden_layer_sizes [104, 555]

learning_rate adaptive

solver lbfgs

Table 75  Modes of RF tuned hyperparameter values for experiments with the information theft 
dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

bootstrap True

class_weight balanced

criterion gini

max_depth 9

max_features log2

min_impurity_decrease 0.00000

min_samples_leaf 2

min_samples_split 5

n_estimators 174
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Table 76  Modes of DT tuned hyperparameter values for experiments with the data exfiltration 
dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

criterion entropy

max_depth 16

max_features log2

min_samples_leaf 4

Table 77  Modes of DT tuned hyperparameter values for experiments with the data exfiltration 
dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUC​

Parameter name Value

criterion entropy

max_depth 16

max_features None

min_samples_leaf 8

Table 78  Modes of XGBoost tuned hyperparameter values for experiments with the data 
exfiltration dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

max_depth 48

min_child_weight 0.01000

reg_lambda 0

subsample 0.64976

Table 79  Modes of XGBoost tuned hyperparameter values for experiments with the data 
exfiltration dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

max_depth 48

min_child_weight 0.01000

reg_lambda 10

subsample 0.64976

Table 80  Modes of LR tuned hyperparameter values for experiments with the data exfiltration 
dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

penalty none

class_weight balanced

C 6.17700
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Table 81  Modes of LR tuned hyperparameter values for experiments with the data exfiltration 
dataset

parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

penalty none

class_weight balanced

C 6.17700

Table 82  Modes of MLP tuned hyperparameter values for experiments with the data exfiltration 
dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

activation relu

alpha 0.31846

hidden_layer_sizes [587, 191]

learning_rate constant

solver lbfgs

Table 83  Modes of MLP tuned hyperparameter values for experiments with the data exfiltration 
dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

activation relu

alpha 0.51106

hidden_layer_sizes [333, 164]

learning_rate constant

solver lbfgs

Table 84  Modes of RF tuned hyperparameter values for experiments with the data exfiltration 
dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

bootstrap True

class_weight balanced

criterion entropy

max_depth 9

max_features sqrt

min_impurity_decrease 0.00017

min_samples_leaf 2

min_samples_split 10

n_estimators 127
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Data exfiltration with ensemble feature selection

Here, we report hyperparameter values for classifiers that yield results we report in 
Tables 20 and 21 , after the application of ensemble FSTs (Tables 88, 89, 90, 91, 92).

Table 85  Modes of RF tuned hyperparameter values for experiments with the data exfiltration 
dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

bootstrap True

class_weight balanced

criterion entropy

max_depth 9

max_features sqrt

min_impurity_decrease 0.00017

min_samples_leaf 2

min_samples_split 10

n_estimators 127

Table 86  Modes of XGBoost tuned hyperparameter values for experiments with the data 
exfiltration dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

n_estimators 100

min_child_weight 3

max_depth 7

learning_rate 0.30000

gamma 1.90000

Table 87  Modes of XGBoost tuned hyperparameter values for experiments with the data 
exfiltration dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUC​

Parameter name Value

n_estimators 50

min_child_weight 3

max_depth None

learning_rate 0.30000

gamma None
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Table 88  Modes of DT tuned hyperparameter values for experiments with the data exfiltration 
dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUPRC

Parameter name Value

criterion gini

max_depth None

max_features auto

min_samples_leaf 6

Table 89  Modes of XGBoost tuned hyperparameter values for experiments with the data 
exfiltration dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

max_depth 18

min_child_weight 1

reg_lambda 0.10000

subsample 0.77026

Table 90  Modes of LR tuned hyperparameter values for experiments with the data exfiltration 
dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

penalty none

class_weight balanced

C 6.20100

Table 91  Modes of MLP tuned hyperparameter values for experiments with the data exfiltration 
dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

activation relu

alpha 0.23714

hidden_layer_sizes [590, 270]

learning_rate constant

solver adam

Table 92  Modes of MLP tuned hyperparameter values for experiments with the data exfiltration 
dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

activation relu

alpha 0.04502

hidden_layer_sizes [534]

learning_rate adaptive

solver lbfgs
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Keylogging hyperparameters

Keylogging without ensemble feature selection

Here, we report hyperparameter values for classifiers that yield results we report in 
Tables 32, 33 and 34 (Tables 93, 94, 95, 96, 97, 98, 99, 100, 101 102, 103, 104).

Table 93  Modes of DT tuned hyperparameter values for experiments with the keylogging dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUPRC

Parameter name Value

criterion gini

max_depth None

max_features sqrt

min_samples_leaf 3

Table 94  Modes of DT tuned hyperparameter values for experiments with the keylogging dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

criterion entropy

max_depth 16

max_features auto

min_samples_leaf 3

Table 95  Modes of XGBoost tuned hyperparameter values for experiments with the keylogging 
dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

max_depth 31

min_child_weight 0.01000

reg_lambda 10

subsample 0.61210

Table 96  Modes of XGBoost tuned hyperparameter values for experiments with the keylogging 
dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

max_depth 19

min_child_weight 0.01000

reg_lambda 0.10000

subsample 0.58197
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Table 97  Modes of LR tuned hyperparameter values for experiments with the keylogging dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUPRC

Parameter name Value

penalty none

class_weight None

C 4.06500

Table 98  Modes of LR tuned hyperparameter values for experiments with the keylogging dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

penalty none

class_weight balanced

C 2.99100

Table 99  Modes of MLP tuned hyperparameter values for experiments with the keylogging dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

activation relu

alpha 0.04400

hidden_layer_sizes [115, 460]

learning_rate constant

solver lbfgs

Table 100  Modes of MLP tuned hyperparameter values for experiments with the keylogging 
dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

activation relu

alpha 0.04400

hidden_layer_sizes [115, 460]

learning_rate constant

solver lbfgs

Table 101  Modes of RF tuned hyperparameter values for experiments with the keylogging dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

bootstrap True

class_weight balanced_
subsample

criterion entropy

max_depth 9

max_features sqrt

min_impurity_decrease 0.00000

min_samples_leaf 2

min_samples_split 9

n_estimators 141
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Keylogging with ensemble feature selection

Here, we report hyperparameter values for classifiers that yield results we report in 
Tables 35 and 36 , after the application of ensemble FSTs (Tables 105, 106, 107, 108, 
109).

Table 102  Modes of RF tuned hyperparameter values for experiments with the keylogging dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

bootstrap True

class_weight balanced_
subsample

criterion entropy

max_depth 9

max_features sqrt

min_impurity_decrease 0.00000

min_samples_leaf 2

min_samples_split 9

n_estimators 141

Table 103  Modes of XGBoost tuned hyperparameter values for experiments with the keylogging 
dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUPRC

Parameter name Value

n_estimators 200

min_child_weight 1

max_depth 7

learning_rate 0.10000

gamma None

Table 104  Modes of XGBoost tuned hyperparameter values for experiments with the keylogging 
dataset

“None” value indicates default value of hyperparameter is optimal; parameter values for classifier yielding best results in 
terms of AUC​

Parameter name Value

n_estimators 200

min_child_weight 1

max_depth 8

learning_rate 0.20000

gamma None
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Table 105  Modes of DT tuned hyperparameter values for experiments with the keylogging dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

criterion entropy

max_depth 16

max_features auto

min_samples_leaf 7

Table 106  Modes of XGBoost tuned hyperparameter values for experiments with the keylogging 
dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

max_depth 37

min_child_weight 0.01000

reg_lambda 5

subsample 0.31986

Table 107  Modes of LR tuned hyperparameter values for experiments with the keylogging dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

penalty none

class_weight balanced

C 3.90500

Table 108  Modes of MLP tuned hyperparameter values for experiments with the keylogging 
dataset

Parameter values for classifier yielding best results in terms of AUPRC

Parameter name Value

activation tanh

alpha 0.17176

hidden_layer_sizes [109]

learning_rate constant

solver lbfgs

Table 109  Modes of MLP tuned hyperparameter values for experiments with the keylogging 
dataset

Parameter values for classifier yielding best results in terms of AUC​

Parameter name Value

activation relu

alpha 0.10331

hidden_layer_sizes [269, 339]

learning_rate constant

solver adam
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