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Introduction
Disease surveillance methods based on Twitter surveillance typically count the volume 
of messages about a given disease topic as an indicator of actual disease activity via key-
words such as the disease name [1–3]. The most prominent use cases are nowcasting and 
forecasting. Nowcasting involves tracking outbreaks as they occur but due to time-lags 
in official reporting systems these systems can potentially “predict” outbreaks ahead of 
official systems by up to a few weeks [4]. Forecasting on the other hand involves longer 
time horizons [5] of up to several weeks. Generally speaking some positive correlation is 
assumed between the volume of messages and disease activity at a given time. However, 
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in many cases this assumption is too strong as the volume of disease related messages 
can be influenced by panic and other factors. Therefore it is important to incorporate 
the semantic orientation of tweets to discriminate between relevant and irrelevant men-
tions of given keywords as in many cases even messages that explicitly mention diseases 
may actually do so in a non-occurrence related contexts or contexts that are spatio-tem-
porally irrelevant. For instance the post, “I remember when the Challenger went down, 
I was home sick with the flu!” is an actual reference to an occurrence of the flu but the 
Challenger disaster occurred in 1986 therefore it would be incorrect to count this men-
tion to model an outbreak in 2021. There is some experimental evidence to suggest that 
incorporation of semantic orientation of tweets actually improves the end-to-end per-
formance of prediction models for applications like nowcasting [6, 7]. In spite of this we 
are not currently aware of any large scale automated surveillance systems actively using 
semantic filtering techniques to classify messages.

Related work
For multi-lingual applications the dominant approach has been use of multi-lingual 
ontologies and taxonomies the BioCaster [8] and HealthMap [9] systems. These are still 
essentially keyword volume systems at the core. Furthermore, these systems are really 
just secondary aggregators as they themselves rely on human mediated systems like 
Promed-Mail [10] which may make the semantic check redundant. In general multilin-
gual text classification for the purpose of semantic filtering of texts for disease surveil-
lance hasn’t been a very active area of research. We could only find one recent study by 
Mutuvi et al. [11] which systematically investigates the issue. In terms of motivation and 
technical approach this work is very similar where we differ is that we investigate the 
issue for Twitter messages whereas Mutuvi et al. [11] employed Promed-Mail messages. 
Social media messages generated on platforms like Twitter present unique challenges for 
conventional text processing techniques for instance Twitter text is generated by mil-
lions of users, each with their own individual writing style and vocabulary. In addition 
tweets are short, colloquial in nature and are characterized by slang, misspellings, poor 
grammar and additional artifacts like hashtags, emoticons and URLs (Uniform Resource 
locators). Furthermore, they are less purposeful than platforms like Promed-Mail which 
have been created with an explicit goal of communicating about disease outbreaks. 
When people report disease events on Twitter it is often inadvertent meaning parts of 
the message will be redundant and even misleading. Another key difference is the error 
analysis. Previous work has not delved into a detailed discussion of the error types and 
their implications for the use case. Here we dedicate a significant portion of time on 
characterizing the errors and discussing their implications on end-to-end performance 
and the desirability of different models.

Regarding multi-lingual message classification, there are two possible approaches. 
The first entails creating different models for each language under consideration. This 
is potentially resource intensive as it requires multi-lingual expertise. The second 
is to create a single model in a so called “resource-rich” language and then employ it 
to classify related “resource-poor” languages. This requires the “resource-poor” lan-
guages to be translated to the “resource-rich” language. In this work we investigate the 
latter approach. There are two variations of this approach, one is to fully translate the 
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resource-poor language to the resource-rich language and the other is to partially trans-
late by projecting mono-lingual word embeddings to a common-embedding space to 
obtain multi-lingual word embeddings [12–14]. Typically embeddings in resource-poor 
languages are projected to those in the resource-rich language which is usually Eng-
lish. Multi-lingual classification with multi-lingual word embeddings provides perfor-
mance that is at par with mono-lingual classification on certain tasks such as document 
classification.

The state of the art machine translation systems employ Neural machine translation 
approaches which rely on recurrent auto encoder – decoder neural networks. It also 
helps to have in domain training data such that the style and vocabulary of the source 
data is similar to the target as words may have different meanings in different situations. 
As input, these systems take distributed representations of the source language and out-
put distributed representations of the target language. In this work we employ Goog-
le’s Neural Machine Translation system (GNMT) to obtain full translations of tweets. 
The GNMT models are trained using publicly available data from sources like European 
Union communications. These are generally formal in style as opposed to the colloquial 
style of Twitter messages and as a consequence the translation performance of systems 
like GNMT is unreliable on tweets. However, as already stated it is improving and in 
some cases like GNMT freely available. To deal with rare words, GNMT employs word 
pieces as the lexical unit rather than actual words. This is quite useful for Twitter as it 
makes GNMT somewhat robust to certain types of errors like slight misspellings and 
enables better handling of rare words.

GNMT internally employs a hybrid architecture that combines Transformers [15] and 
Recurrent auto encoder-decoder neural networks. Transformer architectures like BERT 
(Bidirectional Encoder Representations from Transformers) have been employed to 
obtain neural representations of words in both monolingual and multilingual use cases 
and currently account for the state of the art results on several tasks such as translation, 
classification and named entity recognition [16, 17]. BERT internally employs a vocabu-
lary of byte pair encodings.

Materials and methods
We can summarise the steps taken for our experiments as an activity pipeline. The pipe-
line is summarised in Fig. 1.

Corpus generation

The first step is the creation of the corpus. We obtain tweets from a basic Twitter 
account using some specific keywords via a python script through Twitter’s Streaming 
API using the python tweepy plugin.1 The tweets we download are those that are marked 
as public which is the default security level and they are only marked private if expressly 
indicated by users. We employ simple keyword filters to extract the desired tweets. For 
the training data we employ a data set of 13,004 English tweets that mention the flu, 
common cold or Listeria.

1 https:// github. com/ tweep ytwee py.

https://github.com/tweepytweepy
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For the test data we extract tweets that mention the flu in French, German, Spanish, 
Arabic and Japanese. We translate the tweets eliminating those tweets that are incom-
prehensible and then annotate the remainder of the tweets. At annotation we label those 
tweets that mention a recent (less than a month) or ongoing cases of disease as posi-
tive. Within this period we expect the disease to still be within its communicable period 
which is a period within which new infections are still possible as a result of transmis-
sion from sick individuals to susceptible healthy individuals. We treat all other mentions 
as irrelevant and we label them messages negative.

In addition we eliminate duplicates by removing retweets, (tweets with the “RT” tag) 
and also manually check for duplicates that may not be marked as “RT” and finally we 
remove all punctuation except the “#” and “@” symbols where they appear at the begin-
ning of tokens where they are used to denote hashgtags and users respectively. Table 1 
below summarizes the composition of our corpus. We do not perform any preprocessing 
prior to translation. We found the translation API to be quite robust but in many cases 
it returns some unspecified system error and in a few cases the translation only contains 

Fig. 1 Multi-lingual Message Classification Pipeline

Table 1 Corpus summary

Language #Speakers 
(millions)

#Territories 
spoken

Language 
family

#Tweets #Retained Yield Split

% Positive % Negative

English 510  > 50 Indo-Euro-
pean

13,004 – – 0.57 0.43

French 270  > 30 Indo-Euro-
pean

510 399 0.78 0.33 0.67

German 220  > 10 Indo-Euro-
pean

547 394 0.73 0.36 0.64

Spanish 420  > 20 Indo-Euro-
pean

523 329 0.65 0.67 0.33

Arabic 255  > 30 Afro-Asiatic 503 283 0.57 0.30 0.70

Japanese 127 1 Japonic 553 394 0.72 0.28 0.72
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inconsequential elements like URLs or is incomprehensible making us unable to com-
petently annotate the tweet so we remove these tweets in addition to tweets whose con-
tents are repeated in several other tweets as well as those that have been retweeted. For 
this reason there are less tweets retained after translation than the actual number of 
tweets contained in the corresponding datasets. The column for yield in table is the per-
centage of tweets successfully translated and retained.

Pre‑processing

The next step is pre-processing. We start off by tokenization then part of speech tagging. 
For part of speech tagging we employ the GATE (General Architecture for Text Engi-
neering) Twitie tagger application [18]. The tagger uses the Penn Treebank tag set [19] 
in addition to three additional tags “HT”, “USR” and “URL” corresponding to twitter spe-
cific phenomenon namely hashtags, users and URLs respectively. We also attempt these 
experiments with stemming and without stemming. Stemming further reduces lexical 
diversity by reducing different forms of the same word into a single stem.

Feature generation

We try out four different input representations. We try word one-hot word-level rep-
resentations, one-hot concept-level representations, distributed representations over 
words and distributed representations over concepts. For the conceptual representa-
tions we employ two different ontologies. We try the ontology previously developed by 
Magumba et al. [20]] and SNOMED-CT (Systematic Nomenclature of Medicine-Clinical 
Terms) [21]. Whereas several ontologies exist such as OBO (Open Biomedical Ontolo-
gies) [22] and the BioCaster ontology [8], we elect to employ these two because they 
have a broader conceptual coverage which we consider an advantage in a general lan-
guage modeling task. For instance the BioCaster method partially defined word lists that 
contain terms such as “human ehrlichiosis” and "enzootic bovine leukosis" which are 
generally too technical to appear in casual texts like Twitter posts with any significant 
regularity. The Magumba et al. [20] ontology on the other hand was created specifically 
for Twitter disease event detection and SNOMED-CT was created specifically to harmo-
nise divergent medical terminology and is marketed by SNOMED-CT international as 
the most comprehensive and precise clinical health terminology product in the world.

For the ontology based input representations we transform each tweet into a vector of 
features as follows: Firstly, we flatten out our ontology into a list of its constituent con-
cepts. For the Magumba et al. [20] ontology each concept is associated with a group of 
words or tokens referred to as the concept dictionary. Each concept is effectively a list of 
words and the full ontology is basically a list of lists. In this sense it is a heavily redacted 
English dictionary containing only words considered to be of epidemiological relevance. 
To obtain the feature vector we simply tokenize each tweet and for each token we do a 
dictionary look up in the flattened ontology. If the token exists in the ontology, we sim-
ply replace it with the concept in which it occurs. As an example the sentence “I have 
never had the flu” is encoded as “SELF_REF HAVE FREQUENCY HAVE OOV OOV”.

SELF_REF refers to “Self references” which is the concept class for terms that persons 
use to refer to themselves such as “I”, “We” and “Us” used as an indicators of speaking 
in the first person, “HAVE” is the concept class for “have” or “had” which is a special 
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concept class since the verb “to have” is conceptually ambiguous as it can legitimately 
indicate two senses that is falling sick or possession. The “FREQUENCY” terms refers to 
a reference to frequency concept which denotes temporal periodicity. The “OOV” terms 
at the end of the CNF representation stands for “Out of Vocabulary”. The current version 
of this ontology has 136 concepts corresponding to 1531 tokens versus a vocabulary of 
about 59,000 tokens for our full corpus (or several billion words in English). Needless 
to say, most words are out of vocabulary. To obtain the final so-called CNF representa-
tion the “OOV” terms are replaced with their part of speech tag therefore our previous 
example, “I have never had the flu” becomes “SELF_REF HAVE FREQUENCY HAVE 
DT NN”. Figure 2 below depicts the transformations for the message “I have never had 
the flu!”.

For SNOMED-CT the ontology is organized differently, each concept has a corre-
sponding description but there is no concept of a concept dictionary. For the SNOMED-
CT experiments we employ an SQLite3 implementation, for each word we search the 
concept for which it appears in the description using the FTS4 (Full-text Search) engine. 
We deal with out of vocabulary concepts the same way by replacing them with their 
part of speech tags. For both ontology representations the input may take the form of a 
simple one-hot vector or as a distributed representation by applying neural embeddings 
over concepts in the same way they are applied to words.

Word2vec/ Doc2Vec settings

For training distributed embeddings we use the word2vec/doc2vec model by Mikolov 
et  al. [23, 24]. For the ontology-based CNF word2vec/doc2vec model we find optimal 
performance with a 200 dimensional representation, 8 noise words, a context window 
of 5, and 20 training epochs with distributed memory architecture and minimum word 
count of 2. For the word-level word2vec model we employ Google’s 300 dimensional 
gold standard 3 million word corpus.

Experimental setup

We try out a variety of models including deep neural networks using Convolutional 
Neural networks (CNNs) and Recurrent Neural Networks (RNNs) with Long Short 
Term Memory (LSTM) units. We specify a maximum message length of 20 tokens for 

Fig. 2 Deriving feature vector from CNF and POS tags
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these experiments. Consequently, each tweet takes the form of a 20 X 200 vector repre-
sentation, messages that are shorter than 20 words are zero padded. For the CNN-CNF 
model we use a similar architecture to Yoon Kim [25]. We first pass the embedding to a 
dropout layer then employ three filters of width 3, 5, 7 and a length the same as the con-
cept embedding length of 200 rectified linear units (ReLus) and a stride of 1. The output 
from the feature maps is passed through a max-pooling layer and their full output con-
catenated into a final feature vector that is fed to a dropout layer which then feeds into a 
sigmoid output layer with one neuron. The model architecture is depicted in Fig. 3. The 
architecture is similar for the word-level experiment that employs Google’s gold stand-
ard model except since it is a 300 dimensional representation, the input shape is 20 X 
300 instead.

For the CNN-LSTM-CNF model, which stacks an RNN on top of a CNN, we employ a 
single filter of width 3 and a stride of 1, then apply max-pooling with a pool width of 2 to 
the resulting feature maps. We then concatenate the output into a single feature vector 
which we pass into an LSTM layer that feeds directly to a sigmoid output layer contain-
ing one neuron. Figure 4 below depicts the model architecture.

For the Stack of two LSTMs-CNF model, which stacks an RNN layer on top of another, 
we first apply dropout to the input array then feed the output to an LSTM layer 200 
neurons wide for the CNF model followed by a dropout layer then another LSTM layer 
followed by another dropout layer which finally feeds into a sigmoid output layer with a 
single neuron. Figure 5 depicts the model architectures the stack of 2 LSTMs model for 

Fig. 3 Model architecture for CNN classification model

Fig. 4 Model architecture for CNN-LSTM classification model
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the input message “I THINK AM GOING TO GET SICK” in the CNF form described by 
Magumba et al. [20].

For the Bi-directional LSTM-CNF model we first apply dropout to the input layer then 
feed the result into two parallel stacks of LSTM layers. The output is ordered front to 
back in the second stack. Each stack comprises a first layer 200 neurons wide whose 
output is fed to a dropout layer which then feeds its output to a second LSTM layer. 
At this point the output from both stacks is concatenated and fed into a single dropout 
layer and into a final sigmoid output layer with a single neuron. Figure 6 below depicts 
the Bi-directional LSTM model for the input sentence, “SICK WITH THE FLU!” For 
all deep learning experiments we find the optimal performance after a small number of 

Fig. 5 Model architecture for stack of 2 LSTMs classification model
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iterations. We use five epochs for model training, beyond this the models tend to overfit 
due to the small size of the effective vocabulary. All coding is done in python and for the 
neural models we employ the python keras package. For all CNN and LSTM models the 
dropout layers are with a dropout probability of 0.25.

For word2vec and Doc2Vec vectors we employ the python gensim package [26]. For 
the unigram bag of words models we use scikit-learn’s SGD classifier which is a sup-
port vector machine classifier trained with a stochastic gradient descent procedure. We 
also employ the python scikit- learn package [27] for the logistic regression classifier. For 
the logistic regression and SGD models we use the scikit-learn hyper parameter defaults 
except we employ 10,000 iterations for the SGD model.

For the BERT experiments we employ two pretrained multilingual BERT models 
namely bert-based-multilingual-uncased and bert-based-multilingual-cased from the 
HuggingFace library [28]. The BERT layers are then fed into the same CNN architecture 
employed for the word2vec embeddings above.

Results and discussion
We employ the precision, recall and F1 Score as our base performance metrics. They are 
given by the following equations:

(1)P =
TP

TP + FP

Fig. 6 Model architecture for bi-directional LSTM classification model
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where P, R, TP, FP, FN represent Precision, Recall, True Positives, False Positives and 
False Negatives respectively.

The results are presented in Tables 2 and 3 below. For clarity we separate the results 
into two tables, the first discusses one hot vector encoded representations whilst the 
second discusses distributed (continuous) neural embeddings. To measure the model 
performance we employ un-weighted average performance in addition to the perfor-
mance. The ideal situation is to have a high average performance coupled with a small 
performance variance. A small variance means the classifier’s performance on different 
datasets is stable, a high variance means the performance characteristics of the approach 
vary greatly from language to language. To combine the two into a single measure we 
use the following formula:

We refer to the quantity 1- Norm(Var) as the “invariance”. The quantity Norm(Var) is 
the “normalized variance” which is the performance variance expressed as a percentage 
of the maximal possible variance. Since the base performance metrics (precision, recall 
and F1Score) are bounded between 0 and 1, it means the variance also has an upper 
bound which can be calculated from Popovicio’s inequality as

where M is the largest possible value and m is the smallest possible value. In our case 
M = 1, and m = 0.

This ensure that the invariance ranges from 0 to 1 and our overall performance also 
ranges from 0 to 1. Therefore an overall score of 0 implies that the performance of the 
model for some metric is 0 for all datasets or the performance variance is maximal for 
instance where precisely half of the datasets have a maximal score for the metric and the 
other half have the minimal score. An overall score of 1 on the other hand, for a given 
metric, implies that the model obtains a perfect score for the given metric in all of the 
language datasets.

We have also excluded the results of the validation dataset from the overall model per-
formance as conveyed in the aggregate score columns (last three columns), their inclu-
sion does not provide any additional information since it does not change the order of 
aggregate model performance. The first row indicates the performance with the unigram 
bag of words baseline whilst the remaining rows indicate the performance of different 
approaches to mitigating performance divergence that may occur between the training 
data and real world data mainly due to cross-lingual lexical divergence and sub-optimal 
translation.

(2)R =
TP

TP + FN

(3)F1 Score =
2 ∗ P ∗ R

P + R

(4)Overall performance = 2 ∗
[1− Norm(Var)] ∗ Avg

(

Performance
)

[1− Norm(Var)]+ Avg
(

Performance
) .

(5)σ 2
≤

M −m

4
,
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We find only modest variations between the best performing approaches for different 
representations (indicated in bold). The highest average performance for categorical one 
hot vector representations with the bigram SNOMED-CT model with an un-weighted 
average performance of 0.59, 0.66 and 0.62 respectively for precision, recall and F1 score 
respectively. The overall scores are 0.72, 0.77 and 0.75 for precision, recall and f1 score 
respectively. He best performing distributional model is the CNN + word2vec model 
with an un-weighted average precision, recall and F1 score of 0.55, 0.72 and 0.63 respec-
tively and an overall performance of 0.69, 0.81 and 0.75 for precision, recall and F1 score 
respectively. Crucially, their overall F1 score performance is tied at 0.75. In fact, across 
methods it is seen that there are only very slight differences between the performance of 
different methods and representations. For instance both best performing approaches 
are only 1.3% better than the CNF model in terms of overall performance by F1 score. 
In addition they are only 4.2% better than the baseline model in terms of overall perfor-
mance by F1 score. So, there isn’t really a huge performance pay-off for the additional 
technical complexity of using conceptual representations and deep neural approaches. 
We also score consistently higher recall than precision across all methods.

As to why we notice very slight differences between different representations and very 
slight gains in performance versus the unigram word-level baseline, it may be because 
we employ messages about the same disease therefore resulting in smaller lexical dif-
ferences implying the problem these approaches are designed to solve didn’t exist in the 
data as selected.

It’s also noteworthy that the good performance of the SNOMED-CT model is a bit 
counterintuitive. The reason for this is that SNOMED-CT is not organized for this sort 
of task, for instance we employ an SQLite3 implementation and in order to obtain the 
concept referred to by a token we rely on a full text search via the FTS4 (Full text Search) 
engine.2 SNOMED places these terms in the description of the concept, as an example a 
search for the terms “Man” and “Woman” would produce the following truncated output 
as depicted in Figs. 7 and 8 respectively:

Fig. 7 Truncated output from SNOMED-CT search for “Man”

2 https:// www. sqlite. org/ fts3. html.

https://www.sqlite.org/fts3.html


Page 14 of 17Magumba and Nabende  J Big Data           (2021) 8:139 

As can be seen from Figs. 7 and 8, several candidate concepts are returned. We would 
prefer for both cases to map to the “person” concept but there is no way of automat-
ically enforcing this in our setup. In our case we simply return the first match which 
means that man and woman get mapped to different concepts. Moreover these aren’t the 
preferred meanings as “Man” and “Woman” return “Stiff-man syndrome” and “Achard-
Thiers syndrome” respectively which are disorders. From a text processing point view 
this is no better than a word level model as both words are mapped to different atoms. 
For the model, having encountered “Man” yields no useful information on “Woman”. The 
good performance of the SNOMED-CT based conceptual representation relative to the 
baseline is hard to explain given this, it could be a result of the fact that it has a very 
wide coverage and even though mappings are frequently meaningless they are consistent 
enough that it somewhat effectively normalizes the text since most words are mapped to 
some concept (even though it may be the wrong one) and there are fewer out of vocab-
ulary terms than the CNF representation. The SNOMED-CT encoder returns a result 
98.28% of the time versus 90% of the time for the CNF encoder therefore it effectively 
acts as a sort of text normalizer.

Finally, it is evident that we obtain poorer performance on languages which are more 
distant from the model language as results are consistently poorer on the Japanese and 
Arabic datasests with Japanese and Arabic being from the Japonic and Afro-Asiatic lan-
guage families as opposed to French, German and Spanish which like English are from 
the Indo-European family. For the BERT models we only report results for the bert-base-
multilingual-uncased model because the results for the bert-base-multilingual-cased 
model are basically identical.

Conclusion and future work
The results are promising particularly for languages closely related to the model lan-
guage. The performance is significantly stronger on languages in the Indo-European lan-
guage family to which English, the model language, belongs. This is probably due to an 
abundance of parallel datasets for model development for closely related languages than 
more distant languages like Arabic. For a globally deployed live implementation a divide 
and rule strategy could be applied in which different models are created for different 
groups of languages. Still this would be far cheaper than creating language specific mod-
els for the thousands of languages that exist.

Fig. 8 Truncated output from SNOMED-CT search for “Woman”
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To get a mathematical impression of the significance of this work we can take the 
example of a nowcasting application. As already stated, nowcasting approaches that rely 
on textual web data typically model disease intensity as a function of keyword volume. If 
we consider the Spanish dataset for which we obtain the highest performance and 67% 
of tweets are positive, a nowcasting model would have an input error of 50% without 
message classification. That is if the nowcasting model assumed that all messages con-
taining the keyword “flu” were relevant; the model would incorrectly assume disease 
activity to be 50% more intense than it actually is. Ideally the model should only accept 
those messages which report actual occurrences of disease, in actuality it will accept any 
messages labeled as relevant. The ideal and actual model inputs and model input error 
are given by the expressions below:

where TP, FP, FN represent True Positives, False Positives and False Negatives 
respectively.

Any precision performance less than 1, means that false positives exist which would 
increase the model input error, any recall performance less than 1 means false negatives 
exist which reduces the model input error. In general a negative model error implies that 
the precision is better than the recall and a positive error that the recall is better than the 
precision. Crucially, by combining Eqs. 8 with Eqs. 1 and 2 we get the following expres-
sion equivalence for the error rate.

where P, R, TP, FP, FN represent Precision, Recall, True Positives, False Positives and 
False Negatives respectively.

Therefore the error rate is proportional to the difference between the recall and preci-
sion. This is because any false negatives are offset by false positives. Therefore, if the pre-
cision and recall are equal as with the Spanish dataset using the unigram/bigram CNF 
model (in bold italics) then the assuming these errors are not geo-spatially localized (for 
example if they are a product of phenomena like dialect differences) the error would 
effectively be zero.

As a consequence for the end to end surveillance performance, it isn’t even necessary 
to have a perfect classifier at the linguistic step but rather one which has a balanced per-
formance it terms of precision and recall. In this respect the bigram-SNOMED model 
is doubly desirable as it not only has the highest overall performance but also the least 
difference in recall and precision performance overall. Where a balanced precision and 
recall performance is not achievable a higher precision performance is preferred to 
avoid false positives and ultimately reliable performance (i.e. performance with a low 
variance as data changes) is preferred to avoid unreliable results. The raw performance 

(6)Ideal Model Input = TP + FN

(7)Actual model input = TP + FP

(8)Model input error = FP − FN

(9)Error rate =
Model input error

Ideal Model Input
=

FP − FN

TP + FN
=

[

R−P
PR

]

∗ TP

TP
R

=
R− P

P
,
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may not be that important as long as the performance is predictable and can therefore 
be adjusted for in the surveillance models.
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