
Performance Analysis of Intrusion Detection
Systems Using a Feature Selection Method
on the UNSW‑NB15 Dataset
Sydney M. Kasongo* and Yanxia Sun

Introduction
The rapid pace at which technologies such as the Internet, Internet-of-Things (IoT)
and communication systems is advancing has caused hackers to evolve with a higher
velocity in terms of their capabilities. These criminals strive to discover new ways to
compromise computer networks security. Therefore, Intrusion Detection Systems
(IDSs) inherently become critical components in a computer network. An IDS is
defined as a hardware or a software system that monitors an organization’s computer
network for imminent and potential threats or attacks. Moreover, an IDS is capable

Abstract

Computer networks intrusion detection systems (IDSs) and intrusion prevention sys-
tems (IPSs) are critical aspects that contribute to the success of an organization. Over
the past years, IDSs and IPSs using different approaches have been developed and
implemented to ensure that computer networks within enterprises are secure, reliable
and available. In this paper, we focus on IDSs that are built using machine learning (ML)
techniques. IDSs based on ML methods are effective and accurate in detecting net-
works attacks. However, the performance of these systems decreases for high dimen-
sional data spaces. Therefore, it is crucial to implement an appropriate feature extrac-
tion method that can prune some of the features that do not possess a great impact in
the classification process. Moreover, many of the ML based IDSs suffer from an increase
in false positive rate and a low detection accuracy when the models are trained on
highly imbalanced datasets. In this paper, we present an analysis the UNSW-NB15 intru-
sion detection dataset that will be used for training and testing our models. Moreover,
we apply a filter-based feature reduction technique using the XGBoost algorithm. We
then implement the following ML approaches using the reduced feature space: Sup-
port Vector Machine (SVM), k-Nearest-Neighbour (kNN), Logistic Regression (LR), Artifi-
cial Neural Network (ANN) and Decision Tree (DT). In our experiments, we considered
both the binary and multiclass classification configurations. The results demonstrated
that the XGBoost-based feature selection method allows for methods such as the DT to
increase its test accuracy from 88.13 to 90.85% for the binary classification scheme.

Keywords: Machine learning, Feature engineering, Computer networks, Intrusion
detection

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/.

RESEARCH

Kasongo and Sun J Big Data (2020) 7:105
https://doi.org/10.1186/s40537‑020‑00379‑6

*Correspondence:
sydneybleuops@gmail.com
Department of Electrical
and Electronic Engineering
Science, University
of Johannesburg, Kingsway
Ave, Johannesburg 2006,
South Africa

http://orcid.org/0000-0001-8989-5004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00379-6&domain=pdf

Page 2 of 20Kasongo and Sun J Big Data (2020) 7:105

of responding to any malicious transactions and report them accordingly [1]. IDSs
are categorized in 3 broad classes, namely, node or host based IDS (HIDS) (Fig. 1),
network or distributed IDS (DIDS or NIDS) (Fig. 2) and Hybrid IDS (HYIDS) (Fig. 3).
This classification is based on the specific IDS operation philosophy. HIDS runs on a
single node computer system and it is concerned with the security related to its host.
In contrast, a DIDS runs on a distributed computer network and analyses the traffic at
the network level for suspicious activities. HYIDS is a combination of DIDS and HIDS
[2, 3].

Moreover, all classes of IDSs can be assorted into the following categories: signa-
ture-based, anomaly-based and hybrid-based. A signature-based IDS uses an existing
data store of previously intercepted attacks in order to detect intrusions. In contrast,

Fig. 1 Host IDS: This image illustrate the design philosophy of an Host IDS

Fig. 2 Network IDS: This figure depicts the design philosophy of a DIDS

Page 3 of 20Kasongo and Sun J Big Data (2020) 7:105

an anomaly-based IDS is concerned with the behaviour of the network. It constantly
checks for activities that constitute unusual behaviour and flags them. Finally, hybrid-
based IDS is a combination of both anomaly-based and signature-based IDSs [4–6].

The primary philosophical design goal of an IDS is to minimise instances of false
positive alarms and to increase its detection accuracy. Therefore, the design and imple-
mentation of any IDS must take that philosophy in consideration [7]. In recent years,
Machine Learning (ML) based IDSs have emerged as the leading systems in the intru-
sion detection research domain. ML gives systems the ability of learning and improving
by using previous data. In other words, ML based computer programs do not need to
be explicitly engineered (programmed). They are capable of learning by themselves [8].
Broadly speaking, there exist the following sorts of ML philosophies, namely, supervised
ML and unsupervised ML. In the case of supervised ML, models are learned using data
that is labelled [9]. In the instance of unsupervised ML, the data that is used to train
models is unstructured (unlabelled) [10].

In this research, supervised ML methods and more specifically, the binary and mul-
ticlass classifications tasks, are considered. The classification procedure happens when
a supervised ML model is tasked to predict a discrete value [11]. The datasets used to
train the models in this set-up are generally large and possess a high dimensional feature
space. Due to that dimensionality, it is often time consuming to train and test supervised
ML models. Therefore, it is critical to perform feature engineering processes to drop
the number of features required for the training and testing phases [2, 12]. For the work
presented in this paper, a filter-inspired feature reduction technique using the feature
importance measures generated by the XGBoost Algorithm [13] is considered. Unlike
the wrapper-based feature extraction approach; the filter-inspired feature extraction
technique performs the feature space reduction process without the intervention of the
classifier used for the final predictions [14]. Furthermore, a thorough literature review is
conducted and the results obtained by the various ML methods that were surveyed are
compared to those obtained in this research.

Fig. 3 Hybrid IDS: This figure depicts the design philosophy of a HYIDS

Page 4 of 20Kasongo and Sun J Big Data (2020) 7:105

In our experimental processes, we applied the following supervised ML methodolo-
gies for IDS: k-Nearest-Neighbour (kNN), Logistic Regression (LR), Artificial Neural
Network (ANN), Support Vector Machine (SVM) and Decision Tree (DT). We apply
the XGBoost methodology over the UNSW-NB15 dataset [15, 16] to calculate the fea-
ture importance measure for each feature so as to generate a reduced and optimal fea-
ture vector. Furthermore, we have conducted a performance analysis that involves the
binary classification and the multiclass classification schemes for each of the selected
ML algorithms.

The reminder of this work is structured as follows. Firstly, an account of related work
is presented. An highlight of all the ML techniques that are used in this research is pro-
vided. Moreover, the details about the UNSW-NB15 dataset are given. Furthermore, the
proposed IDS approach is explained as well as all the algorithms involved during the
experimental processes. A summary of all the experimental processes and discussions is
then presented. The last section of this paper is the conclusion.

Related Work
The researchers in [17] implemented the Genetic Algorithm (GA) in conjunction with
the Logistic Regression(LR) wrapper based feature selection methodology over the
UNSW-N15 and KDDCup99 datasets. In this research, the Weka simulation tool was
used. After multiple simulations, the results showed that the GA-LR coupled with the
DT classifier attained a detection score of 81.42% as well as a FAR of 6.39% with 20 fea-
tures out the 42 features present within the UNSW-NB15 feature space. With regards
to the KDDCup99 dataset, the GA-LR in conjunction with the DT classifier obtained a
detection score of 99.90% and a FAR rate of 0.105% using 18 features.

The authors in [18] presented a filter-based approach using multiple filters for Distrib-
uted Denial of Service (DDoS) detection. The filter methods that were used includes:
Information Gain, Chi-Square and Gain Ratio, ReliefF. In a bid to demonstrate the capa-
bility of this system, the researchers employed the NSL-KDD attack detection dataset.
For the classification process the authors employed the Decision Tree (DT) algorithm
trained and validated with the help of the k-fold cross-validation method where k = 10 .
The experimental results showed that with only 13 features out of the 42 features (full
feature space); the DT classifier was able to obtain a detection accuracy score equal to
99.67% as well as a false alarm rate (FAR) equating 0.42%. However, this research did not
dive deep into the study of the multiclass classification problem of the NSL-KDD.

In [19], an IDS coupled to a filter-inspired input reduction approach was introduced.
In this work, the different datasets including the Kyoto 2006, the KDDCup99 as well as
the NSL-KDD were utilized for assessment. The authors in this work considered a Flex-
ible Mutual Information (FMI) technique in order to assert the correlation that could
exist between different input variables. The FMI is a non-linear correlation measure.
The classifier used in the experiments is the Least Square SVM (LS-SVM). The results
showed that for the NSL-KDD, with 18 features, the LS-SVM FMI achieved a FAR 0.28%
and an accuracy 99.94%. In the instance of KDD Cup 99, the LS-SVM FMI obtained an
overall accuracy of 78.86% and in the case of Kyoto 2006 +, the LS-SVM FMI attained a
detection rate of 97.80% with a FAR rate of 0.43% on iteration 10.

Page 5 of 20Kasongo and Sun J Big Data (2020) 7:105

The authors in [20] implemented an IDS using a filter-based method methodol-
ogy with the aim to drop the number of input attributes (features) required to per-
form the training and testing of their model. The DT classifier was used in together
with a correlation input selection technique. The dataset utilized in the experimental
processes is the NSL-KDD. 14 features were selected after the filter was applied on
the feature space. Moreover, the author considered the multiclass classification set-
ting that included all five classes of attacks within the NSL-KDD as well as the binary
classification configuration. The experimental outcome demonstrated that the sys-
tem yielded an accuracy of 83.66% for the multiclass configuration and 90.30% for the
binary setting.

In [21], the researchers implemented a feature reduction method for intrusion
detection system using the Pigeon Inspired Optimizer (PIO). The PIO is a bio-inspired
algorithm influenced from the flight of white pigeons. These birds constantly regulate
their flight position by referring to that of the best bird in the flock [22]. In this work,
the following two types of PIO were considered: Sigmoid PIO and Cosine PIO. The
the UNSW-NB15, the NSL-KDD and the KDDCup99 intrusion detection sets were
considered. The Sigmoid PIO selected 10 features and the Cosine PIO selected 7 fea-
tures of the KDDCup99. The Sigmoid PIO selected 18 features and the Cosine PIO
selected 5 features of the NSL-KDD. The Sigmoid PIO selected 14 features and the
Cosine PIO selected 5 features of the UNSW-NB15. With regards to accuracy, the
Sigmoid PIO achieved an accuracy of 94.7% using the KDDCup99, 86.9% over the
NSL-KDD and 91.3% on the UNSW-NB15. In contrast, Cosine PIO obtained 96.0%
on the KDDCup99, 88.3% over the NSL-KDD and 91.7% on UNSW-NB15.

Janarthanan and Zargari [23] implemented a number of feature selection algorithms
through the UNSW-NB15 in an effort to select an optimal feature space. Using the Weka
tool, the following algorithms were implemented: attribute evaluator (CfsSubsetEval),
Greedy Stepwise and Information Gain and the Ranker Method. After various simu-
lations, two subset were considered. The authors used the Kappa Statistic measure to
evaluate the effectiveness of each subset. Many classifiers were considered during the
experiments; however, the RF classifier was selected as the best method in terms of its
overall performance. The first subset with 8 significant features achieved a Kappa Score
of 0.6891 and an accuracy of 75.6617% over test dataset. The second subset using only 5
significant features achieved a Kappa score of 0.7639 and an accuracy of 81.6175%.

Vikash and Ditipriya [24] implemented an IDS system that was validated using
the UNSW-NB15 dataset. In this research, the authors considered a feature reduc-
tion technique that was inspired from the Information Gain methodology. This fil-
ter-based feature extraction technique resulted in the selection of 22 most important
attributes. Moreover, the IDS proposed in this work utilized an integrated rule-based
model that used multiple Tree-based classifiers in order to carry out the the classifica-
tion process. The performance of this system was mainly measured using the Attack
Accuracy (AAc) achieved on the test data, the F-Measure (FM) and False Alarm Rate
(FAR). The results show that the proposed IDS obtained an AAc of 57.01%, an FM of
90% and a FAR of 2.01%. The results obtained in this research can be improved when
considering alternative ML algorithms that could be integrated in replacement to a
strict adherence to Tree based methods.

Page 6 of 20Kasongo and Sun J Big Data (2020) 7:105

In [25], the researchers introduced a feature extraction algorithm based on Particle
Swarm Optimization (PSO), Firefly Optimization (FO), Grey Wolf Optimization (GO)
and Genetic Algorithm (GA). These methods were applied iteratively on the UNSW-
NB15 dataset in order to discover which feature subset would produce an optimal attack
detection accuracy. After several experiments, a feature subset containing 30 features
was selected. Furthermore, the J48 Tree based model and the SVM models were used in
order to conduct the classification process. The main performance criteria considered
in this study were the Accuracy, the False Positive Rate (FPR), the False Negative Rate
(FNR) as well as the FM. The experiments were carried out on the UNSW-NB15 training
subset and the binary classification scheme was implemented. The results demonstrated
that the proposed J48 model achieved a training accuracy of 90.484%, an FPR of 14.950%
and an FM of 90.172%. Additionally, the proposed SVM model achieved a training accu-
racy of 90.119%, an FM of 89.808%, an FPR 15.391% and an FNR of 3.130%.

Maajid and Nalina [26] implemented a feature reduction method based on the RF
algorithm in order to generate the Feature Importance (FI) score of each attribute pre-
sent in the UNSW-NB15 dataset. The FI algorithm is a ranking system whereby the fea-
ture with the highest FI is the most important attribute in the classification process with
regards to the target variable (class). After several experiments, a feature subset contain-
ing 11 attributes was selected. For the classification procedure, the authors considered
the following ML approaches: kNN, DT, Bagging Meta Estimator (BME), XGBoost and
RF. In order to assess the performance of these methods, the accuracy and the F-Meas-
ure scores obtained on test data were used as the principal metrics. The RF algorithm
obtained the best results with an AC of 75.56% and an FM of 73.00%.

In [27], a two-stage ensemble model for IDS using the Rotation Forest and Bagging
algorithms was proposed. This multiple stage meta classifier model used a majority
voting approach to decide on the best course of action. Additionally, a feature selec-
tion method using the Particle Swam Optimization (PSO), the GA and the Ant Colony
Optimization (ACO) was implemented. The PSO-GA-ACO technique was applied on
UNSW-NB15 and 19 optimal features were extracted. In order to validate their two-
stage model, the researchers used the 10-fold cross-validation technique in conjunction
with the hold-out method. The performance metrics considered in this work were the
AC, the FPR, the sensitivity and the Precision. Therefore, for the binary classification
scheme, the methodology proposed in this work achieved an AC of 91.27%, a precision
of 91.60% and a sensitivity of 91.30% over the UNSW-NB15 test subset.

Zong et al. [28] proposed an IDS using a two-stage (TS) classifier model based on
the RF classifier. The Information Gain (IG) method was used to select the attributes
required for the binary classification process. The authors used the one-hot encoding
technique in order to transform the categorical features of the UNSW-NB15 dataset. In
the first stage, the IG-TS is concerned with the detection of minority classes and in the
second phase, the IG-TS carries out the detection of majority classes. The results of each
stage in then combined to provide the final prediction. The researchers used the AC and
the FAR as performance metrics. After several experiments, the IG-TS achieved an AC
of 85.78% and a FAR of 15.78%.

In [29], a two-stage model using the RepTree algorithm for NIDS was presented.
To assess the performance of this method, the authors used the UNSW-NB15 dataset

Page 7 of 20Kasongo and Sun J Big Data (2020) 7:105

amongst others. In the first stage of the framework, the classifier subdivides the net-
work traffic into the following 3 categories: UDP, TCP and Other (Other kinds of
network traces). In the second stage, the RepTree classifies the anomalies recorded
in the initial stage and performs the attacks predictions. Moreover, the framework
proposed in this research used the IG and Consistency (IGC) method to reduce the
feature space. The results for the binary classification scheme showed that the TS-
RepTree achieved an accuracy of 88.95% over the test dataset with about 20 most
relevant features. The drawback of this research is the fact that the authors only con-
sidered one metric to evaluate the performance of their framework.

Gao et al. [30] proposed an IDS using an incremental approach of the Extreme
Learning Machine (IELM) in conjunction with an Advanced Principal Component
(APCA) algorithm. The APCA has the role to adaptively select the most relevant
features required by the IELM so as to perform an optimal attack prediction. The
researchers used the UNSW-NB15 in to evaluate the performance of the proposed
IDS framework. The accuracy obtained on the test data was the most important
metric considered in order to arrive at their conclusion. In addition, the authors also
contemplated other metrics such as the detection rate (DR) and the FAR. The exper-
imental results showed that the IELM-APCA obtained an accuracy of 70.51%, a DR
of 77.36% and a FAR of 35.09%.

In [31], an IDS adapted to the Edge-of-Things (EoT) was presented. The EoT
is a paradigm that takes the Internet of Things (IoT) to the next level whereby it
becomes possible for data to be processed and transferred from Cloud Servers to
Edge devices such as hand-held computers, mobile phones, laptops, IoT devices,
etc. with minimal delay. The EoT-IDS is composed a feature selection module that
uses the correlation method to select the best attributes. Moreover, once the feature
subset is picked, it is fed into a Deep Belief Network (DBN) classifier to carry out
the predictions. The authors used the UNSW-NB15 to assess the efficiency of their
proposed system. The accuracy obtained on test data was used as the main perfor-
mance metric. The authors conducted the experiments using several structures of
DBN networks whereby the best configuration (layer 1 = 64 hidden units, layer 2 =
60 hidden units and the serial number of the DNB architecture was 28) achieved an
accuracy of 85.73% for the binary classification process.

Kaiyuan et al. [32] proposed an NIDS framework that used the One-Side Selec-
tion (O-SS) method to reduce the amount of noisy data records within the major-
ity classes. Moreover, the authors utilized a synthetic approach (Synthetic Minority
Over Sampling—SMOS) to increase the number of minority examples within the
dataset. Furthermore, Convolutional Neural Networks (CNN) were employed
for extracting the spatial attributes and Bidirectional Long-Short Term Memory
(Bi-LSTM) models were used to select the temporal attributes. The combination
of CNN-Bi-LSTM is the DL model that the authors used to conduct the predic-
tive tasks. To evaluate the proposed framework, the researchers used the UNSW-
NB15 and NSL-KDD intrusion detection datasets, and they considered the accuracy
obtained on test data as the main performance metric. The results showed that
the CNN-Bi-LSTM attained accuracies of 77.16% and 83.58% for each dataset
respectively.

Page 8 of 20Kasongo and Sun J Big Data (2020) 7:105

Overview of ML Methods
The following sections provide a review of the supervised ML approaches that are
used in this work.

Support Vector Machine

Support Vector Machine (SVM) happens to be one of the most flexible ML model
that is able to conduct both classification and regression tasks. SVM is amongst one
of the foremost well known models in ML research. The objective of the SVM model
is to partition a given dataset into different classes in a bid to discover the optimal
hyperplanes. Some of the pros of using SVM include the fact that it tends to perform
effectively for high dimensional input spaces. Furthermore, the SVM model allows
for selection of a variety of Kernel functions in the decision making process. One of
its disadvantages is that, it requires careful tuning in general and especially when the
input dimension is greater than the number of examples [33].

Logistic Regression

Logistic Regression (LR) is a ML technique that is primarily employed for the binary
classification task although it is termed as “regression”. The LR can also be used for
the multiclass classification tasks whereby the learning algorithm employs the one-vs-
rest methods. The LR model applies the sigmoid function or its variations to a linear
ML model. The output of this operation is squashed between [0, 1]. An output that is
closer to 1 determines the probability of a given class. The mathematical formulation
is described in Eqs. 1, 2 and 3 [34].

In the above formulation, y is processed by σ.

Artificial Neural Network

Artificial Neural Network (ANN) is a ML philosophy that mirrors the inner workings
of the biological neurons. The most basic component of an ANN is referred to as a
node or a neuron. An ANN with an input layer that is processed by one hidden layer
to provide an output is alluded to as a Perceptron. ANN that possesses multiple hid-
den (middle) layers are sometimes called Feed-forward ANN or Multilayer Percep-
trons (MLP) [35]. Neurons in an ANN are processed via an activation expression such
as the Sigmoid σ(k) = 1

1+e−k , a Rectified Linear Unit (ReLU) f (k) = max(0, k) , an

(1)Linear Model: y = b+ w1x1 + w2x2 + · · · + wnxn

(2)Sigmoid Expression: σ(k) =
1

1+ e−k

(3)Logistic Regression: σ(y) =
1

1+ e−y

Page 9 of 20Kasongo and Sun J Big Data (2020) 7:105

Hyperbolic Tangent tanh(t) = 1−e−2t

1+e−2t or a variation of those functions. A visual repre-
sentation of an ANN is illustrated in Fig. 4 [36, 37].

Decision Tree

Decision Tree (DT) is a supervised ML technique that is employed for classification
and regression tasks. The model resulting from the decision making process is shaped
like a tree. This makes DT less complex to interpret by the user. Moreover, various
ML tools allow for the visualization of the resulting trees [38].

k‑Nearest‑Neighbour

The k-Nearest-Neighbour (kNN) ML algorithm is capable of conducting both super-
vised and unsupervised processes. For instance, kNN is the basis of many of the clus-
tering algorithms in use today [39]. In this research, we used the kNN method in its
supervised ML flavour. This technique bases itself on the Standard Euclidean Met-
ric (EM). The EM is a distance that separates two points (instances) in a space [40].
Lets p and q denote two instances in an Euclidean space Z, the EM between q and q,
�(p, q) , is computed as follows:

r denotes the maximum number of instances within the space Z. The kNN technique
finds the identity (label) of an example r0 within Z by calculating the EM separating r0
and its k closest instances within Z and the label (class) of r0 is selected with reference to
the class of its k related neighbouring instances.

(4)�(p, q) =

√

√

√

√

r
∑

i=1

(qk − qk)2

Fig. 4 ANN: This figure shows a graphical representation of simple ANN

Page 10 of 20Kasongo and Sun J Big Data (2020) 7:105

UNSW‑NB15 Dataset
For our experimental processes we utilize the UNSW-NB15 attacks dataset [41]. In its
clean format, the UNSW-NB15 contains 42 features as shown in Table 1. Out of the
42 features, 3 instances are non-numeric (categorical) features and 39 are numeric in
nature.

The UNSW-NB15 is subdivided in the following main datasets: UNSW-NB15-
TRAIN, which is employed for training various models and the UNSW-NB15-TEST
(100%) which is employed for testing the trained models. In our work, we further split
the UNSW-NB15-TRAIN in the following two partitions: the UNSW-NB15-TRAIN-1
(75% of the full training set) for training and the UNSW-NB15-VAL (25% of the full
training set) for validation before testing. This second partition is used as a sanity
check for the results obtained during the training process. When using this strategy,
it is crucial to avoid that a model trains on the evaluation or the test set because it
could lead to a phenomenon known as data leakage. Data leakage occurs during the
training process when a model sees information that is not supposed to and therefore
introducing a bias in the final model. This in turn leads to a poor model performance
on previously unseen data [42].

The UNSW-NB15 contains instances with the following categories of network
attacks: Backdoor, Shellcode, Reconnaissance, Worms, Fuzzers, DoS, Generic, Analy-
sis, Shellcode and Exploits. Moreover, Table 2 provides the details and the values dis-
tribution of each attack class within the data subsets.

Table 1 UNSW‑NB15 list of features

Feature
number

Feature Format Feature
number

Feature Format

f1 dur Float f22 dtcpb Integer

f2 proto Categorical f23 dwin Integer

f3 service Categorical f24 tcprtt Float

f4 state Categorical f25 synack Float

f5 spkts Integer f26 ackdat Float

f6 dpkts Integer f27 smean Integer

f7 sbytes Integer f28 dmean Integer

f8 dbytes Integer f29 trans_depth Integer

f9 rate Float f30 response_body_len Integer

f10 sttl Integer f31 ct_srv_src Integer

f11 dttl Integer f32 ct_state_ttl Integer

f12 sload Float f33 ct_dst_ltm Integer

f13 dload Float f34 ct_src_dport_ltm Integer

f14 sloss Integer f35 ct_dst_sport_ltm Integer

f15 dloss Integer f36 ct_dst_src_ltm Integer

f16 sinpkt Float f37 is_ftp_login Binary

f17 dinpkt Float f38 ct_ftp_cmd Integer

f18 sjit Float f39 ct_flw_http_mthd Integer

f19 djit Float f40 ct_src_ltm Integer

f20 swin Integer f41 ct_srv_dst Integer

f21 stcpb Integer f42 is_sm_ips_ports Binary

Page 11 of 20Kasongo and Sun J Big Data (2020) 7:105

The Proposed Approach
The architectural design of the system proposed in this research is detailed in Fig. 5. The
first block is all about data processing. This process is often referred to as the data engi-
neering. This step is critical for a successful learning process. Data processing has three
steps, namely, cleaning, normalization and feature selection. The feature selection pro-
cess is conducted using a filter-based method inspired by the XGBoost algorithm for
generating feature importances scores. Once the required feature vector is selected; the
next process involves model training using the training set. A trained model is then vali-
dated with the validation set. Finally, the test dataset is used to test the validated model.
The procedure described above happens in an iterative manner till a tuned and fit model
is found.

Feature Normalization

The high numerical value of various features have an impact on the learning pro-
cess on ML approaches such as SVM, LR, ANN and kNN. Also, the training of high
dimensional datasets requires a great deal of computational resources. To mitigate
those issues, data is often scaled using methods such as the Z-score standardization,

Table 2 UNSW‑NB15 instances repartition

Attack Type UNSW‑NB15 UNSW‑NB15‑
TRAIN‑1

UNSW‑NB15‑VAL UNSW‑NB15‑TEST

Normal 56,000 41,911 14,089 37,000

Generic 40,000 30,081 9919 18,871

Exploits 33,393 25,034 8359 11,132

Fuzzers 18,184 13,608 4576 6062

DoS 12,264 9237 3027 4089

Reconnaissance 10,491 7875 2616 3496

Analysis 2000 1477 523 677

Backdoor 1746 1330 416 583

Shellcode 1133 854 279 378

Worms 130 99 31 44

Fig. 5 ML based IDS Architecture: this figure depicts the architecture of the IDS system explored in this paper

Page 12 of 20Kasongo and Sun J Big Data (2020) 7:105

Decimal scaling, Max normalization and Min–Max scaling [43]. The choice of which
method to use is often based on the application. We use the Min–Max scaling (Eq. 5)
in our data processing step.

Given a dataset with an input vector (feature space) represented by U(f1, . . . , fn) ,
1 < n < N , where N is the total number of instances (features) in the space, the stand-
ardization computation happens as described in Algorithm 1.

XGBoost Technique

The basic concept with the XGBoost algorithm is to train an Ensemble (Group) Tree
Model in an incremental fashion with a penalty parameter, θ , that is added to reduce
the complexity of the model. The goal is to minimize the expression in Eq. 6. The
mathematical formulation is explained below:

Let ŷ(t) designate the prediction of the k-th example at the t-th increment, the
objective function is then expressed below:

where L is the loss function. The goal of the XGBoost method consist in minimizing the
above objective function using the following simplified second-order expression:

where gk = ∂ŷ(t−1) l(yk , ŷ
(t−1)) and hk = ∂2

ŷ(t−1) l(yk , ŷ
(t−1)) . gk and hk denote the first and

the second order expressions of the gradients with regards to the loss function. The
XGBoost algorithm has the ability to compute a score for each feature given a dataset.
This score metric is labelled as the Feature Importance (FI) [44]. In this research, we use
the FI measure as a means to decide which inputs are important for the learning and
classification procedures. The pseudo-code explaining the XGBoost method of generat-
ing the feature importances using Scikit Learn is described in Algorithm 2.

(5)Min-Max scaling of feature F: Fnorm =
F − Fmin

Fmax − Fmin

(6)L(t) =

n
∑

k=1

l(yk , ŷ
(k−1)
k + ft(Xi))+ θ(ft)

(7)L̃(t) =

n
∑

k=1

[gk ft(Xk)+
1

2
hk f

2
t (Xk)] + θ(ft)

Page 13 of 20Kasongo and Sun J Big Data (2020) 7:105

We have applied the XGBoost method over the UNSW-NB15 dataset and the outcome
have yielded 19 features as detailed in Table 3.

Experiments, Results and Discussions
Hardware and Environment Setting

The experiment presented in this work are conducted on a DELL 153000 Inspiron 3580
loaded with the Windows 10 Operating System with the following processor: Intel(R)
Core(TM) i7-8568U CPU @ 1.80GHz to 1.99 GHz. The ML models are built, trained,
evaluated and tested on the Scikit-Learn ML Python framework [45]. Scikit-Learn is
a versatile open source platform that is constructed on top of matplotlib, NumPy and

Table 3 UNSW‑NB15 selected features using the XGBoost method

Feature number Feature Format Feature
importance
score

f10 sttl Integer 0.803374

f41 ct_srv_dst Integer 0.039387

f7 sbytes Integer 0.037377

f27 smean Integer 0.019878

f2 proto Integer 0.018848

f32 ct_state_ttl Integer 0.016783

f14 sloss Integer 0.012008

f25 synack Float 0.010125

f35 ct_dst_src_ltm Integer 0.007203

f28 dmean Integer 0.007134

f31 ct_srv_src Integer 0.006745

f3 service Categorical 0.006305

f13 ct_dst_sport_ltm Integer 0.003717

f8 dbytes Integer 0.002706

f15 dloss Integer 0.001793

f4 state Categorical 0.001548

f24 tcprtt Float 0.001224

f34 ct_src_dport_ltm Integer 0.000526

f9 rate Float 0.000503

Page 14 of 20Kasongo and Sun J Big Data (2020) 7:105

Scipy Python libraies. Moreover, Classification, Regression and Clustering tasks can all
be conducted using Scikit-Learn.

Performance Metrics

There exist an number of metrics to evaluate ML based IDS systems; however, this
research aims to maximize the correct predictions of instances in the test dataset. The
main measure to look at is the Accuracy(AC) defined below:

whereby the TP stand for True Positive and is the rate of examples correctly identified
as attacks. TN, True Negative, is the rate of legitimate traffic classified as legitimate. FP,
False Positive, sometimes referred to as Type I error, is the rate of legitimate traffic clas-
sified as attacks. FN, sometimes referred to as Type II error, is the rate of legitimate traf-
fic classified as intrusions. Additional metrics we consider in this paper are the Recall,
the Precision and F1score defined below:

The F1Score is defined as the harmonic mean of the expression in (9) and (10). Moreo-
ver, some applications are designed to be Precision or Recall oriented. In order to achieve
that in the training process, the Fβ defined below can be tuned:

where the parameter β can adjusted based on the application. In our research however,
we use the F1score which is a trade-off between the Precision and the Recall.

Experiments and Results

Our experimental design was categorized in two main processes whereby we consid-
ered the following ML techniques: ANN, LR, kNN, SVM and DT. In the first step of
the experiments, we employed the full feature space (42 features) of the UNSW-NB15
for the binary setting and for the multiclass configuration. In the second phase, we
introduced the feature selection method using the XGBoost algorithm. Subsequently,
a reduced feature vector containing 19 attributes (Detailed in Table 3) was generated.
Using the optimal feature vector, we conducted the experiments that involved the binary
classification step along with the multiclass classification procedure. The results of our
experimental processes are listed in Tables 4, 5, 6, 7 whereby Table 4 provides the results
obtained by the ML methods for the binary classification technique using the full feature

(8)Accuracy =
TN + TP

FP + FN + TP + TN

(9)Precision =
TP

TP + FP

(10)Recall =
TP

TP + FN

(11)F1score =2
Precision.Recall

Precision+ Recall

(12)Fβ =
(1+ β2)TP

(1+ β2)TP + βFN + FP

Page 15 of 20Kasongo and Sun J Big Data (2020) 7:105

space of the UNSW-NB15. Table 5 lists the results attained by the ML algorithms for
the binary classification scheme using the reduced feature vector. Tables 6 and 7 list the
results achieved by the ML algorithms for the multiclass classification task using the full
feature space and the reduced feature vector, respectively. In each table, Tr. AC is the
accuracy obtained on training data. Val. AC denotes the accuracy obtained on validation
data and Test AC represents the accuracy obtained on test data.

With regards to ANNs, all our experiments used the Adam solver which is stochastic
gradient-based method that is suitable for large datasets in lieu of the standard Stochas-
tic Gradient Descent (SGD). The ANNs were designed using a single hidden layer that
could have the following number of neurons: hidden_layer_size = {5, 10, 15, 30, 50, 100} .

Table 4 Results using 42 features—binary classification

ML method Tr. AC (%) Val. AC (%) Test AC (%) Precision (%) Recall (%) F1‑Score (%)

ANN 94.49 94.21 86.71 81.54 98.06 89.04

LR 93.22 92.87 79.59 73.32 98.94 84.22

kNN 96.76 93.60 83.18 79.15 94.30 86.06

SVM 70.98 70.63 62.42 60.91 88.58 71.18

DT 93.65 93.37 88.13 83.91 96.47 90.00

Table 5 Results using 19 features—binary classification

ML Method Tr. AC (%) Val. AC (%) Test AC (%) Precision (%) Recall (%) F1‑Score (%)

ANN 93.75 93.66 84.39 78.56 98.53 87.42

LR 89.21 89.25 77.64 73.18 93.74 82.20

kNN 95.86 94.73 84.46 80.31 95.09 87.08

SVM 75.42 75.51 60.89 58.89 95.88 72.97

DT 94.12 93.81 90.85 80.33 98.38 88.45

Table 6 Results using 42 features—multiclass classification

ML Method Tr. AC (%) Val. AC (%) Test AC (%) Precision (%) Recall (%) F1‑Score (%)

ANN 79.91 79.61 75.62 79.92 75.61 76.58

LR 75.51 73.93 65.53 76.91 65.54 66.62

kNN 81.75 76.83 70.09 75.79 70.21 72.03

SVM 53.43 52.67 61.09 47.47 62.00 53.77

DT 77.69 77.38 66.03 79.82 66.04 51.12

Table 7 Results using 19 features—multiclass classification

ML Method Tr. AC (%) Val. AC (%) Test AC (%) Precision (%) Recall (%) F1‑Score (%)

ANN 79.46 78.91 77.51 79.50 77.53 77.28

LR 72.53 71.81 65.29 70.88 65.29 65.96

kNN 82.66 79.87 72.30 77.24 72.30 73.81

SVM 53.60 52.97 61.53 53.95 61.52 51.31

DT 78.75 78.43 67.57 79.66 67.56 69.26

Page 16 of 20Kasongo and Sun J Big Data (2020) 7:105

The learning rate was adaptive. As depicted in Table 4, the ANN network that achieved
the highest performance obtained an accuracy rate of 86.71% over the test set with the
help of 150 neurons at an adaptive learning rate of 0.02.

For the LR method, the random state was set at 10 with a maximum iteration number
of 1000. The results show that it obtained 79.59% and 77.64% of accuracy rates over the
test set with regards to the binary classification utilizing the entire and reduced feature
space respectively as detailed within Tables 4 and 5.

Using the kNN method, we trained multiple models with the number of neighbours
set as follows: number_of _neighours = {3, 5, 7, 9, 11} . The results show that in the case
of the multiclass classification setup, a kNN classifier with 3 neighbours achieved a test
score of 83.18% utilizing the entire feature space. In the instance of the reduced feature
dimension, the kNN method obtained a test accuracy of 84.46% using 9 neighbours
without overfitting.

The SVM method using the Radial Basis Function (RBF) as its kernel obtained a test
accuracy of 62.42% and 60.89% using the full and reduced input space, respectively,
with regards to the binary detection. In contrast, for the multiclass detection, the SVM
obtained test accuracies of 61.09% and 61.53% using 42 and 19 features, respectively. The
tuned parameters of the SVM classifier were as follows: C = 1.12 (regularization param-
eter), gamma = ‘scale’ and kernel = ‘rbf’.

In the case of the DT classifier, we conducted experiments using different mod-
els based on the trees maximum depth. The depth values could assume of the follow-
ing numbers: maximum_depth_values = {2, 5, 7, 8, 9} . The outcome shows that the DT
obtained a test accuracy of 88.13% using 42 features in the instance of the binary clas-
sification setup whereas it obtained a test score of 85.85% utilizing 19 features. The DT
obtained a better test accuracy score compared to other ML methods when running the
binary classification utilizing the entire feature dimension as well as the reduced one.

Discussions

After several iterations of experiments, the majority of ML methods used in this
research improved on their test accuracies for the multiclass classification scheme by
reducing the dimension of the feature vector from 42 to 19. In the instance of ANN,
there has been an increase from 75.62% (42 features with 30 neurons in the hidden layer)
to 77.51% (19 features and 15 neurons in the hidden layer). This shows that using only
the most important features as reduced the complexity of the ANN method by halv-
ing the number of nodes required in the ANN network. This can also be seen in the
trade-off between the precision (75.50%) and the recall (77.53%) through the test set.
This produced a F1-Score of 77.28%. Moreover, the ANN method performed the best
in terms of the AC , the Precision and the Recall obtained on test data. Additionally, a
confusion matrix (Fig. 6) for the ANN multiclass classification process has been com-
puted to evaluate the performance of individual attack classes present in the UNSW-
NB15 whereby class 0 = Normal, class 1 = Generic, class 2 = Exploits, class 3 = Fuzzers,
class 4 = DoS, class 5 = Reconnaissance, class 6 = Analysis, class 7 = Backdoor, class 8 =
Shellcode, class 9 = Worms. The diagonal in Fig. 6 (From the top left to the bottom right)
determines the efficiency of the ANN ML method for each class. The darker the square,
the more accurate the prediction with regards to a given class. The results show that the

Page 17 of 20Kasongo and Sun J Big Data (2020) 7:105

classifier performs well for class 0–5. However, class 7–9 are minority classes within the
UNSW-NB15 and therefore, the classifier underperformed.

In the instance of kNN ML approach, the accuracy for multiclass classification
increased from 70.09% (using the 42 features) to 72.30% (using the 19 features generated
by the XGBoost method) on the test set. Whereas, the XGBoost-LR did not improve on
the accuracy of the stand alone LR (using the full feature vector) for the multiclass clas-
sification schemes as well as the binary one.

In the case of the DT classifier, the test accuracy has increased from 66.03 to 67.57%
using the 42 and 19 features, respectively, for the multiclass classification scheme. More-
over, for the binary classification process, the DT has increased the test accuracy from
88.13 to 90.85% employing the entire and the reduced feature dimensions of the UNSW-
NB15 respectively. The results demonstrated the XGBoost helped in improving the DT
algorithm predictive capabilities.

The use of the SVM method with the optimal input vector (19 features) has resulted in
a test accuracy increase from 61.09 to 61.53% in the instance of the multiclass configu-
ration. Moreover, for the binary classification scheme, the SVM approach increased its
validation accuracy from 70.63 to 75.51%.

Moreover, in comparison to the work presented in [17] whereby the GA-LR-DT
was used; the XGBoost-DT attained a test accuracy score of 90.85% as compared to
81.42% obtained by the GA-LR-DT (input dimension of 20 attributes of the UNSW-
NB15). Furthermore, the results obtained in this paper are superior to those obtained
in [21] whereby the Sigmoid PIO selected 14 optimal features of the UNSW-NB15 and
obtained an accuracy score of 91.30% through the validation dataset. In comparison, the
XGBoost-ANN, the XGBoost-kNN and the XGBoost-DT obtained validation accuracies
of 93.66%, 94.73% and 93.81%, respectively, as detailed in Table 5. Finally, in Table 8, a

Fig. 6 Confusion Matrix: ANN Algorithm

Page 18 of 20Kasongo and Sun J Big Data (2020) 7:105

comparison between the methods proposed in this paper against those surveyed in the
literature show that the DT-XGBoost outperformed all other ML methods for the binary
scheme and in the instance of the multiclass configuration, the ANN-XGBoost was the
better option.

Conclusion
This research explored the application of the XGBoost algorithm for feature selection
in conjunction with multiple ML techniques including ANN, kNN, DT, LR and SVM in
order to implement accurate IDSs. The UNSW-NB15 dataset was utilized to assess the
performance of these methods. In this work, the binary and the multiclass classification
settings were considered. Furthermore, the XGBoost based attribute selection method
was applied over the UNSW-NB15 and as a result, 19 optimal features were selected. To
put our research into perspective, we carried out a thorough literature review whereby
various techniques for feature selection applied to the UNSW-NB15 dataset were
reviewed. Moreover, we compiled a summary of the performance results obtained by
the various classifiers in the literature and we compared them to those obtained in our
proposed methodology. Initially, we carried out the experiments using the proposed ML
approaches over the full feature space of the UNSW-NB15 dataset. Thereafter, we ran the
experiments using the reduced feature vector that was generated by the XGBoost feature
extraction algorithm proposed in this work. The experimental results demonstrated that
using a reduced (optimal) feature vector has its merits in terms of reducing the models
complexity as well as increasing the detection accuracy on test data. A notable instance
is the XGBoost-ANN. It managed to reduce number of neurons in the hidden layer by 50
percent the number of nodes in the stand alone ANN. Moreover, the XGBoost-kNN and
the XGBoost-DT have also registered an improvement of their performance over unseen
data (test data). Additionally, a study of the performance of individual classes within
the UNSW-NB15 using the ANN-XGBoost algorithm demonstrated that this method

Table 8 Methods

ML methods Feature extraction
technique

Training AC (%) Binary AC (%) Multiclass AC (%)

DT [24] IG – – 57.01

J48 [25] PSO-FO-GO-GA 90.48 – –

SVM [25] PSO-FO-GO-GA 90.11 – –

RF [26] FI – – 75.56

Bagging Forest [27] PSO-GA-ACO 91.27 – –

RF [28] IG – 85.78 –

RepTree [29] IGC – 88.95 –

IELM [30] APCA – – 75.36

DBN [31] Corr. – 85.73 –

CNN-BiLSTM [32] O-SS-SMOS – – 77.16

DT XGBoost 94.12 90.85 67.57

ANN XGBoost 94.21 84.39 77.51

LR XGBoost 89.20 77.64 65.29

kNN XGBoost 95.86 84.46 72.30

SVM XGBoost 75.42 60.89 53.95

Page 19 of 20Kasongo and Sun J Big Data (2020) 7:105

performs optimally when predicting the majority classes (class 0–6) and it underper-
forms with regards to the minority classes (class 7–9). In further work, we intend to use
a synthetic oversampling algorithm to increase the occurrence of the minority classes
within the UNSW-NB15 dataset during the training process. Furthermore, we plan to
implement the XGBoost-based feature selection technique utilizing the NSL-KDD data-
set and assess its performance in comparison to existing state of the art methods.
Acknowledgements
Not applicable.

Author’s contributions
SM Kasongo wrote the algorithms related to this research and he interpreted the results that the Machine Learning
based IDS systems generated. YS provided guidance in terms of validating the obtained results. All authors read and
approved the final manuscript.

Funding
This research is funded by the University of Johannesburg, South Africa.

Availability of data and materials
The datasets used during the current study are available in the UNSW repository page, https ://www.unsw.adfa.edu.au/
unsw-canbe rra-cyber /cyber secur ity/ADFA-NB15-Datas ets/ [46].

Competing interests
The authors declare that they have no competing interests

Received: 30 July 2020 Accepted: 6 November 2020

References
 1. Wang Z: Deep learning-based intrusion detection with adversaries. IEEE Access. 2018;6:38367–384.
 2. Kasongo SM, Sun Y. A deep gated recurrent unit based model for wireless intrusion detection system. Cakovec: ICT

Express; 2020.
 3. Ribeiro J, Saghezchi FB, Mantas G, Rodriguez J, Abd-Alhameed RA. Hidroid: prototyping a behavioral host-based

intrusion detection and prevention system for android. IEEE Access. 2020;8:23154–168.
 4. Van NTT, Thinh TN. Accelerating anomaly-based IDS using neural network on GPU. In: 2015 international conference

on advanced computing and applications (ACOMP). IEEE; 2015. pp. 67–74.
 5. Jabez J, Muthukumar B. Intrusion detection system (IDS): anomaly detection using outlier detection approach.

Procedia Comput Sci. 2015;48:338–46.
 6. Neelakantan S, Rao S. A threat-aware anomaly-based intrusion-detection approach for obtaining network-specific

useful alarms. In: International conference on distributed computing and networking. Springer. 2009; pp. 175–180.
 7. Kasongo SM, Sun Y. A deep learning method with filter based feature engineering for wireless intrusion detection

system. IEEE Access. 2019; 7:38597–607.
 8. El Naqa I, Murphy MJ. What is machine learning? In: Machine learning in radiation oncology. Berlin: Springer; 2015.

p. 3–11.
 9. Khatri S, Arora A, Agrawal AP. Supervised machine learning algorithms for credit card fraud detection: a comparison.

In: 2020 10th international conference on cloud computing, data science & engineering (confluence), IEEE; 2020.
pp. 680–83.

 10. Singh P. Supervised machine learning. In: Learn PySpark. Springer; 2019. pp. 117–59.
 11. Harrington P. Machine learning in action. New York: Manning Publications Co.; 2012.
 12. Dong G, Liu H. Feature engineering for machine learning and data analytics. Boca Raton: CRC Press; 2018.
 13. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD interna-

tional conference on knowledge discovery and data mining, 2016; pp. 785–94.
 14. Zhu Z, Ong Y-S, Dash M. Wrapper-filter feature selection algorithm using a memetic framework. IEEE Trans Sys Man

Cybern Part B (Cybern). 2007;37(1):70–6.
 15. Moustafa N, Turnbull B, Choo K-KR. An ensemble intrusion detection technique based on proposed statistical flow

features for protecting network traffic of internet of things. IEEE Internet Things J. 2018;6(3):4815–830.
 16. Moustafa N, Slay J. The evaluation of network anomaly detection systems: Statistical analysis of the unsw-nb15 data

set and the comparison with the KDD99 data set. Inf Secur J A Glob Perspect. 2016;25(1–3):18–31.
 17. Khammassi C, Krichen S. A GA-LR wrapper approach for feature selection in network intrusion detection. Comput

Secur 2017;70:255–77.
 18. Osanaiye O, Cai H, Choo K-KR, Dehghantanha A, Xu Z, Dlodlo M. Ensemble-based multi-filter feature selection

method for DDOS detection in cloud computing. EURASIP J Wirel Commun Netw. 2016;2016(1):130.
 19. Ambusaidi MA, He X, Nanda P, Tan Z. Building an intrusion detection system using a filter-based feature selection

algorithm. IEEE Trans Comput. 2016; 65(10):2986–98.
 20. Ingre B, Yadav A. Performance analysis of NSL-KDD dataset using ANN. In: 2015 international conference on signal

processing and communication engineering systems, IEEE; 2015. pp. 92–6.

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/

Page 20 of 20Kasongo and Sun J Big Data (2020) 7:105

 21. Alazzam, H., Sharieh, A., Sabri, K.E.: A feature selection algorithm for intrusion detection system based on pigeon
inspired optimizer. Expert Syst Appl. 2020;148:113249.

 22. Deng Y, Duan H. Control parameter design for automatic carrier landing system via pigeon-inspired optimization.
Nonlinear Dyn. 2016; 85(1):97–106.

 23. Janarthanan T, Zargari S. Feature selection in UNSW-NB15 and KDDCUP’99 datasets. In: 2017 IEEE 26th international
symposium on industrial electronics (ISIE). IEEE; 2017. pp. 1881–1886.

 24. Kumar V, Sinha D, Das AK, Pandey SC, Goswami RT. An integrated rule based intrusion detection system: analysis on
UNSW-NB15 data set and the real time online dataset. Cluster Comput. 2020; 23(2):1397–1418.

 25. Almomani O. A feature selection model for network intrusion detection system based on PSO, GWO, FFA and GA
algorithms. Symmetry. 2020;12(6):1046.

 26. Khan NM, Negi A, Thaseen IS, et al. Analysis on improving the performance of machine learning models using fea-
ture selection technique. In: International conference on intelligent systems design and applications. Springer; 2018.
pp. 69–77.

 27. Tama BA, Comuzzi M, Rhee, K-H: TSE-IDS: a two-stage classifier ensemble for intelligent anomaly-based intrusion
detection system. IEEE Access 2019; 7:94497–507.

 28. Zong W, Chow Y-W, Susilo W. A two-stage classifier approach for network intrusion detection. In: International
conference on information security practice and experience. Springer; 2018. pp. 329–340.

 29. Belouch M, El Hadaj S, Idhammad M. A two-stage classifier approach using reptree algorithm for network intrusion
detection. Int J Adv Comput Sci Appl. 2017;8(6):389–94

 30. Gao J, Chai S, Zhang B, Xia Y. Research on network intrusion detection based on incremental extreme learning
machine and adaptive principal component analysis. Energies 2019;12(7):1223.

 31. Almogren AS. Intrusion detection in edge-of-things computing. J Parallel Distrib Comput. 2020;137:259–65.
 32. Jiang K, Wang W, Wang A, Wu H. Network intrusion detection combined hybrid sampling with deep hierarchical

network. IEEE Access. 2020; 8:32464–476.
 33. Scikit-Learn, Support Vector Machines. https ://sciki t-learn .org/stabl e/modul es/svm.html. Accessed 25 Sept 2020.
 34. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology

review. J Biomed Inform. 2002;35(5–6):352–59.
 35. Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol

Methods. 2000;43(1):3–31.
 36. Li Y, Yuan Y. Convergence analysis of two-layer neural networks with relu activation. In: Advances in neural informa-

tion processing systems; 2017. pp. 597–607.
 37. Graupe D. Principles of artificial neural networks, vol. 7. Singapore: World Scientific; 2013.
 38. Safavian SR, Landgrebe D. A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern.

1991;21(3):660–74.
 39. Kuang Q, Zhao L. A practical GPU based KNN algorithm. In: Proceedings. The 2009 international symposium on

computer science and computational technology (ISCSCI 2009). Citeseer; 2009. p. 151.
 40. Schouten TE, Van den Broek, EL. Fast exact euclidean distance (feed): a new class of adaptable distance transforms.

IEEE Trans Pattern Anal Mach Intell. 2014;36(11):2159–72.
 41. Moustafa N, Slay J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15

network data set). In: 2015 military communications and information systems conference (MilCIS). IEEE; 2015. pp.
1–6.

 42. Shabtai A, Elovici Y, Rokach L. A survey of data leakage detection and prevention solutions. Berlin: Springer; 2012.
 43. Liu Z, et al. A method of SVM with normalization in intrusion detection. Procedia Environ Sci. 2011;11:256–62.
 44. Scikit-Learn, Gradient Boosting Classifier. https ://sciki t-learn .org/stabl e/modul es/gener ated/sklea rn.ensem ble.Gradi

entBo ostin gClas sifie r.html. Accessed 26 Sept 2020.
 45. Scikit Learn, Machine Learning in Python. https ://sciki t-learn .org/stabl e. Accessed 26 Sept 2020.
 46. UNSW-NB15, Intrusion Detection Dataset. https ://www.unsw.adfa.edu.au/unsw-canbe rra-cyber /cyber secur ity/

ADFA-NB15-Datas ets/. Accessed 26 Sept 2020.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/

	Performance Analysis of Intrusion Detection Systems Using a Feature Selection Method on the UNSW-NB15 Dataset
	Abstract
	Introduction
	Related Work
	Overview of ML Methods
	Support Vector Machine
	Logistic Regression
	Artificial Neural Network
	Decision Tree
	k-Nearest-Neighbour

	UNSW-NB15 Dataset
	The Proposed Approach
	Feature Normalization
	XGBoost Technique

	Experiments, Results and Discussions
	Hardware and Environment Setting
	Performance Metrics
	Experiments and Results
	Discussions

	Conclusion
	Acknowledgements
	References

