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Introduction
Real-time information mining for regression problems involving a huge time series data-
set is becoming an increasingly challenging task in the data mining community. This 
condition has motivated some researchers to develop an incremental algorithm that 
executes fast and is able to accurately adapt to such problems. Adak and Akpinar [1] 
applied a hybrid approach combining the artificial honey bee algorithm and multiple lin-
ear regression for processing time-series datasets. In addition, Aghaborzogi and Wah [2] 
employed a multi-step clustering approach to discover valuable pieces of information 
from big time-series datasets. Such an approach was taken since the classic data min-
ing method proved to be ineffective at processing big time-series datasets that generally 
have large dimensionality, high feature correlation, and vast amounts of noise [2].

Researchers have proposed a number of algorithms to address these issues. An incre-
mental stream mining algorithm that can predict and form model trees was introduced 
by Ikonomovska et al. [3]. This algorithm uses the Standard Deviation Reduction (SDR) 
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as a method to determine the splitting criterion and uses the Hoeffding bound to eval-
uate and determine the mechanism of the tree splitting process [4]. It uses the Binary 
Search Tree (E-BST) as its tree structure and calculates a linear model for the leaves 
using the linear model perceptron. Moreover, the online change detection of this algo-
rithm is measured using Page–Hinckley (Ph) change detection. We have improved the 
accuracy of the fast-incremental model tree with drift detection (FIMT-DD) algorithm 
[5], which was developed by Ikonomovska et al. [3]. The authors suggested using tanh as 
its activation function rather than using a linear activation function.

Zhang presented Bennet-type generalization bounds for a learning process with inde-
pendent and identically distributed (i.i.d.) samples [6]. The authors provide two types 
of Bennet-deviations: the first provides a generalization bound using uniform entropy 
numbers, and the second uses the Rademacher complexity. The results showed that an 
alternative expression that is developed results in a faster rate of convergence than tra-
ditional results. Beygelzimer et al. proposed an online algorithm to develop a logarith-
mic depth tree to predict the conditional probability of a label [7]. The natural reduction 
of the problem is examined to make a set of binary regressions in the form of a tree, 
and then it determines a regret bound that changes based on the depth of the tree. A 
new algorithm framework for non-parametric testing was developed in [8]. The authors 
presented sequential non-parametric testing with the law of the iterated algorithm. The 
novel approach presented in this paper conducts on-the-fly testing computations, which 
take linear time and constant space.

Several researchers use various techniques to assess large datasets. The discovery of 
a connection between the traffic flow and weather parameters is presented in [9]. This 
study constructs a deep belief network architecture to predict the weather and traf-
fic flows. The results of this research showed that the weather data affected the traffic 
flow prediction, and a data fusion technique could increase the accuracy of traffic flow 
prediction.

A technique to predict the traffic flow using deep learning and Dempster–Shafer the-
ory is introduced by Soua et al. [10]. In this research, the authors divided data into two 
categories: event-based data and a data stream. The authors applied deep belief networks 
to predict the traffic flow and Tennet’s wind power plant dataset using the data stream 
and event-based data, and Dempster–Shafer theory was used to renew the belief and 
integrate the results.

We have created a framework to visualize and predict very large traffic flows by using 
the FIMT-DD algorithm. Detailed visualization of the traffic flow and Tennet’s wind 
power plant dataset is developed from the prediction system that has been trained using 
the datasets. The results of the research showed that the accuracy (measurement error) 
of the FIMT-DD algorithm follows a decreasing trend in the stream evaluation process 
[11]. In our previous work, we have also proposed an intelligent system architecture 
based on a verified police department account [12]. The authors described the system 
architecture and algorithm that could be used to classify the street status into the low 
traffic flow, medium traffic flow, or high traffic flow. The authors used a standard neural 
network approach, which is called Learning Vector Quantization, to train the dataset 
and predict the traffic flow for 30–60 min ahead of the current time.
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Another study proposed a mechanism using the first deep architecture model, which 
included stacked autoencoders, to learn the generic traffic flow features to be used in a 
prediction system [13]. The results of the research showed that this method could repre-
sent latent traffic flow. A greedy layer-wise unsupervised learning algorithm was used to 
train the deep network, and the model parameters were tuned to improve the prediction 
performance. The authors’ proposed method is superior to the BP NN, RW, SVM, and 
RBF NN models.

Xia et al. studied traffic flow prediction using a Hadoop architecture [14]. A parallel 
K-Nearest neighbors approach was implemented using the MapReduce mechanism, 
which was used to predict traffic flows. Correlation analysis was also conducted using 
the MapReduce platform. A real-time prediction system was developed using two key 
modules: offline distributed training and online parallel prediction. The result of this 
research showed that the measurement error of the traffic flow prediction using corre-
lation analysis was significantly improved compared to the ARIMA, Naive Bayes, and 
Multilayer Perceptron. Additionally, this method provided a solution that could be 
scaled up because it is implemented in the Hadoop platform.

Hou and Li presented a repeatability and similarity method to predict big traffic data 
in China [15]. By using the repeatability and similarity of the traffic flow, the authors 
were able to combine the predictions of short- and long-term traffic flow forecast-
ing. The results showed that the repeatability and similarity approach could effectively 
observe and predict the traffic flow of big data in China.

The review of the online evaluation of big data stream are compared to identify the 
models by A. Bifet [16]. The utilization of the prequential method to evaluate the result 
is used in this paper. The distributive regression task has been developed and tested 
to get a speedup of 4.7 × execution time compared to the sequential version [17]. The 
development of big data stream architecture for a certain area has been designed [18]. 
Some tools have been recommended to enable big data to be processed, such as Kafka, 
nimbus, zookeeper, Hadoop, and storm.

In this paper, we propose an improved method for big data stream problems. We 
decreased the Mean Absolute Percentage Error (MAPE) by 3% compared to our pre-
vious improvement [19], which used the Chernoff bound approach. Additionally, we 
decreased the MAPE by 12% compared to the standard method [3].

FIMT‑DD algorithm
Currently, datasets are increasing in size. An incremental algorithm to process vast data 
is needed because it is impossible to store and process the whole datasets at once. The 
FIMT-DD algorithm works iteratively based on the instance’s arrival. This algorithm 
decides the best split for all its attributes. It will split attributes if the splitting criterion 
is met. Then, the adaptation strategy will be performed if the local concept drift occurs.

The attribute selection, which is used to determine the best attribute for samples, is 
conducted using the Hoeffding Bound and SDR. In particular, dataset S with the size of 
N  is introduced. Attribute A will split the data into two categories SL and SR with the size 
of NL and NR , respectively, where S = SL U SR and N  = NL + NR . The SDR (hA) is calcu-
lated by Eq. (1).
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It can be observed in Eq.  (2) that the FIMT-DD algorithm preserves the values of 
attributes y and y2. We can see that the real random variable r is the ratio of the SDR 
values for hA and hB ; and its value varies between 0 and 1, depending on if (hA) is the 
best split of attribute A and (hB) is the best split of attribute B.

Then, the evaluation ratio can be obtained by Eq. (3). Each r of each stream can be 
represented by real numbers r1, r2,…, rn. To obtain a high confidence interval of the 
mean random variables, the FIMT-DD uses the Hoeffding bound probability. It ena-
bles us to use 1 – δ, where the value of δ is 5%. This is the average of a random sample 
of N  i.i.d. Variables with range R within a distance ε of the true mean.

Equation (4) can be used to calculate the value of ε.

When values are observed, the value of ε continues to decrease. The sample mean 
will approach the true mean. In this process, the Hoeffding bound contributes to 
decreasing the sum of a random variable’s deviation from its expected value. The 
FIMT-DD algorithm calculates the lower and upper bounds of the estimated sample 
with Eq. (5).

The gradient descent method is used to calculate the weight update for every instance 
in the stream. It uses the linear perceptron to weight the relations among the parame-
ters. The weights are updated regularly for every arrival of new instances. It does not use 
the whole dataset at once to calculate the weights. To be able to obtain the output value, 
every weight is updated using the difference of the normalized attributes ( xi ), the real 
value (y), the learning rate (η), and the output (o). The formula for the weight is given in 
Eq. (6).

Before the learning process, the variables are categorized and changed into binary 
(numerical) variables. The normalization is conducted for all of the attributes. Therefore, 
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all of the attributes will have the same effect in the filtering process. The normalization 
process is conducted incrementally.

Proposed method
We propose modifying the standard forms of the FIMT-DD. We add the distance and 
standard deviation to the Equation. We consider the standard forms of the Hoeffding 
without any loss of generality [20] [21].

Hoeffding bound
The Hoeffding Bound is used in the standard FIMT-DD algorithm. It is defined as the 
following Equation. Let Xi , where i = 1, 2, 3, . . . ,N  , be an independent random variable 

such that PrPr(Xi ∈ [ai, bi]) = 1 . Then, for X =
N
∑

i=1

Xi for all ε > 0 , we have the inequal-

ity in Eq. (7).

Assume 
N
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2 = R2 . Then, we obtain

because PrPr(X − E[X] ≥ Nε) ≤ δ . Thus, we can simplify Eq. (8) into

After solving for ε by taking the logarithm of both sides, we obtain the Hoeffding 
Bound as shown in Eq. (9).

PrPr(X − E[X] ≥ Nε) ≤ exp

(

−2N 2ε2

∑N
i=1 (bi − ai)

2

)

(7)≤ exp

(

−2N 2ε2

∑N
i=1 R

2

)

(8)PrPr(X − E[X] ≥ Nε) ≤ exp

(

−2N ε2

R2

)

δ = exp

(

−2Nε2

R2

)

δ =
1

exp
(

2Nε2

R2

) .

(9)

lnexp

�

2Nε2

R2

�

= ln
1

δ
�

2Nε2

R2

�

= ln
1

δ

ε =

�

�

�

�

�





R2ln
�

1
δ

�

2N





.



Page 6 of 13Wibisono et al. J Big Data            (2020) 7:85 

We propose adding the values of k and m as the modified standard deviation and mean 
distance, respectively. Equation (14) depicts k, which is the actual value of the standard 
deviation d divided by the sum of the actual values y for n instances.

Based on Eq. (15), xi is the feature of the dataset and S is the sum of the value of the 
feature in one instance. In Eq. (16), we obtained f  from the sum of features value S and 
divide it by i , where i is the number of features. m is calculated based on the absolute 
value difference between f  and S divided by f .

Therefore, we modify Eq. (5) as Eq. (19). It is modified with variable k from Eq. (14) 
and m from Eq. (17).

Where ε is the value of the Hoeffding bound.

Results and discussions
In this research, we assessed our approach using three datasets that contain large 
numbers of instances. The first dataset is a traffic demand dataset, the second dataset 
is power system data, and the third dataset is water absorption in Chicago. We evalu-
ate and compare our approach with the standard FIMT-DD algorithm [3], our previ-
ous improvement of the FIMT-DD Chernoff [19], and the current approach (Distance 
Improvement). According to the evaluation metrics (MAE, RMSE, and MAPE), our 
approach gives consistently lower errors compared to previous methods.

The traffic demand data were obtained from the Grab challenge. The goal of this chal-
lenge was to predict the order demand at a specific time and in a specific area. The fea-
tures that are used to predict the traffic demand are the location, which is in the form of 
geocoding (location); day; hour; and minute. All locations have been masked to protect 
user privacy, and the traffic demand values have been normalized from 0 to 1 [22]. The 
number of instances in this dataset is 4,206,332.

The second dataset that we used is the power system dataset provided by the Open 
Power System Data (OPSD) [23]. The dataset used in this research are Tennet’s wind 
power plant dataset from Germany, which consisted of wind power generation data. 
These data were gathered from 2005 until 2018. The size of the dataset is 21.45 MB. The 
dataset contains 435,268 instances. The dataset has 9 attributes, which describe onshore 
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and offshore wind plant’s actual power generation, and also its forecasted figures over 
15 min time intervals.

The third dataset is obtained from sensors that were mounted by the Chicago govern-
ment to measure water absorption from roads and sidewalks [24]. These data can be 
used to measure the development of the green infrastructure against flooding in the city 
of Chicago. The sensors also include sensors to obtain weather information. Each row of 
data represents the measurement results of the sensors for each time, location, and type 
of measurement. The number of instances or rows in these data is 31,642,635 rows. The 
size of this data set is approximately 3.7 GB. We convert timestamps to the day of the 
week format, and we use the period, which is the same as the road weather dataset and 
Traffic Demand Dataset.

We measured the errors from those datasets for every 100,000 instances for the traf-
fic demand data, every 5000 instances for the power system data, and every 100,000 
instances for the infrastructure monitoring data. These measurement points are based 
on the number of instances for each dataset to obtain the best graph visualization. The 
evaluation metrics for the measurement error that we used are the Mean Absolute Error 
(MAE), the Root Mean Square Error (RMSE), and the Mean Absolute Percentage Error 
(MAPE), as described by Eqs. (16), (17), and (18), respectively.

Here, fi is the predicted values, yi is the real values, and N  is the amount of data in each 
stream.

The specifications of the computer that we used for the simulations are an Intel(R) 
Core(TM) i7-6800 K CPU @ 3.4 GHz, 32 GB of RAM, and a 2 TB hard disk drive. We 
modified the code of the FIMT-DD algorithm from the Massive Online Analysis (MOA) 
application. The simulation is conducted on top of the MOA application [25]. The infor-
mation that we measured from the simulation is the measurement errors (MAE, RMSE, 
and MAPE).

In this research, the measured MAEs for those three datasets are described in Fig. 1 
(Traffic Demand Dataset), Fig. 2 (Power System Dataset) and Fig. 3 (Road Weather Data-
set). The STD is used as the identifier for the results that are obtained by using the stand-
ard FIMT-DD algorithm, IM is used as the identifier for the Chernoff-Bound approach 
[19], and ED is the identifier for our new approach (distance value).
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Based on the results of our experiment, our approach can increase the accuracy and 
lower the error of the FIMT-DD algorithm. In the first simulation using the Traffic 
Demand Dataset, the Hoeffding bound MAE-STD is 0.069 at the 4,200,000th instance, 
whereas MAE-IM is 0.049 and MAE-ED is 0.046. Similarly, in the second simulation 
using Tennet’s wind power plant dataset, the maximum MAE-STD is 118.88 at the 
435,000th instance, whereas the MAE-IM and MAE-ED are 94.51 and 74.18, respec-
tively. Moreover, for the simulation using the road weather dataset, MAE-STD is 
10.90 at the 5,000,000th instance, whereas MAE-IM and MAE-ED are 2.38 and 1.12, 
respectively. The MAE-ED for the three datasets is lower than the MAE-STD and 
MAE-IM in every stream evaluation.

Fig. 1 MAEs of the road weather data

Fig. 2 MAE comparison of the traffic demand data

Fig. 3 MAE comparison of the power system data
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In this research, the measured RMSEs for those three datasets are described in Fig. 4 
(Traffic Demand Dataset), Fig.  5 (Power System Dataset) and Fig.  6. (Road Weather 
Data). In the Traffic Demand Dataset simulation, RMSE-STD is 0.12 at the 4,200,000th 
instance, whereas RMSE-IM is 0.088 and RMSE-ED is 0.085. The Tennet’s wind power 
plant dataset simulation results in an RMSE-STD of 380.51 at the 435,000th instance, 
whereas RMSE-IM is 237.03 and RMSE-ED is 165.91. Moreover, for the simulation 
by using the Road weather dataset, RMSE-STD is 23.13 at the 31,600,000th instance, 
whereas RMSE-IM is 14.41 and RMSE-IM is 9.42. Our approach produces a lower 
RMSE-ED compared to RMSE-STD and RMSE-IM in every stream evaluation.

The measured MAPEs for the three datasets described in Fig.  7 (Traffic Demand 
Dataset), Fig.  8 (Power System Dataset) and Fig.  9 (Road Weather Dataset). In the 
Traffic Demand Dataset experiment, MAPE-STD is 1332% at the 4,200,000th instance, 

Fig. 4 RMSE comparison for the traffic demand data

Fig. 5 RMSE comparison for the power system data

Fig. 6 RMSEs of road weather data
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whereas MAPE-IM is 761%, and MAPE-ED is 714%. Additionally, for the Tennet’s 
wind power plant dataset simulation, MAPE-STD is 6.62% at the 435,000th instance, 
whereas MAPE-IM is 5.29%, and MAPE-ED is 4.13%. In addition, for the simula-
tion using the Road Weather Dataset, MAPE-STD is 22.97% at the 31,600,00th, for 
instance, whereas MAPE-IM is 3.57% and MAPE-ED is 3.03%. MAPE-ED results 
in a lower MAPE than the MAPE-STD and MAPE-IM in every stream evaluation. 
Based on the MAPE result, our proposed MAPE-ED gives a lower MAPE compared 
to MAPE-STD and MAPE-IM.  

The differences in MAPE-ED compared to MAPE-IM are 47% for the traffic 
demand data, 1.16% for the power system data, and 0.54% for the road weather data. 

Fig. 7 MAPE comparison of the traffic demanddData

Fig. 8 MAPE comparison of the power system data

Fig. 9 MAPEs of the road weather data
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Comparing our approach with the standard method, the differences in MAPE-ED 
compared to MAPE-STD are 618% for the traffic demand data, 2.49% for the power 
system data, and 19.65% for the road weather data. We use the MAPE to measure 
the error performance in the form of a percentage error. As seen in Figs. 7, 8, and 9, 
the overall MAPE measurements from those three datasets show that our proposed 
method can reduce the error percentage in every stream’s evaluation process.

The comparison summary of MAEs, RMSEs, and MAPEs value of the standard 
method (STD), Chernoff-bound approach, and our improvement (distance variable) are 
described in Table 1. Based on Table 1 result, ED approach gives smaller errors com-
pared to IM and STD method. Also, the evaluation of the real value, predicted value and 
the measurement error show that the distance means approach can accelerate the learn-
ing rate because it causes the tree to split more often in the early stage of the learning 
process.

Conclusion
The FIMT-DD algorithm is a data mining method that enables us to perform data stream 
evaluations. The standard FIMT-DD algorithm uses the Hoeffding bound method for its 
split criterion process. In this study, we evaluate and analyze the Distance Mean and 
Standard Deviation approach for the FIMT-DD algorithm. We evaluate using three big 
time-series datasets, namely, the Traffic Demand Dataset, Tennet’s wind plant power 
generation dataset, and the Road Weather Dataset. In all simulations, our proposed 
approach of the FIMT-DD algorithm can consistently lower the error in every step of 
the learning process compared to the standard method and Chernoff method approach. 
Based on the experiments that we have conducted and the measurement errors that are 
produced, all measurement errors (MAE, RMSE, and MAPE) show that our approach 
has lower measurement errors compared to the previous approaches (Chernoff Bound) 
and the standard method. Our approach (distance mean) contributes by lowering the 
MAPE in every stage of learning by approximately 2.49% compared to the Chernoff 
Bound Method and 19.65% compared to the standard method. In the future, we plan 

Table 1 Summary of MAE, RMSE, and MAPE result

No Dataset STD IM ED

MAE

 1 Road weather data 13.15 2.23 2.29

 2 Traffic demand data 0.06 0.04 0.04

 3 Power system data 118.88 94.51 74.18

RMSE

 1 Road weather data 23.13 9.42 14.41

 2 Traffic demand data 0.12 0.08 0.08

 3 Power system data 380.51 237.03 165.91

MAPE

 1 Road weather data 22.97% 3.57% 3.03%

 2 Traffic demand data 1329.7% 759.30% 714.43%

 3 Power system data 6.62% 5.29% 4.13%
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to optimize and determine which bound is appropriate to be used for certain streams of 
data.

Abbreviation
FIMT-DD: Fast Incremental Model Tree with Drift Detection; MAE: Mean Absolute Error; MAPE: Mean Absolute Percentage 
Error; RMSE: Root Mean Square Error; OPSD: Open Power System Data; SDR: Standard Deviation Reduction.
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