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Introduction
The steady growth of the Internet of Things (IoT) devices has resulted in a massive pool 
of sensing data. These data need to be processed both close to their sources (IoT devices 
or nearby servers) and remote data centres to derive insights that can help formulate 
important, often business-critical or socially impactful, decisions. For instance, sensing 
and processing the location and speed of cars in a city can help understand the mobility 
pattern of users in a city and provide services that monitor and prevent traffic conges-
tions in the city.

Currently, data processing is embodied in data analytics applications (DAAs) that are 
developed and operated via a variety of tools and approaches. The IoT-centric approach 
emphasizes the heterogeneity of devices and software stacks in the IoT domain and 
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addresses those by offering domain-specific languages and tool-kits for developing and 
deploying DAAs in a hassle-free way. This approach has seen relative success in the use 
of graphical mashup tools such as IBM’s Node-RED [2, 3] for composing DAAs by speci-
fying the data flow between pre-existing sensor, actuator, and service components, all in 
a graphical environment that even non experts can use. On the contrary, the Big Data-
centric approach emphasizes the need for scale and flexibility and addresses those by 
offering cluster-based computational frameworks such as Spark [4, 5], Flink [6–8], and 
Kafka Streams [9]. While it lifts some of the current constraints of data flow program-
ming tools (such as difficulty of specifying parallel computations), this approach makes 
it hard for non experts to develop DAAs. In particular, although some of graphical tools 
for developing Spark and Flink applications have started to emerge [10–14], they have 
seen so far limited adoption.

In our work, we aim to combine the intuitiveness and easy of use, brought by IoT 
mashup tools, while not sacrificing the flexibility needed to develop non-trivial DAAs, 
brought by Big Data frameworks. To this end, in the past years, we have investigated the 
paradigms and concepts of both IoT mashup tools and Big Data languages and frame-
works. We have found that the widespread IoT mashup tools, although usually good 
enough for prototyping DAAs, have a number of limitations that prevent their broader 
adoption in real-life scenarios where DAAs are needed  [15, 16]. At the same time, we 
have found that Big Data frameworks would benefit from a graphical frontend, similar to 
an IoT mashup tool, for specifying DAAs.

As a result, we have designed and implemented a new mashup tool for developing 
DAAs called aFlux. aFlux tries to strike a balance between ease of use and flexibility and 
has been designed to allow non experts to specify real-life DAAs via a graphical frontend 
tool. It offers support for both specifying blocking and parallel computations, and offers 
stream processing constructs such as processing windows (present in Big Data frame-
works such as Flink and Spark Streaming). aFlux can be used to specify both actor-based 
Java applications that can run on an IoT device or on a server and Spark and Flink jobs 
that can run on a remote cluster. It therefore provides a common abstraction layer for 
DAAs.

In this paper, we describe the main concepts behind aFlux and focus on the way it 
supports IoT stream processing. We also provide an evaluation of its ability to model 
real-life DAAs related to a traffic analytics case. For a description of how aFlux can be 
used in combination with Spark and Flink, we refer the interested reader to our previous 
papers [17–21].

Structure The rest of the manuscript is structured in the following way: Sect. "Results" 
summarises the important results of the manuscript. Section "Background and related 
work" summarises the background information and the state-of-the-art. Section "aFlux 
concepts and architecture" describes the concepts necessary to overcome the limitations 
prevalent in the state-of-the-art to support high-level composition of stream process-
ing pipelines. Section "Experimental" evaluates the practicality of the built-in parametric 
stream processing concepts via realistic use cases in real-time traffic control of highways. 
Section "Discussion" discusses the results of the experiments. It also compares and con-
trasts the new concepts discussed in the manuscript with the existing state-of-the-art. 
Finally, the manuscript ends with concluding remarks described in Sect. "Conclusion".
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Results
The main contribution of this paper is to propose a novel tool concept to integrate IoT 
mashups and scalable stream processing, based on the actor model. We show that sev-
eral new concepts to control synchronous versus asynchronous communication and 
parallelism are essential for this. Furthermore, we show that several parameters, such as 
the window type and size, impact the effectiveness of stream analytics. Importantly, such 
parameters impact not only the performance of stream processing (e.g. whether data of 
certain size can be processed within a specific time-bound), but also determine the func-
tional behaviour of the system (e.g. whether the logic that is based on stream analytics is 
effective or not).

To summarise, this paper introduces essential concepts to support data analytics in 
flow-based programming paradigm and caters to the research contributions by: 

1	 Designing of new graphical flow-based programming concepts based on the actor 
model with support for concurrent execution semantics to overcome the prevalent 
architectural limitations in the state-of-the-art mashup tools and thereby supporting 
in-built user-configurable stream processing capabilities for simplified in-flow stream 
analytics. The new concepts have been thoroughly compared with all relevant exist-
ing solutions in Sect. "Discussion".

2	 Parametrizing the control points of stream processing in the tool enables non-
experts to use various stream processing styles and deal with the subtle nuances of 
stream processing effortlessly. The effectiveness of parametrization in simplifying 
quick prototyping of stream analytics applications has been validated in a real-time 
traffic use case and discussed in Sect. "Experimental".

In comparison to the paper published at VL/HCC’18 [1], this paper extends the previous 
work by the following additional contributions: 

1	 The experimental section has been extended to include a new stream processing 
method for analysis of mean speed and contains additional analysis of shoulder-lane 
state for all stream processing methods discussed (Sect. "Experimental").

2	 The working concepts for aFlux described very briefly in the conference paper have 
been described in detail. Additionally we describe the state-of-the-art and do an 
extensive qualitative comparison with state-of-the-art here (Sect. "Discussion").

Background and related work
This section describes the concepts necessary to understand the work. It is divided into 
three sub-sections. Sub-section  "Mashups and mashup tools" describes mashups and 
mashup tools while Sub-section  "Stream processing" describes the fundamentals of 
stream processing. Sub-section "Related work" lists the existing relevant works and solu-
tions which aim to support easy development of stream processing applications.
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Mashups and mashup tools

Mashups are defined as a conglomeration of several accessible as well as reusable com-
ponents on the web. The individual conglomerated components in a mashup are known 
as the mashup components while the orchestration of control-flow between the com-
ponents is known as the mashup logic. Typically, the control-flow from one component 
to the next succeeding component invariably includes data-flow after subjected to data 
transformations during the execution of a specific business logic abstracted within the 
mashup component. The components are the building blocks of a mashup, and they can 
provide either logic/functionality in the form of reusable algorithms or data-sets fetched 
from Web APIs or even reusable User-Interface parts to be used in the mashup applica-
tion. A description of how typical mashup functions will make things clear. For instance, 
consider that the soil moisture data is available from an IoT device with the help of REST 
APIs. A user wants to get this data, apply some transformation, check the moisture level 
of the soil and maybe switch on the water sprinkler if it is below a particular threshold 
value. The mashup depicting the flow for this scenario is given in Fig. 1. The “Fn.” block 
in the figure contains code (business logic, illustrated by the “if” block) which accom-
plishes the data transformations as well as houses the business logic. The orchestration 
of 3 components namely data from REST API, a function block and a connection to an 
actuator, i.e. water sprinkler block clearly depicts how the control flows through them 
in a coordinated fashion to achieve specific objectives. These components are generally 
represented by GUI blocks in a mashup tool which must be connected suitably to repre-
sent the entire business logic. Typically, control flow from one component to the next in 
a mashup also includes flow of data subjected to transformations.

Certain mashup tools provide simulation tools and also interoperability for messaging 
between different platforms [22]. Two prominent IoT mashup tools are WoTKit Proces-
sor [23] and Node-RED [2, 3]. WoTKit is a multi-user system for running data flow pro-
grams in the cloud while Node-RED is a tool-kit for developing data flows on devices 
and servers. There are many IoT platforms which include a mashup tool for service 

Fig. 1  Skeleton of a mashup application
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orchestration including glue.things [24], Thingstore [25], OpenIoT [26], ThingWorx [27], 
and Xively [27].

Stream processing

In stream processing, data is not stored; rather, it is analysed as soon as it produced. 
It is the analysis of real-time data-sets called streams. Streams are produced due to a 
number of reasons like user transactions, continuous sensor readings, social media feed 
etc. Stream analytics has a significant business impact in-contrast to batch/traditional 
data analytics. In the case of batch analytics, data is stored and later analysed, thereby 
allowing organisations to react to a past event. In contrast to this, in the case of stream 
analytics, the data is processed as soon as it is produced. This allows to quickly iden-
tify potential problems and mitigate them. Additionally, certain application scenarios are 
feasible only with stream analytics, e.g. updating a driver on the road with current traffic 
situation and suggesting new routes to a destination. Apache Spark and Apache Flink are 
the most popular stream analytics solutions available and leveraged as of today. Table 1 
summarises the main differences between batch and stream processing.

The focus of this paper is working with the core concepts of stream processing like cre-
ation of windows, different types of windows, buffer management strategy etc. which are 
explained in detail in Sub-section "In‑flow stream processing". The paper does not focus 
on the workings of stream analytics suite like Apache Flink or Apache Spark Streaming.

Related work

We did not find any mashup tool or other research works which support generic high-
level programming for stream processing to be used in the context of IoT, i.e. ingest data 
produced from IoT sensors and run analytics on them. Nevertheless, we list the relevant 
solutions aimed to support easy development of stream processing applications but are 
difficult for less-skilled programmers to use due to interaction with low-level internals.

IBM Infosphere Streams: IBM Infosphere®Streams is a platform designed for Big Data 
stream analytics and uses IBM Streams Processing Language (SPL) as its programming 
language  [28]. It is designed to achieve high throughput as well as shorter response 
times in stream analytics. The key idea is to abstract the complexities in developing a 
stream processing application and the aspects of distributed computing by allowing the 
user to use a set of graph operators. The application developed can be translated auto-
matically to C++ and Java. SPL treats the application flow as a streams graph where 
the edges represent continuous streams and vertices represent stream operators. Stream 

Table 1  Batch vs stream processing

Parameters Batch processing Stream processing

Amount of data Big data Small + big data

Type of computation Complex (must access all data) Simple

Focus Latency Throughput

Processing time Collect and process later (Near-) real time

Used by Hadoop mapreduce, spark Spark streaming, flink

Use cases Daily total turnover Instant fraud detection
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operators are either transformers, sources or sinks. It is not designed as a visual-flow 
based language though it models the application in the form of a graph for reasons of 
expressiveness [29]. It is a complete language and not a stream processing library within 
a non-streaming language to have improved type checking and optimisation. SPL has 
2 main elements in its language construct, i.e. streams and operators. Operators with-
out any input streams are called as sources while operators without any output streams 
are called sinks. The operators have their own threading and get executed when there 
is at least one data item in their input stream, i.e. in the edge of the stream graph. The 
data-items leave an operator in the same sequence in which they had arrived after pro-
cessing. SPL is issued to develop streaming applications as well as batch applications 
because both the computing paradigms of Big Data are implemented by dataflow graphs. 
Additionally, SPL allows defining composite operators to support programming abstrac-
tion and enable the development of application involving thousands of operators. It has 
a robust static type system and minimises implicit type conversions. Every operator 
can specify the behaviour of its ports, i.e. port mutability. For instance, an operator can 
define that it does not modify data items arriving on its input port but may permit a 
downstream operator to alter the same. SPL also makes use of control ports in addition 
to input and output ports which are used in the feedback loop. There are three main 
paradigms for stream processing:

Synchronous data-flow (SDF): In this paradigm, every operator has a fixed rate of 
data-output items per input data-items, i.e. both the cardinality of input and output 
sets are static and well-known. Examples include StreamIt [30] and ESTEREL [31]. 
This paradigm is not efficient in real-world scenarios as the input and output sets 
cannot be known in advance, which leads to optimization issues.
Relational Streaming: This paradigm models the relational model from databases 
and allows to use operators like select, join, aggregate etc. on data-items. Exam-
ples include TelegraphCQ [32], the STREAM system underlying CQL (Continuous 
Query Language) [33], Aurora [34], Borealis [35, 36], StreamInsight [37] and SPADE 
(Stream Processing Application Declarative Engine) [38].
Complex Event Processing (CEP): This paradigm treats input streams as raw events. 
It produces output streams as inferred events, i.e. uses patterns to detect and gather 
insights. Examples include NiagaraCQ [39] and the SASE (Stream-based and Shared 
Event processing) [40].

SPL is not based on the SDF paradigm as it allows dynamic input and output rates for 
each operator. It is based on the relational model and can support CEP with the inclu-
sion of a CEP library within an operator.

StreamIt: StreamIt [30] is a dedicated programming language for writing streams 
application following the paradigm of synchronous data-flow stream processing. It 
allows modelling the application in the form of a graph where vertices are opera-
tors and edges represent streams. The most basic operator is a ‘Filter’ which has one 
input and one output port. The rate of data ingestion, as well as data production, is 
static and pre-defined before the execution, which is one of the major disadvantages 
and restricts its usage to real-world scenarios. Additional programming constructs 
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like ‘Pipeline’, ‘SplitJoin’ and ‘FeedbackLoop’ are used in conjunction to a ‘Filter’ to 
form a communicating network. A ‘Pipeline’ is used to define a sequence of streams, 
while a ‘SplitJoin’ is used to split and join streams. Similarly, the ‘FeedbackLoop’ 
operator is used to specify loops in a stream. Representation of a stream application 
via arbitrary graphs, i.e. a network of filters connected via channels is difficult to vis-
ualize and optimize. The main advantage is that it imposes a well-defined structure 
on streams which ensures a well-defined control flow within the stream graph. It fol-
lows the constructs of flow-based programming paradigm. Still, it does not offer any 
high-level graphical constructs to write stream applications.

The QualiMaster Infrastructure Configuration (QM-IConf ) tool:
The QM-IConf tool  [11] supports the model-based development of Big Data 

streaming applications. It introduces a high-level programming concept on top of 
Apache Storm  [41]. It features a graphical-flow based modelling of the streaming 
application in the form of a dataflow graph where vertices are stream operators, 
and edges represent valid dataflow paths. A valid dataflow path from vertex v1 to v2 
ensures that v2 can consume the data produced by v1. The dataflow model, consist-
ing of data sources, sinks and operators, is translated into an executable Storm code. 
Nevertheless, it does not validate its claimed generic modelling approach against 
other streaming frameworks like Flink or Spark Streaming. Additionally, it supports 
only a specific subset of stream analytics operators to be used in the pipeline.

IBM SPSS Modeller: IBM SPSS Modeller provides a graphical user interface to 
develop data analytics flows involving simple statistical algorithms, machine learn-
ing algorithms, data validation algorithms and visualisation types  [42]. SPSS Mod-
eller provides machine learning algorithms developed using Spark MLlib library 
which can be launched on Spark cluster by simply connecting them as components 
in a flow. Although SPSS Modeller is a tool built for non-programmers to perform 
data analytics using pre-programmed blocks of algorithms, it does not support writ-
ing new custom data analytics application.

We compare and contrast these existing solutions with our developed concepts in 
Sect. Discussion.

aFlux concepts and architecture
Existing mashup tools allow users to design data flows which have synchronous exe-
cution semantics. This can be a significant obstacle since a data analytics job defined 
within a mashup flow may consume a considerable amount of time, causing other 
components to starve or get executed after a long waiting time. Hence, asynchronous 
execution patterns are essential for a mashup logic to invoke an analytics job (encap-
sulated in a mashup component) and continue to execute the next components in 
the flow. In this case, the result of the analytics job, potentially computed on a third 
party system, should be communicated back to the mashup logic asynchronously. 
Additionally, mashup tools restrict users in creating single-threaded applications 
which are generally not sufficient to model complex repetitive jobs.
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Requirements
The requirements behind aFlux, i.e. coming up with improved design concepts for 
flow-based programming tools (a.k.a. mashup tools), is to support the following 
concepts: 

1	 support creation of multi-threaded applications (sect.  Programming paradigm for 
multi-threaded applications)

2	 support asynchronous execution of components (sect.  Asynchronous execution of 
components)

3	 concurrent execution of components in flows (sect. Concurrent execution of compo-
nents)

4	 support for modelling complex flows via flow hierarchies (sub-flows) (sect. Logical 
structuring units)

5	 support inbuilt stream processing (sect. In-flow stream processing)
6	 model Big Data analytics via graphical flows and translate the flows to native Big 

Data programs [17, 18, 21]

aFlux has been designed to meet the above requirements that offer several advantages 
compared to existing solutions. It primarily aims to support in-flow Big Data analytics 
when graphically developing services and applications for the IoT. Figure 2 shows its 
graphical front-end used to create services and applications.

In the rest of this Section, the concepts and architectural decisions to support 
requirements 1-5 are reviewed in turn.

Programming paradigm for multi‑threaded applications

Based on previous analysis, we decided to go with the actor model  [43, 44], a para-
digm well suited for building massively parallel  [45, 46], distributed and concurrent 
systems  [47, 48]. Actors communicate with each other using asynchronous message 
passing [49]. The actor model was originally a theoretical model of concurrent com-
putation [50]. The actor model is one of the ways of realizing the dataflow program-
ming paradigm, which is a special case of flow-based programming [51].

Fig. 2  aFlux: Graphical User Interface
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In the actor model (Fig. 3), an actor is the foundation of concurrency or rather like 
an agent which does the actual work. It is analogous to a process or thread. Actors are 
very different from objects because, in an object-oriented programming paradigm, an 
object can interact directly with another object, i.e. changing its values or invoking a 
method. This causes synchronization issues in multi-threaded programs, and addi-
tional synchronization locks are necessary to ensure the proper functioning of the 
program [50]. In contrast to this, the actor model provides no direct way for an actor 
to invoke or interact with another actor. Actors respond to messages. In response to 
a message, an actor may change its internal state, perform some computation, fork 
new actors or send messages to other actors. This makes it a unit of static encapsula-
tion as well as concurrency  [53]. Message passing between actors happens asynchro-
nously. Every actor has a mailbox where the received messages are queued. An actor 
processes a single message from the mailbox at any given time, i.e. synchronously. 
During the processing of a message, other messages may queue up in the mailbox. A 
collection of actors, together with their mailboxes and configuration parameters, is 
often termed an actor system. To summarise, the actor model is based on the follow-
ing principles: 

1	 There is no shared, mutable state between actors. Actors exchange immutable mes-
sages to communicate with each other. Only an actor has access and can control its 
own state.

2	 Each actor has a queue (mailbox) where the incoming messages arrive. The actor 
picks and processes the messages from its queue one-by-one (i.e. synchronously) and 
responds by sending immutable messages to other actors.

3	 Messages are passed between actors asynchronously. This means that the sender 
does not wait for the message to be sent, and it can continue its execution. Messages 

Fig. 3  Actor model: working, as in [52]
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exchanged between actors provide no guarantees on the sequence of arrival and exe-
cution.

4	 Communications between actors are asynchronous and decoupled. This allows the 
actors to run and execute their tasks in different threads. Therefore, they provide a 
concurrent and scalable model.

The main intuition is that when a user designs a flow, the flow is modelled internally in 
terms of actors i.e. an actor is a basic execution unit of the mashup tool. For instance, 
the flow depicted in Fig. 4 corresponds to three actors namely A, B and C with the 
computation starting with actor A. On completion, it sends a message to actor B and 
so on.

In the realization of aFlux, Akka [54], a popular library for building actor systems in 
Java and Scala, has been used. Since Akka can be configured in many different ways 
for parallel and distributed operations and governs how the actors would be spawned 
and executed. This shields the actors from worrying about synchronization issues.

Flow execution

In aFlux, a user can create a mashup flow called flux. A flux is analogous to a flow in 
IBM Node-RED. The only requirement for designing a flux is that it should have a 
start node and an end node. A flux by default is tied down to a logical unit called job. 
Every job can have one or more fluxes. When a job containing a flux like in Fig. 4 is 
designed in aFlux, the control flows through several parties before final execution. 
Firstly, the job must be saved, which allows the mashup tool to parse the flux diagram 
created on the front-end by the user. The parsing involves creating and saving a graph 
model for the job—the Flux Execution Model. The parser does not care how many 
fluxes are present in the job because it scans for special nodes in it. These special 
nodes are start nodes i.e. specialized actors which can be triggered without receiving 
any message. Other nodes are normal actors which react to messages. On detection of 
all start nodes in an activity, the graph model is built by simply traversing the connec-
tion links between the components as designed by the user on the front-end. A flux 
execution model of a job contains as many graphs as the number of fluxes present in 
it.

On deployment, the control flows from the front-end to the controller responsible for 
starting the actual execution of the job. This involves invoking the runner, which fetches 
the flux execution model of the job. For every flux in the job, the runner environment 
proceeds to: 

1	 Identify the relevant actors present in the graph.
2	 Instantiate an actor system with the actors identified in step 1.
3	 Trigger the start nodes by sending a signal.

A B C

Fig. 4  A typical mashup flow, as in [52]
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After this, the execution follows the edges of the graph model, i.e. the start actors upon 
completion send messages to the next actors in the graph, which execute and send mes-
sages to the subsequent actors and so on.

The diagram depicted in Fig. 5 is an Identify, Down, Aid, and Role (IDAR) graph [55] 
which summarizes the execution of a flux consisting of components i.e. actors within 
aFlux. IDAR graphs offer a more simple and understandable way of representing how 
system components communicate and interact in comparison to Unified Modelling 
Language (UML) [55]. In an IDAR graph, objects typically communicate either by send-
ing a command message (control messages) or a non-command message, which is called 
notice. The controlling objects always remain at a higher level in the hierarchy compared 
to the objects being controlled. An arrow with a bubble (circle) on its tail stands for an 
indirect method call while a dotted arrow indicates data-flow. Other subsystems having 
their own hierarchy are represented with hexagons denoting the subsystem manager.

The execution of a flux typically follows the following sequence: 

1	 When the user executes a flux, the main component in the back-end called as ‘aFlux 
Engine’ sends a command to the ‘Flux Repository’ subsystem which reads the stored 
‘flux execution model’ and returns it.

2	 ‘aFlux Engine’ sends a command to the ‘Parser’ subsystem for parsing. The ‘flux exe-
cution model’ is checked for consistency, i.e. if the first component in the flux con-
tains an actor whose ‘method of invocation’ property has been defined as ‘triggered 
by system’. The relevant actors used in the flux are identified, and after completion of 
this operation, the ‘aFlux Engine’ is notified.

3	 The ‘aFlux Engine’ creates an actor system where the actors used in a flux would be 
executed.

Fig. 5  Flow execution in aFlux: IDAR representation, as in [52]



Page 12 of 28Mahapatra ﻿J Big Data            (2020) 7:81 

4	 The ‘aFlux Engine’ instantiates ‘aFlux Main Executor’ by passing the set of actors to 
be executed.

5	 This data flows from ‘aFlux Main Executor’ to ‘Actor System’ where the relevant 
actors are instantiated and the first actor is triggered by the ‘Actor System’.

6	 The first actor completes its execution, notifies to the ‘Actor System’ about its com-
pletion of execution by sending a notification via an indirect method call and at the 
same time sends its output to the next connected actor.

7	 This process is repeated until the last actor. When it notifies the ‘Actor System’ about 
its completion of execution, then the ‘Actor System’ removes all inactive actors and 
frees up memory.

Asynchronous execution of components

Components within aFlux are of two types: synchronous components and asynchro-
nous capable components. Synchronous components block the execution flow, i.e. 
when they receive a message on their input port, they start execution and pass the 
message through their output ports upon completion. On the other hand, asynchro-
nous-capable components have two different types of output ports, namely blocking 
and non-blocking ports (Fig. 6). When these components receive a message on their 
input port, they immediately send a message via the non-blocking port (at most one 
per component) so that components connected to the non-blocking port (i.e. compo-
nents that do not require the computation result of the active component) can start 
their execution. When the component finishes its execution, it sends messages via its 
blocking ports; components connected to these ports can then start their execution. 
This non-blocking execution paradigm helps the end-user to asynchronously execute 
time-consuming parts of the mashup flow while ensuring other components do not 
get starved from execution for a longer time period.

Fig. 6  Executable components in aFlux
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Concurrent execution of components

Every component in aFlux has a special concurrency parameter attached to it which can 
be configured by the user while designing a flux. The idea is that in an actor system, 
every actor processes one message at a time. During its processing, new messages are 
queued on their arrival. To avoid this and facilitate faster processing, every component 
in aFlux can be made to execute concurrently by specifying the upper threshold value 
of concurrency. If a component has concurrency level of n, messages arrive quickly, and 
the component takes quite some time to process a message, then the actor system can 
spawn multiple instances of that component to process the messages concurrently up-to 
n or up-to-the global threshold value defined in the system, whichever is minimum. 
Beyond that, the messages are queued as usual and processed whenever any instance 
finishes its current execution. This specification of concurrency parameter is applicable 
to individual components as well as sub-flows in aFlux and is decided by the user creat-
ing a flux. In the case of sub-flows, basically, all the components used within it adhere 
to the concurrency limit of the sub-flow which means that the actor system can spawn 
multiple instances of every component used inside the sub-flow as the need arises dur-
ing run-time.

Logical structuring units

To abstract away independent logic within a main application flow, the system supports 
logical structuring units called sub-flows. A sub-flow encompasses a complete business 
logic and is independent of other parts of the mashup. A good candidate for a sub-flow 
is for example a reusable data analytics logic which involves specifying how the data 
should be loaded and processed and what results should be extracted. Sub-flows in the 
system are like normal asynchronous-capable components. They have input and two 
sets of output ports (i.e. blocking and non-blocking). They encompass within themselves 
a complete flow of graphical components.

In‑flow stream processing

The flow-based structure of mashup tools, i.e. passage of control to the succeeding com-
ponent after completion of execution of the current component is very different from 
the requirements of stream processing where the component fetching real-time data 
(aka the listener component) cannot finish its execution. It must listen continuously 
to the arrival of new datasets and pass them to the succeeding component for analysis. 
Also, the listener component has many behavioural configurations which decide when 
and how to send datasets to the succeeding component for analysis.

In aFlux, the actor model has been extended to support components which need to 
process streaming data. The implementation of streaming components relies on the 
Akka streams library, an extension of the Akka library. Applications based on Akka 
streams are formulated as building blocks of three types: source, sink, and flow. The 
source is the starting point of the stream. Each source has a single output port and no 
input port typically. Data is fetched by the source using the configuration parameters 
specified, and it comes out from its output and continues to the next component that 
is connected to the source. The sink is basically the opposite of the source. It is the 
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endpoint of a stream and therefore consumes data. Basically, it is a subscriber of the 
data sent or processed by a source. The third component, the flow, acts as a connector 
between different streams and is used to process and transform the streaming data. 
The flow has both inputs and outputs. A flow can be connected to a source, the out-
come of which results in a new source or even after a sink which creates a new sink. A 
flow connected to both a source and a sink results in a runnable flux (Fig. 7), which is 
the blueprint of a stream.

Each streaming component in aFlux offers a different stream analytics functional-
ity (e.g. filter, merge) and can be connected to other stream analytics components or 
to any common aFlux component. The stream analytics capabilities make use of three 
categories of components, i.e. fan-in, fan-out and processing components. Fan-in oper-
ations allow joining multiple streams into a single output stream. They accept two or 
more inputs and give one output. Fan-out operations allow splitting the stream into sub-
streams. They accept one stream and can give multiple outputs. Processing operations 
accept one stream as an input and transform it accordingly. They then output the modi-
fied stream, which may be processed further by another processing component. The 
transformation of the stream is done in real-time, i.e. when the stream is available on 
the system for processing and not when it is generated at the source. Every component 
is internally composed by a source, a flow and a sink. When a component is executed 
by aFlux, a blueprint that describes its processing steps is generated. The blueprints are 
only defined once, the very first time the component is called, e.g. create a queue where 
the new incoming elements of the stream get appended for a component to process.

Every stream analytics component has some attributes that can be adjusted by the user 
at run-time. For example, for the processing components, the user can optionally define 
windowing properties such as window type and window size. The internal source of 
every stream analytics component has a queue (buffer), the size of which can be defined 
by the user (default is 1000 messages). The queue is used to temporarily store the mes-
sages (elements) that the components receive from its previous component in the aFlux 
flow while they are waiting to get processed. Along with the queue size, the user may 
also define an overflow strategy that is applied when the queue size exceeds the speci-
fied limit. Figure 8 shows the interface of aFlux where the user can define buffer size and 
overflow strategy. The overflow strategy determines what happens if the buffer is full, 
and a new element arrives. It can be configured as: 

drop buffer:	� drops all buffered elements to make space for the new element.
drop head:	� drops the oldest element from the buffer.
drop tail:	� drops the newest element from the buffer.
drop new:	� drops the new incoming element.

Fig. 7  Runnable flux with streaming actors, as in [52]
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The internal flow part of a streaming component describes its logic and defines its 
behaviour. This is where the whole processing of messages takes place. The source sends 
the messages directly to the flow when it receives them. As soon as the processing of 
a message has finished, the result is then passed to the sink. By default, the analysis of 
messages is done in real-time, and each message is processed one-by-one (e.g. count 
how many cars have crossed a given junction). However, the user can also select win-
dowing options.

Figure 8 shows the interface of aFlux where the user can define windowing properties. 
The implementation supports content-based and time-based windows. For both of these 
types of windows, the user can also specify a windowing method (tumbling or sliding) 
and also define a window size (in elements or seconds) and a sliding step (in elements or 
seconds).

In a nutshell, a window is created as soon as the first element that should belong to this 
window arrives, and the window closes when the time or its content surpasses the limit 
defined by the user. A window gathers all messages that arrive from the source until it is 
closed completely. Finally, the component applies the required processing on the data in 
the window. It passes the result(s) to the sink. The first thing is to choose whether the 
window should be content or time-based. A content-based window has a fixed size of a 
number of elements n. It collects elements in a window and evaluates the window when 
the nth element has been added. On the other hand, a time-based window groups ele-
ments in a window based on time. The size of a time window is defined in seconds. For 
example, a time window of size 5 seconds will collect all elements that will arrive in 5 
seconds from its opening and will apply a function to them after 5 seconds have passed.

In stream analytics, there are different notions of time like: 

processing time:	� windows are defined based on the wall clock of the machine on 
which the window is being processed.

event time:	� windows are defined with respect to timestamps that are attached 

Fig. 8  aFlux GUI to specify buffer size, overflow strategy & window parameters, as in [52]
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to each element.
hybrid time:	� combines processing and event time.

 In the current implementation, the processing time is used to interpret time in our pro-
cessor. For instance, a time window of size 60 seconds, will close exactly after 60 sec-
onds. After deciding on using content or time windows, the user has to decide how to 
divide the continuous elements into discrete chunks. Here the user has the following two 
options. The first is tumbling window, where stream elements are divided into non-over-
lapping parts, and each element can only belong to a single window. The second option 
is a sliding window, which is parametrized by length and step. These windows overlap, 
and each element may belong to multiple windows. Windows can be either tumbling 
or sliding. A tumbling window tumbles over the stream of data. This type of window is 
non-overlapping, which means that the elements in a window will not appear in other 
windows. A tumbling window can be either content-based (e.g. “Calculate the average 
speed of every 100 cars”) or window-based (e.g. “Find the count of tweets per time zone 
every 10 seconds”) whereas a sliding window slides over the stream of data. Due to this 
reason, a sliding window can be overlapping, and it gives a smoother aggregation over 
the incoming stream since it does not jump from one input set to the other, but it slides 
over the incoming data. A sliding window has an additional parameter which describes 
the size of the hop. A sliding window can as well be either content-based (e.g. “For every 
10 cars calculate the average speed of the last 100 cars”) or time-based (e.g. “Every 5 sec-
onds find the count of tweets per time zone in the last 10 seconds”). Thus if the sliding 
step is smaller than the window size, elements might be assigned to multiple successive 
windows. The tumbling window can be conceived as a special case of a sliding window, 
where the window size is equal to the sliding step. Therefore, it does not make any sense 
to define a sliding step for a tumbling window.

The sink is the final stage of a stream analytics component. The sink gets the results 
from the flow and decides the final outcome. In this case, the results need to be sent to 
the next component in the flux because the components should be able to pass messages 
to each other.

Experimental
The experimental has been designed to capture that writing a performant stream ana-
lytics application is always use-case specific and takes a few iterations. We aim to sim-
plify this by not requiring the user to write any code, select parameters easily for stream 
analytics and thereby support quick prototyping. An open-source traffic simulation soft-
ware by the name SUMO [56] has been used to demonstrate the stream processing capa-
bilities of aFlux. The data generated from the system is random, making it a perfect fit 
for real-time analytics and the results of the analytics affect the system performance, i.e. 
traffic congestion in SUMO. For the evaluation purposes, the traffic of A9 highway1 near 
Munich has been used for simulation. TraCI  [57], a python-based interface, has been 
used for data-exchange between SUMO and Kafka [58–60].

1  A9 public GitHub project, available at https​://githu​b.com/ilias​ger/Traff​ic-Simul​ation​-A9.

https://github.com/iliasger/Traffic-Simulation-A9


Page 17 of 28Mahapatra ﻿J Big Data            (2020) 7:81 	

Scenario: In the scenario, all cars run on a straight line on the A9 highway and in the 
same direction from south to north. At a certain point on the highway, there are four 
lanes, three of which possess a loop detector (see Fig. 9). Loop detectors measure the 
occupancy rate (0-100) on the lane, i.e. how long was a car placed on the loop detec-
tor during the last tick (one tick equals to one second of simulation time in SUMO). A 
high occupancy rate signals a more busy lane and therefore, the possibility of traffic con-
gestion. The fourth lane of the highway, further referred to as shoulder-lane, is initially 
closed, which means that no cars can run on it. However, if the total average of the occu-
pancy rates of the three other lanes exceeds the threshold of 30, the shoulder-lane opens 
to reduce the traffic. When the average of the occupancy rates falls below 30, the shoul-
der-lane closes again. On the 500th tick of the simulation, it is assumed that a car acci-
dent happens. A lane, ahead of the four previously mentioned lanes, gets closed at the 
same moment and remains closed for the rest of the experiment. This builds up conges-
tion on the highway, causing the occupancy rates of the loop detectors to increase and 
makes it meaningful to open the shoulder-lane at some point to alleviate the congestion.

Goal: The goal of this experiment is to compare different stream processing methods 
on data coming from the simulation environment. Notably, the one-by-one method for 
processing data, tumbling window processing with three different window sizes (50, 300 
and 500) and sliding window processing are compared. The user can define the method 
of data processing and change various associated parameters on aFlux UI. The loop 
detector occupancy, lane state, mean speed of cars and time values from SUMO are cap-
tured via TraCI and published to Kafka. The lane state is a binary value that indicates 
the state of the shoulder-lane at the current tick(0 means closed and vice-versa). Mean 
speeds are used as an indicator of traffic congestion, i.e. a low mean speed on a lane indi-
cates traffic congestion. The average mean speeds of the three lanes are plotted to dem-
onstrate the effect of the shoulder-lane in the relief of traffic congestion. Finally, time 
measures the duration the shoulder-lane state takes to reach 1 for the first time and the 
duration it needs to reach 0 again for the last time. This factor indicates the responsive-
ness of each method on traffic changes, e.g. how fast the system perceives and reacts 

Fig. 9  The 4 lanes used in the experiment. Each of the 3 left lanes possess a loop detector. The 4 th lane is 
initially closed
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to traffic congestion. All runs of the experiment are based on the same conditions. The 
routes of the cars and the way that they are simulated in the simulation have the same 
randomness for all runs; therefore do not impact the experiment results. The only fac-
tor that influences the results of the experiments is the decision to open and close the 
shoulder-lane.

Flow-based data analytics: For the reliability of the results, the experiment has been 
run twice for every stream processing method. In order to make decisions to change 
the state of the shoulder-lane based on the occupancy of the loop detectors, a flow in 
aFlux has been designed (Fig. 10). The first component of the flow is a Kafka subscriber 
that listens to the topic where TraCI publishes the occupancy rates of each loop detec-
tor on every tick. The data is parsed using a JSON parser, and the results are passed to 
the moving average component. The moving average component receives the occupancy 
values and calculates their average on real-time and based on the user-specified method 
(windowing or simple processing). The results are then passed to the binary value com-
ponent, which outputs 0 if the average is below the user-defined threshold (e.g. 30) or 
1 otherwise. Finally, the result is transformed into a JSON file and published to a Kafka 
topic, where TraCI listens, to decide whether to open or close the shoulder-lane.

Evaluation parameters: The data coming from SUMO is analysed in several stream 
processing methods via a number of configurable parameters. The result of such analyt-
ics affects the performance of the system, i.e. SUMO. To measure the effect on system 
performance, the following aspects are considered: 

Responsiveness	� indicates how fast the system can detect traffic congestion and open 
the shoulder-lane to alleviate it.

Settling time	� refers to the time the system needs to reach a steady state  [61]. In 
the experiment, the shoulder-lane may open and close successively. 
We define the settling time as the time the shoulder-lane needs to 
reach a steady-state after a change occurs. It is estimated based on 
the shoulder-lane state parameter.

Stability	� refers to the ability of the system to reach a stable state without over-
shoots when a change occurs. Overshoot occurs when the system 
exceeds a certain target point before convergence [61]. In our case, 
stability is tested when the shoulder-lane changes state. Stability is 
in inverse proportion to settling time, i.e. short settling time infers to 
higher system stability.

The occupancy rates of the loop detectors have not been considered for result-analysis 
since they are used to make decisions in aFlux, and the focus is to examine the impact of 
these decisions to other factors in a traffic system.

Analysis of Mean Speed:

Fig. 10  aFlux flow used in the experiment - subscribes to a Kafka topic that publishes the occupancy rates of 
loop detectors and calculates their moving average in real-time
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First, for every processing method, the average of the mean speeds of the cars moving 
on the 3 previously mentioned lanes, per tick is analysed. The mean speed of the vehicles 
running on a lane at a certain point of time discloses information about the current con-
gestion of this lane. Through this analysis, the responsiveness of each method to changes 
and their effectiveness to solve a problem is determined; in this case, to alleviate the traf-
fic congestion.

From Fig. 11 (a) when the accident happens at tick 500, the average mean speeds of 
cars moving on the 3 particular lanes that we examine, falls significantly. This means that 
congestion starts to build-up on these lanes. The loop detectors send their occupancy 
rates to aFlux every tick, and they are getting averaged by the moving average compo-
nent one-by-one. Since we do not use any window to process the incoming data, each 
average occupancy value depends on all previous occupancy values, even on the low 
occupancy rates before the accident. As a result, the moving average value cannot reflect 
new environment changes fast enough and hence it reaches the threshold of 30 on the 
3020th tick for the first time to open the shoulder-lane. By observing the Fig. 11 (a) one 
can see an up-trend of the average speeds on the 4600th tick, but the moving average 
value falls below 30 only on the 5680th tick for the last time when the shoulder-lane gets 
closed as well, a fact that shows a slow reaction time.

Figure 12 (a) shows the average mean speeds of the lanes when using a content-based 
tumbling window of size 50 to process the occupancy rates of the loop detectors. Using 
a window of size 50 means that only the 50 latest occupancy values are aggregated and 
averaged and that the average does not keep the state of the previous values. We con-
sider 50 to be a small window size, as it lasts for about 17 ticks. The difference in reaction 
time to non-window processing is significant since the system perceives much earlier 
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the traffic congestion and opens the shoulder-lane on tick 1620 for the first time. When 
the traffic congestion is alleviated, the system closes the shoulder-lane on the 4145th tick 
which is also a much faster reaction in comparison to 5680 ticks that it took for the non-
window processing.

Figure 12 (b) depicts the average mean speeds of cars when using a content-based tum-
bling window of size 300. Using this method, the system opens the shoulder-lane on tick 
1970 and closes the shoulder-lane on the 4715th tick for the last time. This processing 
method responds to changes faster than the no-window processing but a bit slower than 
the tumbling window of size 50. This performance is expected since a larger window size 
takes longer to aggregate more values (100 ticks) and hence adapts slower to changes in 
comparison to smaller window sizes. In Fig. 12 (c), we present the results of the tum-
bling window with size 500 (167 ticks). In comparison to window size 300, this process-
ing method is slightly slower (shoulder lane opens at tick 1979 and closes at 4391). The 
distribution of the mean speeds is quite similar to window size 300 though which sug-
gests that the system shows similar behaviour in both cases. Figure 12 (d) shows a slid-
ing window of size 500 with a sliding step of 250. The difference of the previous window 
processing is that the sliding window takes into consideration the previous state as well 
by overlapping on previous values. In our case, the sliding window overlaps the 250 lat-
est elements of the previous window. In general, a sliding window gives smoother and 
in some cases faster results, since it is moving faster (emits more values than a tumbling 
window). By comparing the figures of the sliding and tumbling window of size 500, one 
can observe that the distribution of the average of the mean speeds is quite similar in 
both graphs. The sliding window seems to be faster in opening the shoulder lane for the 
first time (tick 1810), but it is a bit slower in closing it (tick 4652). We consider this dif-
ferentiation to be dependent on the variation of data in each experiment.
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Analysis of Shoulder-lane state: The shoulder-lane state depends entirely on the aver-
age of the occupancy rates of the lanes. If the average occupancy rate is above 30 the 
shoulder-lane state turns to 1 (lane opens) otherwise it is 0. The analysis of the state 
of the shoulder lane shows the variability of each method. When the occupancy rate 
reaches 30, it may climb above 30 (overshoot). Then it may fall below 30 (undershoot) 
again on the next tick. In control theory, overshoot refers to an output that exceeds its 
target value. In contrast, the phenomenon where the output is lower than the target 
value is called undershoot. In our case, it is reasonable to have an overshoot as we expect 
the occupancy rates to rise above 30. Still, here we want to examine the overshoot fol-
lowed by an undershoot ratio which leads to an unstable state where the shoulder-lane 
opens and gets closed on successive ticks. We also focus on the settling times of each 
method. A stable system must have short settling times [62], i.e. converge quickly to its 
steady value, and must not overshoot.

Figure  11 (b) shows the variation of the state of the shoulder lane when occupancy 
rates are processed one-by-one. On tick 3020 the lane opens for the first time, and we 
observe an overshoot-undershoot case which lasts for 3 ticks before the lane state value 
settles on 1. Thus, the settling time when the shoulder-lane opens for the first time is 
3 ticks. When the traffic is about to be alleviated, and just before the shoulder-lane 
closes for the last time on tick 5680, we see another overshoot-undershoot incident with 
a longer settling time. Concerning the variation of the shoulder-lane state, Fig.  13 (a) 
shows that this particular method has much overshoot and undershoot incidents caus-
ing the shoulder-lane to open and close many times successively. This fact implies an 
unbalanced system with long settling times. We can attribute this lack of stability to the 
small window size, which is sensitive to the behaviour of a small sample of data. Fig-
ure 13 (b) depicts the shoulder-lane states during the experiment. In this method, there 
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is no big variation between the states and almost no overshoot-undershoot incidents. 
The settling time is short, and the system seems to be balanced. The big window size 
allows the system to make a decision, based on a bigger sample of data and hence it is 
more stable than the two previously mentioned methods.

In Fig. 13 (c), the results of the tumbling window with size 500 can be seen. This win-
dow size is considered very big, and it is used as an extreme case here. As expected, there 
are no overshoot-undershoot incidents, and the system seems to be very balanced. The 
shoulder-lane opens and closes only once when needed, and there is no settling time. 
This is the best window size compared to the previous one. In the following section, we 
will examine the same window size for the sliding version of the tumbling window. Fig-
ure 13 (d) shows the results of the sliding window with size 500 and sliding step 250. As 
expected, there are no overshoot-undershoot incidents here as well, and the system is 
balanced. The shoulder-lane opens and closes only once when needed, and there is no 
settling time. This figure is quite similar to the corresponding one of the tumbling win-
dow, which implies that there no big difference between a tumbling and a sliding win-
dow in this case concerning the stability of the system.

Discussion of the experimental results

The results of various stream analytics methods based on their performance in solving a 
traffic control problem in real-time are summarized in Table 2. By observing the table, 
two points become evident: (i) stream processing can be done in various ways, (ii) these 
methods perform differently thereby affecting the final outcome and performance of 
the application. For instance, in the above traffic use-case a small window processing 
method, like the tumbling window of size 50, showed very good responsiveness as it was 
the fastest method to open and close the shoulder-lane when traffic congestion occurred. 
Still, it showed poor stability since its settling times were the longest of all five methods. 
On the other hand, the no-window processing method is the slowest method to perceive 
and respond to a change in the environment (e.g. traffic congestion). This method also 
has low stability since it is prone to long settling times and overshoot-undershoot inci-
dents. From Table 2, it can be stated that the most efficient method to control traffic in 
our scenario is a tumbling window of normal size (not too big or small). Still, it will take 
further iterations to define the ideal window size.

What has been evaluated? First, When data needs to be processed in real-time, and 
the result of such analysis impact the final outcome, i.e. performance of the applica-
tion, there is no easy way to know the right stream processing method with the cor-
rect parameters. Hence, it becomes very tedious to manually write the relevant code and 

Table 2  Stream analytics method characteristics

Method Responsiveness Settling time Stability

No window Very slow Long Low

Tumbling window 50 Very fast Very long Very low

Tumbling window 300 Slow Very short High

Tumbling window 500 Slow None Very high

Sliding window 500 Slow None Very high
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re-compile every time a user wants to try something new. By parametrizing the control-
ling aspects of stream processing, it becomes easy for non-experts to test various stream 
processing methods to suit their application needs.

Overall, the following aspects of aFlux have been captured via the example — the inte-
grated stream processing capabilities in a flow, parametrization of the buffer capacity 
and overflow strategies and modelling of different kinds of window methods to process 
data, i.e. tumbling and sliding windows. Second, having stream processing components 
within aFlux allows users to quickly prototype their stream processing applications 
without relying on external stream processing suites. It becomes easier to prototype 
streaming applications, test them and finally port them to stream analytics suites like 
Flink. Third, the concurrent execution semantics of aFlux fits really well to real-world 
scenarios as shown in Fig. 14. If we have traffic data coming from all over the city, the 
streaming processing component can be made to execute concurrently to handle those 
transactions very quickly and efficiently. Last, the user can also monitor the impact of 
the streaming pipeline on the application by running a monitoring process asynchro-
nously, as shown in Fig.15.

Discussion
This section compares our concepts (as in aFlux) with exiting solutions supporting flow-
based stream analytics. In Sect. Related work, we have discussed relevant existing solu-
tions which deal with supporting flow-based data analytics, mainly stream processing. 
The relevant and comparable tools include StreamIt, IBM Streams Processing Language 
or the IBM Infosphere Streams, QM-IConf and IBM SPSS modeller. We also consider 
Node-RED for comparison as it is one of the prominent platforms used for flow-based 
programming in the context of IoT and is widely supported by IBM.

Fig. 14  Concurrent processing of streaming data

Fig. 15  Asynchronous processing of streaming data
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First, we begin by defining the scope and the parameters to compare. Figure 16 shows 
the model of a streaming application. This model is also known as dataflow model. 
Every stream application in high-level programming tools is modelled as a dataflow 
graph where vertices represent operators and edges represent valid dataflow pathways. 

Table 3  Comparison of aFlux with existing solutions, as in [52]

Tools Concurrent 
execution

Data 
analytics app. 
development

Flows 
with built-in 
stream 
processing

Execution 
of each 
component 
in separate 
threads

Scaling 
up of individual 
components

Parametrization 
of component 
buffer

Streaming 
paradigm

aFlux Yes Batch jobs. 
Streaming 
is a special 
case

Yes Yes Yes Yes Actor model 
with sup-
port for 
CEP and 
relational 
streaming 
paradigm

StreamIt Yes Streaming only. 
Batch is a 
special case

No Unknown No No Synchronous 
dataflow 
paradigm

IBM Info-
sphere 
Streams

Yes Streaming only. 
Batch is a 
special case

No Yes Unknown No Relational 
streaming 
paradigm 
with sup-
port for 
CEP

IBM SPSS Yes Streaming only. 
Batch is a 
special case

No Unknown No No Appears to 
follow 
relational 
streaming 
paradigm

QM-IConf No Streaming only. 
Batch is a 
special case

No No No No Relational 
streaming 
paradigm

Node-RED No No support for 
streaming

No No No No Not Appli-
cable

Fig. 16  Streaming application modelled as a dataflow graph with vertices representing operators and edges 
representing dataflow pathways, as in [52]
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Operators can either be data sources, data sinks or data transformers. The edge between 
two operators has a channel capacity Accordingly, we compare the following key param-
eters between the solutions (Table 3 summarises the compared parameters):

Concurent execution of components: aFlux is based on actor-model hence it sup-
ports concurrent execution semantics, i.e. one operator in the dataflow graph can 
start its execution in parallel before the finish of its predecessor. All tools with excep-
tion of Node-RED and QM-IConf support asynchronous execution of data operators 
in the dataflow graph. The second column in Table 3 lists this criterion.
Data analytics application development: A second criterion for comparison is the 
kind of data analytics application that can be developed using these tools. The third 
and fourth column in Table 3 list this criterion. aFlux relies on asynchronous mes-
sage passing techniques to model the dataflow graph and extends the actor model 
to support continuous streaming of datasets. This allows a user to model batch ana-
lytics application, a completely streaming application or a batch application with 
some components doing stream analytics. Streaming is considered as a special case 
in aFlux while other platforms treat modelling of batch jobs as a special case. Other 
solutions are stream only platforms and are not designed to specify batch analytic 
jobs though they can be modelled as both stream and batch analytics rely on the 
dataflow paradigm [63].
Component execution and scaling: One of the important criterion for comparison 
is to see if the individual components used in an application flow are executed in 
separate threads and can scale. The fifth and sixth column in Table 3 list this crite-
rion. Since operators, i.e. components in aFlux, are independent from other compo-
nents it supports scaling up of instances of a specific component. Additionally, each 
actor instance of the same component is a different unit of computation hence boots 
performance. Other solutions do not support scaling up of instance of a component 
if the data load increases. Nevertheless, IBM Infosphere Streams specifies separate 
thread of execution for each data operators in a dataflow graph.
Parametrisation of Buffers and overflow strategy: The streams of data travelling 
from one operator to another are stored in a buffer queue before being processed. 
Customisation of this buffer is an important parameter for comparison. The seventh 
column in Table  3 lists this criterion. aFlux supports parametrisation of this buffer 
and specify over-flow strategies. This concept is non-existent in all existing solution 
and from the experimental in Sect. Experimental it is clear that optimisation of this 
aspect affects the performance of the streaming application.
Stream processing paradigm: The eighth column in Table  3 lists the criterion of 
streaming paradigm the tool is built upon. There are three major stream processing 
paradigms: (i) synchronous dataflow where the data ingestion and data production 
rates are predefined which makes it unrealistic in real-world use cases, (ii) relational 
paradigm which relies on the concept of relational databases to process streams 
which simplifies stream processing and (iii) complex event processing paradigm in 
which operators detect patterns in input streams and infer outputs. Platforms sup-
porting relational are easier to model stream applications, scale-well while the com-
plex event processing paradigm permits to model complex streaming applications. 
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aFlux supports the relational and the complex event processing paradigm while 
StreamIt supports only synchronous dataflow paradigm.

Conclusion
In this paper, we described the requirements, main concepts, and architectural decision 
behind aFlux, a new mashup tool for graphical composition of Data Analytics Appli-
cations (DAAs). aFlux is inspired by IoT mashup tools such as NodeRED and tries to 
provide a common abstraction layer for the development of DAAs that combines flow-
based programming with Big Data analytics. Since it can be used for specifying paral-
lel and asynchronous computations and it provides several built-in stream processing 
capabilities, aFlux can be used for developing complex, real-life DAAs. We have demon-
strated its usage and provided initial evidence of its effectiveness in composing stream 
processing pipelines from an end user perspective in a traffic use case. In the future, we 
would like to evaluate its usability in a user study.
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