
Composing high‑level stream processing
pipelines
Tanmaya Mahapatra1,2* 

Introduction
The steady growth of the Internet of Things (IoT) devices has resulted in a massive pool
of sensing data. These data need to be processed both close to their sources (IoT devices
or nearby servers) and remote data centres to derive insights that can help formulate
important, often business-critical or socially impactful, decisions. For instance, sensing
and processing the location and speed of cars in a city can help understand the mobility
pattern of users in a city and provide services that monitor and prevent traffic conges-
tions in the city.

Currently, data processing is embodied in data analytics applications (DAAs) that are
developed and operated via a variety of tools and approaches. The IoT-centric approach
emphasizes the heterogeneity of devices and software stacks in the IoT domain and

Abstract 

The growing number of Internet of Things (IoT) devices provide a massive pool of sens-
ing data. However, turning data into actionable insights is not a trivial task, especially in
the context of IoT, where application development itself is complex. The process entails
working with heterogeneous devices via various communication protocols to co-ordi-
nate and fetch datasets, followed by a series of data transformations. Graphical mashup
tools, based on the principles of flow-based programming paradigm, operating at a
higher-level of abstraction are in widespread use to support rapid prototyping of IoT
applications. Nevertheless, the current state-of-the-art mashup tools suffer from several
architectural limitations which prevent composing in-flow data analytics pipelines. In
response to this, the paper contributes by (i) designing novel flow-based programming
concepts based on the actor model to support data analytics pipelines in mashup
tools, prototyping the ideas in a new mashup tool called aFlux and providing a detailed
comparison with the existing state-of-the-art and (ii) enabling easy prototyping of
streaming applications in mashup tools by abstracting the behavioural configurations
of stream processing via graphical flows and validating the ease as well as the effec-
tiveness of composing stream processing pipelines from an end-user perspective in a
traffic simulation scenario.

Keywords:  Flow-based programming, Graphical pipelines, Mashup tools, Graphical
stream processing, Stream analytics, End-user programming, Data Analytics as a Service
(DAaaS), Data Analytics Applications (DAAs)

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Mahapatra ﻿J Big Data (2020) 7:81
https://doi.org/10.1186/s40537-020-00353-2

*Correspondence:
tanmaya.mahapatra@tum.de
2 Technical University
of Munich, School
of Medicine, Institute
of Medical Informatics,
Statistics and Epidemiology
(IMedIS), Ismaninger Straße
22, Munich 81675, Germany
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-7946-5497
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00353-2&domain=pdf

Page 2 of 28Mahapatra ﻿J Big Data (2020) 7:81

addresses those by offering domain-specific languages and tool-kits for developing and
deploying DAAs in a hassle-free way. This approach has seen relative success in the use
of graphical mashup tools such as IBM’s Node-RED [2, 3] for composing DAAs by speci-
fying the data flow between pre-existing sensor, actuator, and service components, all in
a graphical environment that even non experts can use. On the contrary, the Big Data-
centric approach emphasizes the need for scale and flexibility and addresses those by
offering cluster-based computational frameworks such as Spark [4, 5], Flink [6–8], and
Kafka Streams [9]. While it lifts some of the current constraints of data flow program-
ming tools (such as difficulty of specifying parallel computations), this approach makes
it hard for non experts to develop DAAs. In particular, although some of graphical tools
for developing Spark and Flink applications have started to emerge [10–14], they have
seen so far limited adoption.

In our work, we aim to combine the intuitiveness and easy of use, brought by IoT
mashup tools, while not sacrificing the flexibility needed to develop non-trivial DAAs,
brought by Big Data frameworks. To this end, in the past years, we have investigated the
paradigms and concepts of both IoT mashup tools and Big Data languages and frame-
works. We have found that the widespread IoT mashup tools, although usually good
enough for prototyping DAAs, have a number of limitations that prevent their broader
adoption in real-life scenarios where DAAs are needed [15, 16]. At the same time, we
have found that Big Data frameworks would benefit from a graphical frontend, similar to
an IoT mashup tool, for specifying DAAs.

As a result, we have designed and implemented a new mashup tool for developing
DAAs called aFlux. aFlux tries to strike a balance between ease of use and flexibility and
has been designed to allow non experts to specify real-life DAAs via a graphical frontend
tool. It offers support for both specifying blocking and parallel computations, and offers
stream processing constructs such as processing windows (present in Big Data frame-
works such as Flink and Spark Streaming). aFlux can be used to specify both actor-based
Java applications that can run on an IoT device or on a server and Spark and Flink jobs
that can run on a remote cluster. It therefore provides a common abstraction layer for
DAAs.

In this paper, we describe the main concepts behind aFlux and focus on the way it
supports IoT stream processing. We also provide an evaluation of its ability to model
real-life DAAs related to a traffic analytics case. For a description of how aFlux can be
used in combination with Spark and Flink, we refer the interested reader to our previous
papers [17–21].

Structure The rest of the manuscript is structured in the following way: Sect. "Results"
summarises the important results of the manuscript. Section "Background and related
work" summarises the background information and the state-of-the-art. Section "aFlux
concepts and architecture" describes the concepts necessary to overcome the limitations
prevalent in the state-of-the-art to support high-level composition of stream process-
ing pipelines. Section "Experimental" evaluates the practicality of the built-in parametric
stream processing concepts via realistic use cases in real-time traffic control of highways.
Section "Discussion" discusses the results of the experiments. It also compares and con-
trasts the new concepts discussed in the manuscript with the existing state-of-the-art.
Finally, the manuscript ends with concluding remarks described in Sect. "Conclusion".

Page 3 of 28Mahapatra ﻿J Big Data (2020) 7:81 	

Results
The main contribution of this paper is to propose a novel tool concept to integrate IoT
mashups and scalable stream processing, based on the actor model. We show that sev-
eral new concepts to control synchronous versus asynchronous communication and
parallelism are essential for this. Furthermore, we show that several parameters, such as
the window type and size, impact the effectiveness of stream analytics. Importantly, such
parameters impact not only the performance of stream processing (e.g. whether data of
certain size can be processed within a specific time-bound), but also determine the func-
tional behaviour of the system (e.g. whether the logic that is based on stream analytics is
effective or not).

To summarise, this paper introduces essential concepts to support data analytics in
flow-based programming paradigm and caters to the research contributions by:

1	 Designing of new graphical flow-based programming concepts based on the actor
model with support for concurrent execution semantics to overcome the prevalent
architectural limitations in the state-of-the-art mashup tools and thereby supporting
in-built user-configurable stream processing capabilities for simplified in-flow stream
analytics. The new concepts have been thoroughly compared with all relevant exist-
ing solutions in Sect. "Discussion".

2	 Parametrizing the control points of stream processing in the tool enables non-
experts to use various stream processing styles and deal with the subtle nuances of
stream processing effortlessly. The effectiveness of parametrization in simplifying
quick prototyping of stream analytics applications has been validated in a real-time
traffic use case and discussed in Sect. "Experimental".

In comparison to the paper published at VL/HCC’18 [1], this paper extends the previous
work by the following additional contributions:

1	 The experimental section has been extended to include a new stream processing
method for analysis of mean speed and contains additional analysis of shoulder-lane
state for all stream processing methods discussed (Sect. "Experimental").

2	 The working concepts for aFlux described very briefly in the conference paper have
been described in detail. Additionally we describe the state-of-the-art and do an
extensive qualitative comparison with state-of-the-art here (Sect. "Discussion").

Background and related work
This section describes the concepts necessary to understand the work. It is divided into
three sub-sections. Sub-section "Mashups and mashup tools" describes mashups and
mashup tools while Sub-section "Stream processing" describes the fundamentals of
stream processing. Sub-section "Related work" lists the existing relevant works and solu-
tions which aim to support easy development of stream processing applications.

Page 4 of 28Mahapatra ﻿J Big Data (2020) 7:81

Mashups and mashup tools

Mashups are defined as a conglomeration of several accessible as well as reusable com-
ponents on the web. The individual conglomerated components in a mashup are known
as the mashup components while the orchestration of control-flow between the com-
ponents is known as the mashup logic. Typically, the control-flow from one component
to the next succeeding component invariably includes data-flow after subjected to data
transformations during the execution of a specific business logic abstracted within the
mashup component. The components are the building blocks of a mashup, and they can
provide either logic/functionality in the form of reusable algorithms or data-sets fetched
from Web APIs or even reusable User-Interface parts to be used in the mashup applica-
tion. A description of how typical mashup functions will make things clear. For instance,
consider that the soil moisture data is available from an IoT device with the help of REST
APIs. A user wants to get this data, apply some transformation, check the moisture level
of the soil and maybe switch on the water sprinkler if it is below a particular threshold
value. The mashup depicting the flow for this scenario is given in Fig. 1. The “Fn.” block
in the figure contains code (business logic, illustrated by the “if” block) which accom-
plishes the data transformations as well as houses the business logic. The orchestration
of 3 components namely data from REST API, a function block and a connection to an
actuator, i.e. water sprinkler block clearly depicts how the control flows through them
in a coordinated fashion to achieve specific objectives. These components are generally
represented by GUI blocks in a mashup tool which must be connected suitably to repre-
sent the entire business logic. Typically, control flow from one component to the next in
a mashup also includes flow of data subjected to transformations.

Certain mashup tools provide simulation tools and also interoperability for messaging
between different platforms [22]. Two prominent IoT mashup tools are WoTKit Proces-
sor [23] and Node-RED [2, 3]. WoTKit is a multi-user system for running data flow pro-
grams in the cloud while Node-RED is a tool-kit for developing data flows on devices
and servers. There are many IoT platforms which include a mashup tool for service

Fig. 1  Skeleton of a mashup application

Page 5 of 28Mahapatra ﻿J Big Data (2020) 7:81 	

orchestration including glue.things [24], Thingstore [25], OpenIoT [26], ThingWorx [27],
and Xively [27].

Stream processing

In stream processing, data is not stored; rather, it is analysed as soon as it produced.
It is the analysis of real-time data-sets called streams. Streams are produced due to a
number of reasons like user transactions, continuous sensor readings, social media feed
etc. Stream analytics has a significant business impact in-contrast to batch/traditional
data analytics. In the case of batch analytics, data is stored and later analysed, thereby
allowing organisations to react to a past event. In contrast to this, in the case of stream
analytics, the data is processed as soon as it is produced. This allows to quickly iden-
tify potential problems and mitigate them. Additionally, certain application scenarios are
feasible only with stream analytics, e.g. updating a driver on the road with current traffic
situation and suggesting new routes to a destination. Apache Spark and Apache Flink are
the most popular stream analytics solutions available and leveraged as of today. Table 1
summarises the main differences between batch and stream processing.

The focus of this paper is working with the core concepts of stream processing like cre-
ation of windows, different types of windows, buffer management strategy etc. which are
explained in detail in Sub-section "In‑flow stream processing". The paper does not focus
on the workings of stream analytics suite like Apache Flink or Apache Spark Streaming.

Related work

We did not find any mashup tool or other research works which support generic high-
level programming for stream processing to be used in the context of IoT, i.e. ingest data
produced from IoT sensors and run analytics on them. Nevertheless, we list the relevant
solutions aimed to support easy development of stream processing applications but are
difficult for less-skilled programmers to use due to interaction with low-level internals.

IBM Infosphere Streams: IBM Infosphere®Streams is a platform designed for Big Data
stream analytics and uses IBM Streams Processing Language (SPL) as its programming
language [28]. It is designed to achieve high throughput as well as shorter response
times in stream analytics. The key idea is to abstract the complexities in developing a
stream processing application and the aspects of distributed computing by allowing the
user to use a set of graph operators. The application developed can be translated auto-
matically to C++ and Java. SPL treats the application flow as a streams graph where
the edges represent continuous streams and vertices represent stream operators. Stream

Table 1  Batch vs stream processing

Parameters Batch processing Stream processing

Amount of data Big data Small + big data

Type of computation Complex (must access all data) Simple

Focus Latency Throughput

Processing time Collect and process later (Near-) real time

Used by Hadoop mapreduce, spark Spark streaming, flink

Use cases Daily total turnover Instant fraud detection

Page 6 of 28Mahapatra ﻿J Big Data (2020) 7:81

operators are either transformers, sources or sinks. It is not designed as a visual-flow
based language though it models the application in the form of a graph for reasons of
expressiveness [29]. It is a complete language and not a stream processing library within
a non-streaming language to have improved type checking and optimisation. SPL has
2 main elements in its language construct, i.e. streams and operators. Operators with-
out any input streams are called as sources while operators without any output streams
are called sinks. The operators have their own threading and get executed when there
is at least one data item in their input stream, i.e. in the edge of the stream graph. The
data-items leave an operator in the same sequence in which they had arrived after pro-
cessing. SPL is issued to develop streaming applications as well as batch applications
because both the computing paradigms of Big Data are implemented by dataflow graphs.
Additionally, SPL allows defining composite operators to support programming abstrac-
tion and enable the development of application involving thousands of operators. It has
a robust static type system and minimises implicit type conversions. Every operator
can specify the behaviour of its ports, i.e. port mutability. For instance, an operator can
define that it does not modify data items arriving on its input port but may permit a
downstream operator to alter the same. SPL also makes use of control ports in addition
to input and output ports which are used in the feedback loop. There are three main
paradigms for stream processing:

Synchronous data-flow (SDF): In this paradigm, every operator has a fixed rate of
data-output items per input data-items, i.e. both the cardinality of input and output
sets are static and well-known. Examples include StreamIt [30] and ESTEREL [31].
This paradigm is not efficient in real-world scenarios as the input and output sets
cannot be known in advance, which leads to optimization issues.
Relational Streaming: This paradigm models the relational model from databases
and allows to use operators like select, join, aggregate etc. on data-items. Exam-
ples include TelegraphCQ [32], the STREAM system underlying CQL (Continuous
Query Language) [33], Aurora [34], Borealis [35, 36], StreamInsight [37] and SPADE
(Stream Processing Application Declarative Engine) [38].
Complex Event Processing (CEP): This paradigm treats input streams as raw events.
It produces output streams as inferred events, i.e. uses patterns to detect and gather
insights. Examples include NiagaraCQ [39] and the SASE (Stream-based and Shared
Event processing) [40].

SPL is not based on the SDF paradigm as it allows dynamic input and output rates for
each operator. It is based on the relational model and can support CEP with the inclu-
sion of a CEP library within an operator.

StreamIt: StreamIt [30] is a dedicated programming language for writing streams
application following the paradigm of synchronous data-flow stream processing. It
allows modelling the application in the form of a graph where vertices are opera-
tors and edges represent streams. The most basic operator is a ‘Filter’ which has one
input and one output port. The rate of data ingestion, as well as data production, is
static and pre-defined before the execution, which is one of the major disadvantages
and restricts its usage to real-world scenarios. Additional programming constructs

Page 7 of 28Mahapatra ﻿J Big Data (2020) 7:81 	

like ‘Pipeline’, ‘SplitJoin’ and ‘FeedbackLoop’ are used in conjunction to a ‘Filter’ to
form a communicating network. A ‘Pipeline’ is used to define a sequence of streams,
while a ‘SplitJoin’ is used to split and join streams. Similarly, the ‘FeedbackLoop’
operator is used to specify loops in a stream. Representation of a stream application
via arbitrary graphs, i.e. a network of filters connected via channels is difficult to vis-
ualize and optimize. The main advantage is that it imposes a well-defined structure
on streams which ensures a well-defined control flow within the stream graph. It fol-
lows the constructs of flow-based programming paradigm. Still, it does not offer any
high-level graphical constructs to write stream applications.

The QualiMaster Infrastructure Configuration (QM-IConf) tool:
The QM-IConf tool [11] supports the model-based development of Big Data

streaming applications. It introduces a high-level programming concept on top of
Apache Storm [41]. It features a graphical-flow based modelling of the streaming
application in the form of a dataflow graph where vertices are stream operators,
and edges represent valid dataflow paths. A valid dataflow path from vertex v1 to v2
ensures that v2 can consume the data produced by v1. The dataflow model, consist-
ing of data sources, sinks and operators, is translated into an executable Storm code.
Nevertheless, it does not validate its claimed generic modelling approach against
other streaming frameworks like Flink or Spark Streaming. Additionally, it supports
only a specific subset of stream analytics operators to be used in the pipeline.

IBM SPSS Modeller: IBM SPSS Modeller provides a graphical user interface to
develop data analytics flows involving simple statistical algorithms, machine learn-
ing algorithms, data validation algorithms and visualisation types [42]. SPSS Mod-
eller provides machine learning algorithms developed using Spark MLlib library
which can be launched on Spark cluster by simply connecting them as components
in a flow. Although SPSS Modeller is a tool built for non-programmers to perform
data analytics using pre-programmed blocks of algorithms, it does not support writ-
ing new custom data analytics application.

We compare and contrast these existing solutions with our developed concepts in
Sect. Discussion.

aFlux concepts and architecture
Existing mashup tools allow users to design data flows which have synchronous exe-
cution semantics. This can be a significant obstacle since a data analytics job defined
within a mashup flow may consume a considerable amount of time, causing other
components to starve or get executed after a long waiting time. Hence, asynchronous
execution patterns are essential for a mashup logic to invoke an analytics job (encap-
sulated in a mashup component) and continue to execute the next components in
the flow. In this case, the result of the analytics job, potentially computed on a third
party system, should be communicated back to the mashup logic asynchronously.
Additionally, mashup tools restrict users in creating single-threaded applications
which are generally not sufficient to model complex repetitive jobs.

Page 8 of 28Mahapatra ﻿J Big Data (2020) 7:81

Requirements
The requirements behind aFlux, i.e. coming up with improved design concepts for
flow-based programming tools (a.k.a. mashup tools), is to support the following
concepts:

1	 support creation of multi-threaded applications (sect. Programming paradigm for
multi-threaded applications)

2	 support asynchronous execution of components (sect. Asynchronous execution of
components)

3	 concurrent execution of components in flows (sect. Concurrent execution of compo-
nents)

4	 support for modelling complex flows via flow hierarchies (sub-flows) (sect. Logical
structuring units)

5	 support inbuilt stream processing (sect. In-flow stream processing)
6	 model Big Data analytics via graphical flows and translate the flows to native Big

Data programs [17, 18, 21]

aFlux has been designed to meet the above requirements that offer several advantages
compared to existing solutions. It primarily aims to support in-flow Big Data analytics
when graphically developing services and applications for the IoT. Figure 2 shows its
graphical front-end used to create services and applications.

In the rest of this Section, the concepts and architectural decisions to support
requirements 1-5 are reviewed in turn.

Programming paradigm for multi‑threaded applications

Based on previous analysis, we decided to go with the actor model [43, 44], a para-
digm well suited for building massively parallel [45, 46], distributed and concurrent
systems [47, 48]. Actors communicate with each other using asynchronous message
passing [49]. The actor model was originally a theoretical model of concurrent com-
putation [50]. The actor model is one of the ways of realizing the dataflow program-
ming paradigm, which is a special case of flow-based programming [51].

Fig. 2  aFlux: Graphical User Interface

Page 9 of 28Mahapatra ﻿J Big Data (2020) 7:81 	

In the actor model (Fig. 3), an actor is the foundation of concurrency or rather like
an agent which does the actual work. It is analogous to a process or thread. Actors are
very different from objects because, in an object-oriented programming paradigm, an
object can interact directly with another object, i.e. changing its values or invoking a
method. This causes synchronization issues in multi-threaded programs, and addi-
tional synchronization locks are necessary to ensure the proper functioning of the
program [50]. In contrast to this, the actor model provides no direct way for an actor
to invoke or interact with another actor. Actors respond to messages. In response to
a message, an actor may change its internal state, perform some computation, fork
new actors or send messages to other actors. This makes it a unit of static encapsula-
tion as well as concurrency [53]. Message passing between actors happens asynchro-
nously. Every actor has a mailbox where the received messages are queued. An actor
processes a single message from the mailbox at any given time, i.e. synchronously.
During the processing of a message, other messages may queue up in the mailbox. A
collection of actors, together with their mailboxes and configuration parameters, is
often termed an actor system. To summarise, the actor model is based on the follow-
ing principles:

1	 There is no shared, mutable state between actors. Actors exchange immutable mes-
sages to communicate with each other. Only an actor has access and can control its
own state.

2	 Each actor has a queue (mailbox) where the incoming messages arrive. The actor
picks and processes the messages from its queue one-by-one (i.e. synchronously) and
responds by sending immutable messages to other actors.

3	 Messages are passed between actors asynchronously. This means that the sender
does not wait for the message to be sent, and it can continue its execution. Messages

Fig. 3  Actor model: working, as in [52]

Page 10 of 28Mahapatra ﻿J Big Data (2020) 7:81

exchanged between actors provide no guarantees on the sequence of arrival and exe-
cution.

4	 Communications between actors are asynchronous and decoupled. This allows the
actors to run and execute their tasks in different threads. Therefore, they provide a
concurrent and scalable model.

The main intuition is that when a user designs a flow, the flow is modelled internally in
terms of actors i.e. an actor is a basic execution unit of the mashup tool. For instance,
the flow depicted in Fig. 4 corresponds to three actors namely A, B and C with the
computation starting with actor A. On completion, it sends a message to actor B and
so on.

In the realization of aFlux, Akka [54], a popular library for building actor systems in
Java and Scala, has been used. Since Akka can be configured in many different ways
for parallel and distributed operations and governs how the actors would be spawned
and executed. This shields the actors from worrying about synchronization issues.

Flow execution

In aFlux, a user can create a mashup flow called flux. A flux is analogous to a flow in
IBM Node-RED. The only requirement for designing a flux is that it should have a
start node and an end node. A flux by default is tied down to a logical unit called job.
Every job can have one or more fluxes. When a job containing a flux like in Fig. 4 is
designed in aFlux, the control flows through several parties before final execution.
Firstly, the job must be saved, which allows the mashup tool to parse the flux diagram
created on the front-end by the user. The parsing involves creating and saving a graph
model for the job—the Flux Execution Model. The parser does not care how many
fluxes are present in the job because it scans for special nodes in it. These special
nodes are start nodes i.e. specialized actors which can be triggered without receiving
any message. Other nodes are normal actors which react to messages. On detection of
all start nodes in an activity, the graph model is built by simply traversing the connec-
tion links between the components as designed by the user on the front-end. A flux
execution model of a job contains as many graphs as the number of fluxes present in
it.

On deployment, the control flows from the front-end to the controller responsible for
starting the actual execution of the job. This involves invoking the runner, which fetches
the flux execution model of the job. For every flux in the job, the runner environment
proceeds to:

1	 Identify the relevant actors present in the graph.
2	 Instantiate an actor system with the actors identified in step 1.
3	 Trigger the start nodes by sending a signal.

A B C

Fig. 4  A typical mashup flow, as in [52]

Page 11 of 28Mahapatra ﻿J Big Data (2020) 7:81 	

After this, the execution follows the edges of the graph model, i.e. the start actors upon
completion send messages to the next actors in the graph, which execute and send mes-
sages to the subsequent actors and so on.

The diagram depicted in Fig. 5 is an Identify, Down, Aid, and Role (IDAR) graph [55]
which summarizes the execution of a flux consisting of components i.e. actors within
aFlux. IDAR graphs offer a more simple and understandable way of representing how
system components communicate and interact in comparison to Unified Modelling
Language (UML) [55]. In an IDAR graph, objects typically communicate either by send-
ing a command message (control messages) or a non-command message, which is called
notice. The controlling objects always remain at a higher level in the hierarchy compared
to the objects being controlled. An arrow with a bubble (circle) on its tail stands for an
indirect method call while a dotted arrow indicates data-flow. Other subsystems having
their own hierarchy are represented with hexagons denoting the subsystem manager.

The execution of a flux typically follows the following sequence:

1	 When the user executes a flux, the main component in the back-end called as ‘aFlux
Engine’ sends a command to the ‘Flux Repository’ subsystem which reads the stored
‘flux execution model’ and returns it.

2	 ‘aFlux Engine’ sends a command to the ‘Parser’ subsystem for parsing. The ‘flux exe-
cution model’ is checked for consistency, i.e. if the first component in the flux con-
tains an actor whose ‘method of invocation’ property has been defined as ‘triggered
by system’. The relevant actors used in the flux are identified, and after completion of
this operation, the ‘aFlux Engine’ is notified.

3	 The ‘aFlux Engine’ creates an actor system where the actors used in a flux would be
executed.

Fig. 5  Flow execution in aFlux: IDAR representation, as in [52]

Page 12 of 28Mahapatra ﻿J Big Data (2020) 7:81

4	 The ‘aFlux Engine’ instantiates ‘aFlux Main Executor’ by passing the set of actors to
be executed.

5	 This data flows from ‘aFlux Main Executor’ to ‘Actor System’ where the relevant
actors are instantiated and the first actor is triggered by the ‘Actor System’.

6	 The first actor completes its execution, notifies to the ‘Actor System’ about its com-
pletion of execution by sending a notification via an indirect method call and at the
same time sends its output to the next connected actor.

7	 This process is repeated until the last actor. When it notifies the ‘Actor System’ about
its completion of execution, then the ‘Actor System’ removes all inactive actors and
frees up memory.

Asynchronous execution of components

Components within aFlux are of two types: synchronous components and asynchro-
nous capable components. Synchronous components block the execution flow, i.e.
when they receive a message on their input port, they start execution and pass the
message through their output ports upon completion. On the other hand, asynchro-
nous-capable components have two different types of output ports, namely blocking
and non-blocking ports (Fig. 6). When these components receive a message on their
input port, they immediately send a message via the non-blocking port (at most one
per component) so that components connected to the non-blocking port (i.e. compo-
nents that do not require the computation result of the active component) can start
their execution. When the component finishes its execution, it sends messages via its
blocking ports; components connected to these ports can then start their execution.
This non-blocking execution paradigm helps the end-user to asynchronously execute
time-consuming parts of the mashup flow while ensuring other components do not
get starved from execution for a longer time period.

Fig. 6  Executable components in aFlux

Page 13 of 28Mahapatra ﻿J Big Data (2020) 7:81 	

Concurrent execution of components

Every component in aFlux has a special concurrency parameter attached to it which can
be configured by the user while designing a flux. The idea is that in an actor system,
every actor processes one message at a time. During its processing, new messages are
queued on their arrival. To avoid this and facilitate faster processing, every component
in aFlux can be made to execute concurrently by specifying the upper threshold value
of concurrency. If a component has concurrency level of n, messages arrive quickly, and
the component takes quite some time to process a message, then the actor system can
spawn multiple instances of that component to process the messages concurrently up-to
n or up-to-the global threshold value defined in the system, whichever is minimum.
Beyond that, the messages are queued as usual and processed whenever any instance
finishes its current execution. This specification of concurrency parameter is applicable
to individual components as well as sub-flows in aFlux and is decided by the user creat-
ing a flux. In the case of sub-flows, basically, all the components used within it adhere
to the concurrency limit of the sub-flow which means that the actor system can spawn
multiple instances of every component used inside the sub-flow as the need arises dur-
ing run-time.

Logical structuring units

To abstract away independent logic within a main application flow, the system supports
logical structuring units called sub-flows. A sub-flow encompasses a complete business
logic and is independent of other parts of the mashup. A good candidate for a sub-flow
is for example a reusable data analytics logic which involves specifying how the data
should be loaded and processed and what results should be extracted. Sub-flows in the
system are like normal asynchronous-capable components. They have input and two
sets of output ports (i.e. blocking and non-blocking). They encompass within themselves
a complete flow of graphical components.

In‑flow stream processing

The flow-based structure of mashup tools, i.e. passage of control to the succeeding com-
ponent after completion of execution of the current component is very different from
the requirements of stream processing where the component fetching real-time data
(aka the listener component) cannot finish its execution. It must listen continuously
to the arrival of new datasets and pass them to the succeeding component for analysis.
Also, the listener component has many behavioural configurations which decide when
and how to send datasets to the succeeding component for analysis.

In aFlux, the actor model has been extended to support components which need to
process streaming data. The implementation of streaming components relies on the
Akka streams library, an extension of the Akka library. Applications based on Akka
streams are formulated as building blocks of three types: source, sink, and flow. The
source is the starting point of the stream. Each source has a single output port and no
input port typically. Data is fetched by the source using the configuration parameters
specified, and it comes out from its output and continues to the next component that
is connected to the source. The sink is basically the opposite of the source. It is the

Page 14 of 28Mahapatra ﻿J Big Data (2020) 7:81

endpoint of a stream and therefore consumes data. Basically, it is a subscriber of the
data sent or processed by a source. The third component, the flow, acts as a connector
between different streams and is used to process and transform the streaming data.
The flow has both inputs and outputs. A flow can be connected to a source, the out-
come of which results in a new source or even after a sink which creates a new sink. A
flow connected to both a source and a sink results in a runnable flux (Fig. 7), which is
the blueprint of a stream.

Each streaming component in aFlux offers a different stream analytics functional-
ity (e.g. filter, merge) and can be connected to other stream analytics components or
to any common aFlux component. The stream analytics capabilities make use of three
categories of components, i.e. fan-in, fan-out and processing components. Fan-in oper-
ations allow joining multiple streams into a single output stream. They accept two or
more inputs and give one output. Fan-out operations allow splitting the stream into sub-
streams. They accept one stream and can give multiple outputs. Processing operations
accept one stream as an input and transform it accordingly. They then output the modi-
fied stream, which may be processed further by another processing component. The
transformation of the stream is done in real-time, i.e. when the stream is available on
the system for processing and not when it is generated at the source. Every component
is internally composed by a source, a flow and a sink. When a component is executed
by aFlux, a blueprint that describes its processing steps is generated. The blueprints are
only defined once, the very first time the component is called, e.g. create a queue where
the new incoming elements of the stream get appended for a component to process.

Every stream analytics component has some attributes that can be adjusted by the user
at run-time. For example, for the processing components, the user can optionally define
windowing properties such as window type and window size. The internal source of
every stream analytics component has a queue (buffer), the size of which can be defined
by the user (default is 1000 messages). The queue is used to temporarily store the mes-
sages (elements) that the components receive from its previous component in the aFlux
flow while they are waiting to get processed. Along with the queue size, the user may
also define an overflow strategy that is applied when the queue size exceeds the speci-
fied limit. Figure 8 shows the interface of aFlux where the user can define buffer size and
overflow strategy. The overflow strategy determines what happens if the buffer is full,
and a new element arrives. It can be configured as:

drop buffer:	� drops all buffered elements to make space for the new element.
drop head:	� drops the oldest element from the buffer.
drop tail:	� drops the newest element from the buffer.
drop new:	� drops the new incoming element.

Fig. 7  Runnable flux with streaming actors, as in [52]

Page 15 of 28Mahapatra ﻿J Big Data (2020) 7:81 	

The internal flow part of a streaming component describes its logic and defines its
behaviour. This is where the whole processing of messages takes place. The source sends
the messages directly to the flow when it receives them. As soon as the processing of
a message has finished, the result is then passed to the sink. By default, the analysis of
messages is done in real-time, and each message is processed one-by-one (e.g. count
how many cars have crossed a given junction). However, the user can also select win-
dowing options.

Figure 8 shows the interface of aFlux where the user can define windowing properties.
The implementation supports content-based and time-based windows. For both of these
types of windows, the user can also specify a windowing method (tumbling or sliding)
and also define a window size (in elements or seconds) and a sliding step (in elements or
seconds).

In a nutshell, a window is created as soon as the first element that should belong to this
window arrives, and the window closes when the time or its content surpasses the limit
defined by the user. A window gathers all messages that arrive from the source until it is
closed completely. Finally, the component applies the required processing on the data in
the window. It passes the result(s) to the sink. The first thing is to choose whether the
window should be content or time-based. A content-based window has a fixed size of a
number of elements n. It collects elements in a window and evaluates the window when
the nth element has been added. On the other hand, a time-based window groups ele-
ments in a window based on time. The size of a time window is defined in seconds. For
example, a time window of size 5 seconds will collect all elements that will arrive in 5
seconds from its opening and will apply a function to them after 5 seconds have passed.

In stream analytics, there are different notions of time like:

processing time:	� windows are defined based on the wall clock of the machine on
which the window is being processed.

event time:	� windows are defined with respect to timestamps that are attached

Fig. 8  aFlux GUI to specify buffer size, overflow strategy & window parameters, as in [52]

Page 16 of 28Mahapatra ﻿J Big Data (2020) 7:81

to each element.
hybrid time:	� combines processing and event time.

 In the current implementation, the processing time is used to interpret time in our pro-
cessor. For instance, a time window of size 60 seconds, will close exactly after 60 sec-
onds. After deciding on using content or time windows, the user has to decide how to
divide the continuous elements into discrete chunks. Here the user has the following two
options. The first is tumbling window, where stream elements are divided into non-over-
lapping parts, and each element can only belong to a single window. The second option
is a sliding window, which is parametrized by length and step. These windows overlap,
and each element may belong to multiple windows. Windows can be either tumbling
or sliding. A tumbling window tumbles over the stream of data. This type of window is
non-overlapping, which means that the elements in a window will not appear in other
windows. A tumbling window can be either content-based (e.g. “Calculate the average
speed of every 100 cars”) or window-based (e.g. “Find the count of tweets per time zone
every 10 seconds”) whereas a sliding window slides over the stream of data. Due to this
reason, a sliding window can be overlapping, and it gives a smoother aggregation over
the incoming stream since it does not jump from one input set to the other, but it slides
over the incoming data. A sliding window has an additional parameter which describes
the size of the hop. A sliding window can as well be either content-based (e.g. “For every
10 cars calculate the average speed of the last 100 cars”) or time-based (e.g. “Every 5 sec-
onds find the count of tweets per time zone in the last 10 seconds”). Thus if the sliding
step is smaller than the window size, elements might be assigned to multiple successive
windows. The tumbling window can be conceived as a special case of a sliding window,
where the window size is equal to the sliding step. Therefore, it does not make any sense
to define a sliding step for a tumbling window.

The sink is the final stage of a stream analytics component. The sink gets the results
from the flow and decides the final outcome. In this case, the results need to be sent to
the next component in the flux because the components should be able to pass messages
to each other.

Experimental
The experimental has been designed to capture that writing a performant stream ana-
lytics application is always use-case specific and takes a few iterations. We aim to sim-
plify this by not requiring the user to write any code, select parameters easily for stream
analytics and thereby support quick prototyping. An open-source traffic simulation soft-
ware by the name SUMO [56] has been used to demonstrate the stream processing capa-
bilities of aFlux. The data generated from the system is random, making it a perfect fit
for real-time analytics and the results of the analytics affect the system performance, i.e.
traffic congestion in SUMO. For the evaluation purposes, the traffic of A9 highway1 near
Munich has been used for simulation. TraCI [57], a python-based interface, has been
used for data-exchange between SUMO and Kafka [58–60].

1  A9 public GitHub project, available at https​://githu​b.com/ilias​ger/Traff​ic-Simul​ation​-A9.

https://github.com/iliasger/Traffic-Simulation-A9

Page 17 of 28Mahapatra ﻿J Big Data (2020) 7:81 	

Scenario: In the scenario, all cars run on a straight line on the A9 highway and in the
same direction from south to north. At a certain point on the highway, there are four
lanes, three of which possess a loop detector (see Fig. 9). Loop detectors measure the
occupancy rate (0-100) on the lane, i.e. how long was a car placed on the loop detec-
tor during the last tick (one tick equals to one second of simulation time in SUMO). A
high occupancy rate signals a more busy lane and therefore, the possibility of traffic con-
gestion. The fourth lane of the highway, further referred to as shoulder-lane, is initially
closed, which means that no cars can run on it. However, if the total average of the occu-
pancy rates of the three other lanes exceeds the threshold of 30, the shoulder-lane opens
to reduce the traffic. When the average of the occupancy rates falls below 30, the shoul-
der-lane closes again. On the 500th tick of the simulation, it is assumed that a car acci-
dent happens. A lane, ahead of the four previously mentioned lanes, gets closed at the
same moment and remains closed for the rest of the experiment. This builds up conges-
tion on the highway, causing the occupancy rates of the loop detectors to increase and
makes it meaningful to open the shoulder-lane at some point to alleviate the congestion.

Goal: The goal of this experiment is to compare different stream processing methods
on data coming from the simulation environment. Notably, the one-by-one method for
processing data, tumbling window processing with three different window sizes (50, 300
and 500) and sliding window processing are compared. The user can define the method
of data processing and change various associated parameters on aFlux UI. The loop
detector occupancy, lane state, mean speed of cars and time values from SUMO are cap-
tured via TraCI and published to Kafka. The lane state is a binary value that indicates
the state of the shoulder-lane at the current tick(0 means closed and vice-versa). Mean
speeds are used as an indicator of traffic congestion, i.e. a low mean speed on a lane indi-
cates traffic congestion. The average mean speeds of the three lanes are plotted to dem-
onstrate the effect of the shoulder-lane in the relief of traffic congestion. Finally, time
measures the duration the shoulder-lane state takes to reach 1 for the first time and the
duration it needs to reach 0 again for the last time. This factor indicates the responsive-
ness of each method on traffic changes, e.g. how fast the system perceives and reacts

Fig. 9  The 4 lanes used in the experiment. Each of the 3 left lanes possess a loop detector. The 4 th lane is
initially closed

Page 18 of 28Mahapatra ﻿J Big Data (2020) 7:81

to traffic congestion. All runs of the experiment are based on the same conditions. The
routes of the cars and the way that they are simulated in the simulation have the same
randomness for all runs; therefore do not impact the experiment results. The only fac-
tor that influences the results of the experiments is the decision to open and close the
shoulder-lane.

Flow-based data analytics: For the reliability of the results, the experiment has been
run twice for every stream processing method. In order to make decisions to change
the state of the shoulder-lane based on the occupancy of the loop detectors, a flow in
aFlux has been designed (Fig. 10). The first component of the flow is a Kafka subscriber
that listens to the topic where TraCI publishes the occupancy rates of each loop detec-
tor on every tick. The data is parsed using a JSON parser, and the results are passed to
the moving average component. The moving average component receives the occupancy
values and calculates their average on real-time and based on the user-specified method
(windowing or simple processing). The results are then passed to the binary value com-
ponent, which outputs 0 if the average is below the user-defined threshold (e.g. 30) or
1 otherwise. Finally, the result is transformed into a JSON file and published to a Kafka
topic, where TraCI listens, to decide whether to open or close the shoulder-lane.

Evaluation parameters: The data coming from SUMO is analysed in several stream
processing methods via a number of configurable parameters. The result of such analyt-
ics affects the performance of the system, i.e. SUMO. To measure the effect on system
performance, the following aspects are considered:

Responsiveness	� indicates how fast the system can detect traffic congestion and open
the shoulder-lane to alleviate it.

Settling time	� refers to the time the system needs to reach a steady state [61]. In
the experiment, the shoulder-lane may open and close successively.
We define the settling time as the time the shoulder-lane needs to
reach a steady-state after a change occurs. It is estimated based on
the shoulder-lane state parameter.

Stability	� refers to the ability of the system to reach a stable state without over-
shoots when a change occurs. Overshoot occurs when the system
exceeds a certain target point before convergence [61]. In our case,
stability is tested when the shoulder-lane changes state. Stability is
in inverse proportion to settling time, i.e. short settling time infers to
higher system stability.

The occupancy rates of the loop detectors have not been considered for result-analysis
since they are used to make decisions in aFlux, and the focus is to examine the impact of
these decisions to other factors in a traffic system.

Analysis of Mean Speed:

Fig. 10  aFlux flow used in the experiment - subscribes to a Kafka topic that publishes the occupancy rates of
loop detectors and calculates their moving average in real-time

Page 19 of 28Mahapatra ﻿J Big Data (2020) 7:81 	

First, for every processing method, the average of the mean speeds of the cars moving
on the 3 previously mentioned lanes, per tick is analysed. The mean speed of the vehicles
running on a lane at a certain point of time discloses information about the current con-
gestion of this lane. Through this analysis, the responsiveness of each method to changes
and their effectiveness to solve a problem is determined; in this case, to alleviate the traf-
fic congestion.

From Fig. 11 (a) when the accident happens at tick 500, the average mean speeds of
cars moving on the 3 particular lanes that we examine, falls significantly. This means that
congestion starts to build-up on these lanes. The loop detectors send their occupancy
rates to aFlux every tick, and they are getting averaged by the moving average compo-
nent one-by-one. Since we do not use any window to process the incoming data, each
average occupancy value depends on all previous occupancy values, even on the low
occupancy rates before the accident. As a result, the moving average value cannot reflect
new environment changes fast enough and hence it reaches the threshold of 30 on the
3020th tick for the first time to open the shoulder-lane. By observing the Fig. 11 (a) one
can see an up-trend of the average speeds on the 4600th tick, but the moving average
value falls below 30 only on the 5680th tick for the last time when the shoulder-lane gets
closed as well, a fact that shows a slow reaction time.

Figure 12 (a) shows the average mean speeds of the lanes when using a content-based
tumbling window of size 50 to process the occupancy rates of the loop detectors. Using
a window of size 50 means that only the 50 latest occupancy values are aggregated and
averaged and that the average does not keep the state of the previous values. We con-
sider 50 to be a small window size, as it lasts for about 17 ticks. The difference in reaction
time to non-window processing is significant since the system perceives much earlier

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000 6000

a

M
ea

n
S

pe
ed

 (
m

/s
)

Tick

Data Processing: No Window

Average Mean Speeds
Open Gate
Close Gate

Accident

 0

 1

 1000 2000 3000 4000 5000 6000

b

La
ne

 S
ta

te

Tick

Shoulder Lane State: No Window

Lane Open/Close

Fig. 11  Average mean speed of cars moving on the 3 lanes. (a) Data analysis without windows (one-by-one),
(b) Shoulder-lane state without windows (one-by-one)

Page 20 of 28Mahapatra ﻿J Big Data (2020) 7:81

the traffic congestion and opens the shoulder-lane on tick 1620 for the first time. When
the traffic congestion is alleviated, the system closes the shoulder-lane on the 4145th tick
which is also a much faster reaction in comparison to 5680 ticks that it took for the non-
window processing.

Figure 12 (b) depicts the average mean speeds of cars when using a content-based tum-
bling window of size 300. Using this method, the system opens the shoulder-lane on tick
1970 and closes the shoulder-lane on the 4715th tick for the last time. This processing
method responds to changes faster than the no-window processing but a bit slower than
the tumbling window of size 50. This performance is expected since a larger window size
takes longer to aggregate more values (100 ticks) and hence adapts slower to changes in
comparison to smaller window sizes. In Fig. 12 (c), we present the results of the tum-
bling window with size 500 (167 ticks). In comparison to window size 300, this process-
ing method is slightly slower (shoulder lane opens at tick 1979 and closes at 4391). The
distribution of the mean speeds is quite similar to window size 300 though which sug-
gests that the system shows similar behaviour in both cases. Figure 12 (d) shows a slid-
ing window of size 500 with a sliding step of 250. The difference of the previous window
processing is that the sliding window takes into consideration the previous state as well
by overlapping on previous values. In our case, the sliding window overlaps the 250 lat-
est elements of the previous window. In general, a sliding window gives smoother and
in some cases faster results, since it is moving faster (emits more values than a tumbling
window). By comparing the figures of the sliding and tumbling window of size 500, one
can observe that the distribution of the average of the mean speeds is quite similar in
both graphs. The sliding window seems to be faster in opening the shoulder lane for the
first time (tick 1810), but it is a bit slower in closing it (tick 4652). We consider this dif-
ferentiation to be dependent on the variation of data in each experiment.

0

10

20

30

40

50
a

M
ea

n
S

pe
ed

 (
m

/s
)

Average Mean Speeds
Open Gate
Close Gate

Accident

bAverage Mean Speeds
Open Gate
Close Gate

Accident

0

10

20

30

40

50

0 1000 2000 3000 4000 5000

c

M
ea

n
S

pe
ed

 (
m

/s
)

Tick

Average Mean Speeds
Open Gate
Close Gate

Accident

0 1000 2000 3000 4000 5000

d

Tick

Average Mean Speeds
Open Gate
Close Gate

Accident

Fig. 12  Data analysis with content-based tumbling window of size a 50, b 300, c 500, and d content-based
sliding window of size 500 and step 250

Page 21 of 28Mahapatra ﻿J Big Data (2020) 7:81 	

Analysis of Shoulder-lane state: The shoulder-lane state depends entirely on the aver-
age of the occupancy rates of the lanes. If the average occupancy rate is above 30 the
shoulder-lane state turns to 1 (lane opens) otherwise it is 0. The analysis of the state
of the shoulder lane shows the variability of each method. When the occupancy rate
reaches 30, it may climb above 30 (overshoot). Then it may fall below 30 (undershoot)
again on the next tick. In control theory, overshoot refers to an output that exceeds its
target value. In contrast, the phenomenon where the output is lower than the target
value is called undershoot. In our case, it is reasonable to have an overshoot as we expect
the occupancy rates to rise above 30. Still, here we want to examine the overshoot fol-
lowed by an undershoot ratio which leads to an unstable state where the shoulder-lane
opens and gets closed on successive ticks. We also focus on the settling times of each
method. A stable system must have short settling times [62], i.e. converge quickly to its
steady value, and must not overshoot.

Figure 11 (b) shows the variation of the state of the shoulder lane when occupancy
rates are processed one-by-one. On tick 3020 the lane opens for the first time, and we
observe an overshoot-undershoot case which lasts for 3 ticks before the lane state value
settles on 1. Thus, the settling time when the shoulder-lane opens for the first time is
3 ticks. When the traffic is about to be alleviated, and just before the shoulder-lane
closes for the last time on tick 5680, we see another overshoot-undershoot incident with
a longer settling time. Concerning the variation of the shoulder-lane state, Fig. 13 (a)
shows that this particular method has much overshoot and undershoot incidents caus-
ing the shoulder-lane to open and close many times successively. This fact implies an
unbalanced system with long settling times. We can attribute this lack of stability to the
small window size, which is sensitive to the behaviour of a small sample of data. Fig-
ure 13 (b) depicts the shoulder-lane states during the experiment. In this method, there

0

1
a

La
ne

 S
ta

te

Lane Open/Close bLane Open/Close

0

1

0 1000 2000 3000 4000 5000

c

La
ne

 S
ta

te

Tick

Lane Open/Close

0 1000 2000 3000 4000 5000 6000

d

Tick

Lane Open/Close

Fig. 13  Shoulder-lane state. 0 means lane closed, 1 means lane open. Data analysis with content-based
tumbling window of size a 50, b 300, c 500, and d content-based sliding window of size 500 and step 250

Page 22 of 28Mahapatra ﻿J Big Data (2020) 7:81

is no big variation between the states and almost no overshoot-undershoot incidents.
The settling time is short, and the system seems to be balanced. The big window size
allows the system to make a decision, based on a bigger sample of data and hence it is
more stable than the two previously mentioned methods.

In Fig. 13 (c), the results of the tumbling window with size 500 can be seen. This win-
dow size is considered very big, and it is used as an extreme case here. As expected, there
are no overshoot-undershoot incidents, and the system seems to be very balanced. The
shoulder-lane opens and closes only once when needed, and there is no settling time.
This is the best window size compared to the previous one. In the following section, we
will examine the same window size for the sliding version of the tumbling window. Fig-
ure 13 (d) shows the results of the sliding window with size 500 and sliding step 250. As
expected, there are no overshoot-undershoot incidents here as well, and the system is
balanced. The shoulder-lane opens and closes only once when needed, and there is no
settling time. This figure is quite similar to the corresponding one of the tumbling win-
dow, which implies that there no big difference between a tumbling and a sliding win-
dow in this case concerning the stability of the system.

Discussion of the experimental results

The results of various stream analytics methods based on their performance in solving a
traffic control problem in real-time are summarized in Table 2. By observing the table,
two points become evident: (i) stream processing can be done in various ways, (ii) these
methods perform differently thereby affecting the final outcome and performance of
the application. For instance, in the above traffic use-case a small window processing
method, like the tumbling window of size 50, showed very good responsiveness as it was
the fastest method to open and close the shoulder-lane when traffic congestion occurred.
Still, it showed poor stability since its settling times were the longest of all five methods.
On the other hand, the no-window processing method is the slowest method to perceive
and respond to a change in the environment (e.g. traffic congestion). This method also
has low stability since it is prone to long settling times and overshoot-undershoot inci-
dents. From Table 2, it can be stated that the most efficient method to control traffic in
our scenario is a tumbling window of normal size (not too big or small). Still, it will take
further iterations to define the ideal window size.

What has been evaluated? First, When data needs to be processed in real-time, and
the result of such analysis impact the final outcome, i.e. performance of the applica-
tion, there is no easy way to know the right stream processing method with the cor-
rect parameters. Hence, it becomes very tedious to manually write the relevant code and

Table 2  Stream analytics method characteristics

Method Responsiveness Settling time Stability

No window Very slow Long Low

Tumbling window 50 Very fast Very long Very low

Tumbling window 300 Slow Very short High

Tumbling window 500 Slow None Very high

Sliding window 500 Slow None Very high

Page 23 of 28Mahapatra ﻿J Big Data (2020) 7:81 	

re-compile every time a user wants to try something new. By parametrizing the control-
ling aspects of stream processing, it becomes easy for non-experts to test various stream
processing methods to suit their application needs.

Overall, the following aspects of aFlux have been captured via the example — the inte-
grated stream processing capabilities in a flow, parametrization of the buffer capacity
and overflow strategies and modelling of different kinds of window methods to process
data, i.e. tumbling and sliding windows. Second, having stream processing components
within aFlux allows users to quickly prototype their stream processing applications
without relying on external stream processing suites. It becomes easier to prototype
streaming applications, test them and finally port them to stream analytics suites like
Flink. Third, the concurrent execution semantics of aFlux fits really well to real-world
scenarios as shown in Fig. 14. If we have traffic data coming from all over the city, the
streaming processing component can be made to execute concurrently to handle those
transactions very quickly and efficiently. Last, the user can also monitor the impact of
the streaming pipeline on the application by running a monitoring process asynchro-
nously, as shown in Fig.15.

Discussion
This section compares our concepts (as in aFlux) with exiting solutions supporting flow-
based stream analytics. In Sect. Related work, we have discussed relevant existing solu-
tions which deal with supporting flow-based data analytics, mainly stream processing.
The relevant and comparable tools include StreamIt, IBM Streams Processing Language
or the IBM Infosphere Streams, QM-IConf and IBM SPSS modeller. We also consider
Node-RED for comparison as it is one of the prominent platforms used for flow-based
programming in the context of IoT and is widely supported by IBM.

Fig. 14  Concurrent processing of streaming data

Fig. 15  Asynchronous processing of streaming data

Page 24 of 28Mahapatra ﻿J Big Data (2020) 7:81

First, we begin by defining the scope and the parameters to compare. Figure 16 shows
the model of a streaming application. This model is also known as dataflow model.
Every stream application in high-level programming tools is modelled as a dataflow
graph where vertices represent operators and edges represent valid dataflow pathways.

Table 3  Comparison of aFlux with existing solutions, as in [52]

Tools Concurrent
execution

Data
analytics app.
development

Flows
with built-in
stream
processing

Execution
of each
component
in separate
threads

Scaling
up of individual
components

Parametrization
of component
buffer

Streaming
paradigm

aFlux Yes Batch jobs.
Streaming
is a special
case

Yes Yes Yes Yes Actor model
with sup-
port for
CEP and
relational
streaming
paradigm

StreamIt Yes Streaming only.
Batch is a
special case

No Unknown No No Synchronous
dataflow
paradigm

IBM Info-
sphere
Streams

Yes Streaming only.
Batch is a
special case

No Yes Unknown No Relational
streaming
paradigm
with sup-
port for
CEP

IBM SPSS Yes Streaming only.
Batch is a
special case

No Unknown No No Appears to
follow
relational
streaming
paradigm

QM-IConf No Streaming only.
Batch is a
special case

No No No No Relational
streaming
paradigm

Node-RED No No support for
streaming

No No No No Not Appli-
cable

Fig. 16  Streaming application modelled as a dataflow graph with vertices representing operators and edges
representing dataflow pathways, as in [52]

Page 25 of 28Mahapatra ﻿J Big Data (2020) 7:81 	

Operators can either be data sources, data sinks or data transformers. The edge between
two operators has a channel capacity Accordingly, we compare the following key param-
eters between the solutions (Table 3 summarises the compared parameters):

Concurent execution of components: aFlux is based on actor-model hence it sup-
ports concurrent execution semantics, i.e. one operator in the dataflow graph can
start its execution in parallel before the finish of its predecessor. All tools with excep-
tion of Node-RED and QM-IConf support asynchronous execution of data operators
in the dataflow graph. The second column in Table 3 lists this criterion.
Data analytics application development: A second criterion for comparison is the
kind of data analytics application that can be developed using these tools. The third
and fourth column in Table 3 list this criterion. aFlux relies on asynchronous mes-
sage passing techniques to model the dataflow graph and extends the actor model
to support continuous streaming of datasets. This allows a user to model batch ana-
lytics application, a completely streaming application or a batch application with
some components doing stream analytics. Streaming is considered as a special case
in aFlux while other platforms treat modelling of batch jobs as a special case. Other
solutions are stream only platforms and are not designed to specify batch analytic
jobs though they can be modelled as both stream and batch analytics rely on the
dataflow paradigm [63].
Component execution and scaling: One of the important criterion for comparison
is to see if the individual components used in an application flow are executed in
separate threads and can scale. The fifth and sixth column in Table 3 list this crite-
rion. Since operators, i.e. components in aFlux, are independent from other compo-
nents it supports scaling up of instances of a specific component. Additionally, each
actor instance of the same component is a different unit of computation hence boots
performance. Other solutions do not support scaling up of instance of a component
if the data load increases. Nevertheless, IBM Infosphere Streams specifies separate
thread of execution for each data operators in a dataflow graph.
Parametrisation of Buffers and overflow strategy: The streams of data travelling
from one operator to another are stored in a buffer queue before being processed.
Customisation of this buffer is an important parameter for comparison. The seventh
column in Table 3 lists this criterion. aFlux supports parametrisation of this buffer
and specify over-flow strategies. This concept is non-existent in all existing solution
and from the experimental in Sect. Experimental it is clear that optimisation of this
aspect affects the performance of the streaming application.
Stream processing paradigm: The eighth column in Table 3 lists the criterion of
streaming paradigm the tool is built upon. There are three major stream processing
paradigms: (i) synchronous dataflow where the data ingestion and data production
rates are predefined which makes it unrealistic in real-world use cases, (ii) relational
paradigm which relies on the concept of relational databases to process streams
which simplifies stream processing and (iii) complex event processing paradigm in
which operators detect patterns in input streams and infer outputs. Platforms sup-
porting relational are easier to model stream applications, scale-well while the com-
plex event processing paradigm permits to model complex streaming applications.

Page 26 of 28Mahapatra ﻿J Big Data (2020) 7:81

aFlux supports the relational and the complex event processing paradigm while
StreamIt supports only synchronous dataflow paradigm.

Conclusion
In this paper, we described the requirements, main concepts, and architectural decision
behind aFlux, a new mashup tool for graphical composition of Data Analytics Appli-
cations (DAAs). aFlux is inspired by IoT mashup tools such as NodeRED and tries to
provide a common abstraction layer for the development of DAAs that combines flow-
based programming with Big Data analytics. Since it can be used for specifying paral-
lel and asynchronous computations and it provides several built-in stream processing
capabilities, aFlux can be used for developing complex, real-life DAAs. We have demon-
strated its usage and provided initial evidence of its effectiveness in composing stream
processing pipelines from an end user perspective in a traffic use case. In the future, we
would like to evaluate its usability in a user study.

Abbreviations
API: Application Program Interface; CEP: Complex Event Processing; CQL: Continuous Query Language; DAaas: Data
Analytics as a Service; DAG: Directed Acyclic Graph; IBM: The International Business Machines Corporation; IDAR: Identify,
Down, Aid, and Role; IoT: Internet of Things; QM-IConf: The QualiMaster Infrastructure Configuration tool; REST: Repre-
sentational state transfer; SASE: Stream-based and Shared Event processing; SDF: Synchronous data-flow; SPADE: Stream
Processing Application Declarative Engine; SPLv: Streams Processing Language; SPSS: Statistical Package for the Social
Sciences; UML: Unified Modelling Language.

Acknowledgements
The author is grateful to all his colleagues who actively provided insights, reviews and comments leading to the materi-
alisation of this work.

This paper is an extension of the conference paper titled “Stream Analytics in IoT Mashup Tools”, published in the
conference proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) 2018 [1]

Authors’ contributions
TM did this work as part of his PhD dissertation. The author read and approved the final manuscript

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was supported by the German Research Foun-
dation (DFG) and the Technical University of Munich within the Open Access Publishing Funding Programme.

Availability of data and materials
The datasets generated and/or analysed during the current study are available in the aFlux repository,https​://www.aflux​
.org/image​s/data/sumo-exper​iment​-data.zip.

Competing interests
The author declares that he has no conflict of interest.

Author details
1 Technical University of Munich, Software and Systems Engineering Research Group, Boltzmannstraße 03, Garch-
ing 85748, Germany. 2 Technical University of Munich, School of Medicine, Institute of Medical Informatics, Statistics
and Epidemiology (IMedIS), Ismaninger Straße 22, Munich 81675, Germany.

Received: 5 June 2020 Accepted: 3 September 2020

References
	1.	 Mahapatra T, Prehofer C, Gerostathopoulos I, Varsamidakis I. Stream Analytics in IoT Mashup Tools. In: 2018 IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 2018; 227–231. Available from: https​://
doi.org/10.1109/VLHCC​.2018.85065​48.

	2.	 Health N. com T, editor. How IBM’s Node-RED is hacking together the internet of things; 2014. [Online; posted
13-March-2014]. http://www.techrepublic.com/article/node-red/.

	3.	 IBM. Node-RED, Flow-based programming for the Internet of Things;. [Online; accessed 10-May-2016]. http://
nodered.org/.

https://www.aflux.org/images/data/sumo-experiment-data.zip
https://www.aflux.org/images/data/sumo-experiment-data.zip
https://doi.org/10.1109/VLHCC.2018.8506548.
https://doi.org/10.1109/VLHCC.2018.8506548.

Page 27 of 28Mahapatra ﻿J Big Data (2020) 7:81 	

	4.	 Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster Computing with Working Sets. In: Proceed-
ings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. HotCloud’10. USA: USENIX Association.
2010;10.

	5.	 Zecevic P, Bonaci M. Spark in Action. 1st ed. Greenwich, CT, USA: Manning Publications Co.; 2016.
	6.	 Katsifodimos A, Schelter S. Apache Flink: Stream Analytics at Scale. In: 2016 IEEE International Conference on Cloud

Engineering Workshop (IC2EW). 2016; 193–193.
	7.	 Friedman E, Tzoumas K. Introduction to Apache Flink. : O’Reilly; 2016.
	8.	 Apache. Flink Programming Concepts;. [Online; accessed 09-May-2019]. https://ci.apache.org/projects/flink/flink-

docs-release-1.8/concepts/programming-model.html.
	9.	 Apache Kafka. A Distributed Streaming Platform; 2018. [Online; accessed 24-April-2019]. https://kafka.apache.org.
	10.	 Santos Wd, Avelar GP, Ribeiro MH, Guedes D, Meira W Jr. Scalable and Efficient Data Analytics and Mining with

Lemonade. Proc VLDB Endow. 2018; 11(12):2070–2073. https​://doi.org/10.14778​/32298​63.32362​62.
	11.	 Eichelberger H, Qin C, Schmid K. Experiences with the Model-based Generation of Big Data Pipelines. In: Mitschang

B, Nicklas D, Leymann F, Schöning H, Herschel M, Teubner J, et al., editors. Datenbanksysteme für Business, Technolo-
gie und Web (BTW 2017) - Workshopband. Bonn: Gesellschaft für Informatik e.V; 2017. p. 49–56.

	12.	 StreamSets. DataOps for Modern Data Integration; 2018. [Online; accessed 18-May-2020]. https://streamsets.com.
	13.	 Touk. Nussknacker. Streaming Processes Diagrams;. [Online; accessed 27-May-2019]. https​://touk.githu​b.io/nussk​

nacke​r/.
	14.	 Stratio. Sparta 2.0: The definitive visual build tool for Apache Spark; 2018. [Online; accessed 18-May-2020]. https​://

www.strat​io.com/blog/apach​e-spark​-visua​l-tool-spart​a/.
	15.	 Mahapatra T, Gerostathopoulos I, Prehofer C. Towards Integration of Big Data Analytics in Internet of Things Mashup

Tools. In: Proceedings of the Seventh International Workshop on the Web of Things. WoT ’16. New York, NY, USA:
ACM. 2016; p. 11–16. https​://doi.org/10.1145/30179​95.30179​98.

	16.	 Mahapatra T, Prehofer C. Service Mashups and Developer Support. Digital Mobility Platforms and Ecosystems. 2016;
48 – 65. https​://doi.org/10.14459​/2016m​d1324​021

	17.	 Mahapatra T, Gerostathopoulos I, Fernández FA, Prehofer C. Designing Flink Pipelines in IoT Mashup Tools.
2018;2316(03):41–53 http://ceur-ws.org/Vol-2316/paper​3.pdf.

	18.	 Mahapatra T, Gerostathopoulos I, Prehofer C, Gore SG. Graphical Spark Programming in IoT Mashup Tools. In: 2018
Fifth International Conference on Internet of Things: Systems, Management and Security; 2018. p. 163–170.https​://
doi.org/10.1109/IoTSM​S.2018.85546​65.

	19.	 Mahapatra T, Prehofer C. aFlux: Flow-based programming for Big Data; 2019. [Online; accessed 20-June-2019]. https​
://aflux​.org.

	20.	 Mahapatra T, Prehofer C. aFlux: Graphical flow-based data analytics. Software Impacts. 2019;2:100007. https​://doi.
org/10.1016/j.simpa​.2019.10000​7.

	21.	 Mahapatra T, Prehofer C. Graphical Flow-based Spark Programming. Journal of Big Data. 2020;7(1):4. https​://doi.
org/10.1186/s4053​7-019-0273-5

	22.	 Prehofer C, Chiarabini L. From Internet of Things Mashups to Model-Based Development. In: COMPSAC, 2015 IEEE
39th Annual. IEEE; 2015. p. 499 – 504.

	23.	 Blackstock M, Lea R. IoT mashups with the WoTKit. In: Internet of Things (IOT), 2012 3rd International Conference on
the; 2012. p. 159–166.

	24.	 Kleinfeld R, Steglich S, Radziwonowicz L, Doukas C. glue.things: A Mashup Platform for wiring the Internet of Things
with the Internet of Services. In: Proceedings of the 5th International Workshop on Web of Things. WoT ’14. ACM;
2014. p. 16–21. Available from: https​://doi.org/10.1145/26844​32.26844​36.

	25.	 Akpinar K, Hua KA, Li K. ThingStore: A Platform for Internet-of-things Application Development and Deployment. In:
Proceedings of the 9th ACM International Conference on Distributed Event-Based Systems. DEBS ’15. ACM; 2015. p.
162–173. https​://doi.org/10.1145/26757​43.27718​33.

	26.	 Kim J, Lee JW. OpenIoT: An open service framework for the Internet of Things. In: Internet of Things (WF-IoT); 2014.
p. 89–93.

	27.	 Derhamy H, Eliasson J, Delsing J, Priller P. A survey of commercial frameworks for the Internet of Things. In: ETFA;
2015. p. 1–8.

	28.	 Hirzel M, Andrade H, Gedik B, Jacques-Silva G, Khandekar R, Kumar V, et al. IBM Streams Processing Language: Ana-
lyzing Big Data in motion. IBM Journal of Research and Development. 2013 May;57(3/4):7:1–7:11.

	29.	 Seyfer N, Tibbetts R, Mishkin N. Capture Fields: Modularity in a Stream-relational Event Processing Langauge. In:
Proceedings of the 5th ACM International Conference on Distributed Event-based System. DEBS ’11. New York, NY,
USA: ACM; 2011. p. 15–22.https​://doi.org/10.1145/20022​59.20022​63.

	30.	 Thies W, Karczmarek M, Amarasinghe S. StreamIt: A Language for Streaming Applications. In: Horspool RN, editor.
Compiler Construction. Springer, Berlin Heidelberg: Berlin, Heidelberg; 2002. p. 179–96.

	31.	 Berry G, Gonthier G. The ESTEREL Synchronous Programming Language: Design, Semantics, Implementation. Sci
Comput Program. 1992 Nov;19(2):87–152. https​://doi.org/10.1016/0167-6423(92)90005​-V.

	32.	 Chandrasekaran S, Cooper O, Deshpande A, Franklin MJ, Hellerstein JM, Hong W, et al. TelegraphCQ: Continuous
Dataflow Processing. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’03. New York, NY, USA: ACM; 2003. p. 668–668. https​://doi.org/10.1145/87275​7.87285​7.

	33.	 Arasu A, Babu S, Widom J. The CQL Continuous Query Language: Semantic Foundations and Query Execution. The
VLDB Journal. 2006 Jun;15(2):121–142. Available from: https​://doi.org/10.1007/s0077​8-004-0147-z.

	34.	 Abadi DJ, Carney D, Çetintemel U, Cherniack M, Convey C, Lee S, et al. Aurora: A New Model and Architecture for
Data Stream Management. The VLDB Journal. 2003 Aug;12(2):120–139. https​://doi.org/10.1007/s0077​8-003-0095-z.

	35.	 Çetintemel U, Abadi D, Ahmad Y, Balakrishnan H, Balazinska M, Cherniack M, et al. In: Garofalakis M, Gehrke J, Rastogi
R, editors. The Aurora and Borealis Stream Processing Engines. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016.
p. 337–359. https​://doi.org/10.1007/978-3-540-28608​-0_17.

https://doi.org/10.14778/3229863.3236262.
https://touk.github.io/nussknacker/
https://touk.github.io/nussknacker/
https://www.stratio.com/blog/apache-spark-visual-tool-sparta/
https://www.stratio.com/blog/apache-spark-visual-tool-sparta/
https://doi.org/10.1145/3017995.3017998
https://doi.org/10.14459/2016md1324021
http://ceur-ws.org/Vol-2316/paper3.pdf
https://doi.org/10.1109/IoTSMS.2018.8554665
https://doi.org/10.1109/IoTSMS.2018.8554665
https://aflux.org
https://aflux.org
https://doi.org/10.1016/j.simpa.2019.100007
https://doi.org/10.1016/j.simpa.2019.100007
https://doi.org/10.1186/s40537-019-0273-5
https://doi.org/10.1186/s40537-019-0273-5
https://doi.org/10.1145/2684432.2684436
https://doi.org/10.1145/2675743.2771833
https://doi.org/10.1145/2002259.2002263
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1145/872757.872857
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1007/978-3-540-28608-0_17

Page 28 of 28Mahapatra ﻿J Big Data (2020) 7:81

	36.	 Cangialosi FJ, Ahmad Y, Balazinska M, Cetintemel U, Cherniack M, Hwang JH, et al. The Design of the Borealis Stream
Processing Engine. In: Second Biennial Conference on Innovative Data Systems Research (CIDR 2005). Asilomar, CA;
2005. .

	37.	 Barga RS, Goldstein J, Ali MH, Hong M. Consistent Streaming Through Time: A Vision for Event Stream Processing. In:
CIDR; 2007. p. 363–373.

	38.	 Gedik B, Andrade H, Wu KL, Yu PS, Doo M. SPADE: The System S Declarative Stream Processing Engine. In: Proceed-
ings of the 2008 ACM SIGMOD International Conference on Management of Data. SIGMOD ’08. New York, NY, USA:
ACM; 2008. p. 1123–1134. https​://doi.org/10.1145/13766​16.13767​29.

	39.	 Chen J, DeWitt DJ, Tian F, Wang Y. NiagaraCQ: A Scalable Continuous Query System for Internet Databases. In: Pro-
ceedings of the 2000 ACM SIGMOD International Conference on Management of Data. SIGMOD ’00. New York, NY,
USA: ACM; 2000. p. 379–390. Available from: https​://doi.org/10.1145/34200​9.33543​2.

	40.	 Agrawal J, Diao Y, Gyllstrom D, Immerman N. Efficient Pattern Matching over Event Streams. In: Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data. SIGMOD ’08. New York, NY, USA: ACM; 2008.
p. 147–160. https​://doi.org/10.1145/13766​16.13766​34.

	41.	 Apache. Apache Storm;. [Online; accessed 27-May-2019]. https​://storm​.apach​e.org.
	42.	 IBM. IBM SPSS Modeller;. [Online; accessed 22-June-2018]. Available from: https​://www.ibm.com/produ​cts/spss-

model​er.
	43.	 Agha G. Actors: A Model of Concurrent Computation in Distributed Systems. Cambridge, MA, USA: MIT Press; 1986.
	44.	 Hewitt C. Viewing Control Structures As Patterns of Passing Messages. Artif Intell. 1977 Jun;8(3):323–364. https​://doi.

org/10.1016/0004-3702(77)90033​-9.
	45.	 Agha GA, Mason IA, Smith SF, Talcott CL. A Foundation for Actor Computation. J Funct Program. 1997 Jan;7(1):1–72.

https​://doi.org/10.1017/S0956​79689​70026​1X.
	46.	 Talcott CL. Composable Semantic Models for Actor Theories. Higher-Order and Symbolic Computation. 1998

Sep;11(3):281–343. https​://doi.org/10.1023/A:10100​42915​896.
	47.	 Virding R, Wikström C, Williams M. Concurrent Programming in ERLANG (2Nd Ed.). Hertfordshire, UK: Prentice Hall

International (UK) Ltd.; 1996.
	48.	 Varela C, Agha G. Programming Dynamically Reconfigurable Open Systems with SALSA. SIGPLAN Not. 2001

Dec;36(12):20–34. https​://doi.org/10.1145/58396​0.58396​4.
	49.	 Musser DR, Varela CA. Structured Reasoning About Actor Systems. In: Proceedings of the 2013 Workshop on

Programming Based on Actors, Agents, and Decentralized Control. AGERE! 2013. New York, NY, USA: ACM; 2013. p.
37–48. https​://doi.org/10.1145/25413​29.25413​34.

	50.	 Goodwin J. Learning Akka. Packt Publishing; 2015. https​://www.packt​pub.com/appli​catio​n-devel​opmen​t/learn​
ing-akka.

	51.	 Carkci M. Dataflow and Reactive Programming Systems: A Practical Guide. 1st ed. USA: CreateSpace Independent
Publishing Platform; 2014.

	52.	 Mahapatra T. High-level Graphical Programming for Big Data Applications [Dissertation]. Technische Universität
München. München; 2019. http://media​tum.ub.tum.de/?id=15249​77.

	53.	 Desell T, Maghraoui KE, Varela CA. Malleable applications for scalable high performance computing. Cluster Com-
puting. 2007 Sep;10(3):323–337. https​://doi.org/10.1007/s1058​6-007-0032-9.

	54.	 Akka. Implementation of the Actor Model. Build powerful reactive, concurrent, and distributed applications more
easily;. [Online; accessed 25-December-2017]. https​://akka.io/.

	55.	 Overton MA. The IDAR Graph. Commun ACM. 2017 Jun;60(7):40–45. https​://doi.org/10.1145/30799​70.
	56.	 Krajzewicz D, Erdmann J, Behrisch M, Bieker L. Recent Development and Applications of SUMO - Simulation of

Urban MObility. Int J Adv Syst Measurements. 2012;5(3&4):128–38.
	57.	 Wegener A, Piorkowski M, Raya M, Hellbrück H, Fischer S, Hubaux JP. TraCI: An Interface for Coupling Road Traffic and

Network Simulators. 11th Communications and Networking Simulation Symposium (CNS). 2008;.
	58.	 Minni S. Apache Kafka Cookbook. Packt Publishing Ltd; 2015.
	59.	 Garg N. Apache Kafka. Packt Publishing Ltd; 2013.
	60.	 Dunning T, Friedman E. Streaming architecture: new designs using Apache Kafka and MapR streams. “O’Reilly Media,

Inc.”; 2016.
	61.	 Filieri A, Maggio M, Angelopoulos K, D’ippolito N, Gerostathopoulos I, Hempel AB, Control Strategies for Self-Adap-

tive Software Systems. ACM Trans Auton Adapt Syst. , et al. Feb; 11(4):24:1–24:31. Available from: 2017;. https​://doi.
org/10.1145/30241​88.

	62.	 Abdelzaher T, Diao Y, Hellerstein JL, Lu C, Zhu X. In: Liu Z, Xia CH, editors. Introduction to Control Theory And Its
Application to Computing Systems. Boston, MA: Springer US; 2008. p. 185–215. https​://doi.org/10.1007/978-0-387-
79361​-0_7.

	63.	 Soulé R, Hirzel M, Grimm R, Gedik B, Andrade H, Kumar V, et al. A Universal Calculus for Stream Processing Lan-
guages. In: Gordon AD, editor. Programming Languages and Systems. Springer, Berlin Heidelberg: Berlin, Heidel-
berg; 2010. p. 507–28.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/1376616.1376729
https://doi.org/10.1145/342009.335432
https://doi.org/10.1145/1376616.1376634
https://storm.apache.org
https://www.ibm.com/products/spss-modeler
https://www.ibm.com/products/spss-modeler
https://doi.org/10.1016/0004-3702(77)90033-9
https://doi.org/10.1016/0004-3702(77)90033-9
https://doi.org/10.1017/S095679689700261X
https://doi.org/10.1023/A:1010042915896
https://doi.org/10.1145/583960.583964
https://doi.org/10.1145/2541329.2541334
https://www.packtpub.com/application-development/learning-akka
https://www.packtpub.com/application-development/learning-akka
http://mediatum.ub.tum.de/?id=1524977
https://doi.org/10.1007/s10586-007-0032-9
https://akka.io/
https://doi.org/10.1145/3079970
https://doi.org/10.1145/3024188
https://doi.org/10.1145/3024188
https://doi.org/10.1007/978-0-387-79361-0_7
https://doi.org/10.1007/978-0-387-79361-0_7

	Composing high-level stream processing pipelines
	Abstract
	Introduction
	Results
	Background and related work
	Mashups and mashup tools
	Stream processing
	Related work

	aFlux concepts and architecture
	Requirements
	Programming paradigm for multi-threaded applications
	Flow execution
	Asynchronous execution of components
	Concurrent execution of components
	Logical structuring units
	In-flow stream processing

	Experimental
	Discussion of the experimental results

	Discussion
	Conclusion
	Acknowledgements
	References

