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Introduction
Natural disasters, climate change[54] and plant diseases[51] are among many factors 
that threaten the food security. Plant diseases in particular, may cause great loss not only 
for farmers, but also for global economy. For instance, The International Potato Center 
(CIP) reports that around 15 % loss of potatoes production[24] is due to late blight dis-
eases only. Globally, plant diseases cause more than 20 % crop loss annually[49]. The 
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At the moment, there are increasing trends of using deep learning for plant diseases 
detection. However, their implementations may be difficult in developing coun-
tries due to several reasons. First, existing deep learning models are usually trained 
with images with adequate resolutions. In developing countries however, with limited 
internet connection, models that would perform well even when data with low resolu-
tion are used are needed. Secondly, the generated models are large. Hence, most deep 
learning based applications are available on-line. Unfortunately, the trend for new deep 
learning architectures are either have larger models or require a heavy memory usage. 
So, models with smaller size would be preferred. In this paper, we evaluate various 
existing deep learning models for plant diseases detection when low resolution data 
are used. They are: VGGNet, AlexNet, Resnet, Xception, and MobileNet. Our focus is 
deep convolutional neural network (DCNN) which is commonly applied for image data. 
We also propose a new DCNN architecture with two branches of concatenated residual 
networks. It is well known that the deeper the networks the better performance 
of DCNN. However, DCNN with very deep networks and large number of training 
parameters is prone to vanishing gradient problems. One solutions for that is to apply 
residual networks as branches to DCNN. While it is found that increasing the branch 
of the networks benefit the performance, larger memory are required to train the 
networks. So, we apply two concatenated residual networks only. We called it Compact 
Networks (ComNet). We compare our method other with six popular CNN architec-
tures. We evaluate the performance on the PlantVillage dataset and our own dataset. 
We collected images of tea leaves which consist of 6 classes: 5 classes of diseases that 
are commonly found in Indonesia and a healthy class. Our experiments show that our 
method is generally better than referenced DCNN networks.

Keywords:  Deep Learning, Convolutional neural network, Light CNN, Plant diseases 
detection, Tea diseases detection

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Pardede et al. J Big Data            (2020) 7:57  
https://doi.org/10.1186/s40537-020-00332-7

*Correspondence:   
hilm001@lipi.go.id 
1 Reserch Center 
for Informatics, Indonesian 
Institute of Sciences, 
Bandung, Indonesia
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0001-8078-7592
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00332-7&domain=pdf


Page 2 of 21Pardede et al. J Big Data            (2020) 7:57 

plant diseases are even bigger threats for smallholder farmers due their limited knowl-
edge, resources and financial power to deal with them. This is the case in Indonesia, 
where smallholder farmers comprise the majority of farmers.

Early detection of plant diseases proves to be effective to reduce the risk of crop failure 
as farmers may perform some curative and preventive actions to avoid further damages. 
Detection of plant diseases with naked eye inspection would require human experts. A 
large team of experts that continuously monitor the condition of the farms would be 
needed and this would cost greatly especially if the area of the farms are large and dis-
perse. For countries like Indonesia where of farmers are distributed in large areas and 
separated by seas/islands, the government may have limitation to provide experts espe-
cially, especially for remote areas.  Therefore, automatic detection for plant diseases is 
needed.

Some works indicate the diseases of the plants by detecting their level of stressness. 
This could be detected using various methods, for instance, using hyperspectral and mul-
tispectral sensing[5, 13, 36, 62], thermal imaging methods[32], chemical substances[6], 
and/or molecular and genetic level analysis[34, 35]. However, these approaches would 
be expensive and require experts to operate, and thus would be unattainable for small-
holder farmers. Other studies apply various image processing techniques combined 
with machine learning for pattern searching of the diseases is one solution to provide 
easily accessible aids for small farmers. Given enough image data of infected plants, we 
could train machine learning systems that are able to identify the diseases given the cor-
responding data. Various machine learning methods such as Support Vector Machines 
(SVM)[10], k-Nearest neighbor (k-NN), Naive Bayes, or Random Forest[19] are applied. 
For instance, Spectroscopy of plant tissues is used in[26]. In other study[14], multispec-
tral data are used as features for Neural Networks to detect diseases on cucumber. SVM is 
used as classifier for Huanglongbing citrus diseases detection with fluorescence images in 
a reported study[57]. PCA and Linear Discriminant Analysis are used Blast rice diseases 
in[59]. For a review for the use of spectral data for plant diseases detection could refer 
to[47]. Unfortunately, spectral data are extracted using expensive equipments[44].

Many efforts have been made to develop machine learning based detectors that work 
with standard image data. Using such data, the efforts focus on developing hand-engi-
neered features from images, usually based on human knowledge on particular problems 
using various transformations, such that they are good to discriminate each class for rec-
ognition. Several examples of engineered features are Histogram of Oriented Gradients 
(HOG)[11], Scale-Invariant Feature Transform (SIFT)[33], Speeded Up Robust Features 
(SURF)[4], and Linear Binary Pattern (LBP)[38]. For examples, k-means clustering with 
neural network are used in[2]. In[42], combinations of Gabor wavelet transform (GWT) 
and gray level co-occurrence matrix (GLCM) are used as features with k-NN as the 
classifier. In other study, SIFT features with principle components analysis (PCA) are 
used with Learning Vector Quantization (LVQ)[41]. Variant of SVM with GLCM and 
LBP features are used in[1] for citrus. Unfortunately, these engineered features usually 
require complex computations and processes[47].

Recent advancement in machine learning, called deep learning (DL), paves way for 
more accurate classifications given simpler features[30]. DL methods have been used 
in many machine learning tasks, such as speech recognition[12, 46] natural language 
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processing[9, 48], and computer vision[56]. In the area of computer vision and object 
recognition[45], DL is state-of-the art for many applications. Most studies in com-
puter vision and object recognition use the convolutional neural networks (CNN)[31] 
and their variants, such as AlexNet[29], VGGNet[50], GoogleNet[53], Xception[7], 
and MobileNet[20], ZFNet[61], and ResNet[18]. As it is reported in[45], it is clear 
that CNN become the dominant technology for object recognition.

For diseases detection, many studies also have implemented the aforementioned 
architectures. In [37], GoogleNet and AlexNet are used to detect diseases from 19 
plants. Meanwhile, ResNet and VGGNet are used to detect diseases on tomatoes 
in [16]. AlexNet and VGGNet are used to detect diseases of 25 plants in a reported 
study [15]. Simplified VGGNet is proposed in [39] for potatoes diseases detection. 
MobileNet combined with the Single Shot Multibox (SSD) model are used to detect 
diseases on cassava [43]. These works use variants of convolutional neural networks 
with decent resolution image data (above 128× 128 pixel resolutions). Most studies 
also have not evaluated the robustness of the methods when tested on non-ideal con-
ditions where the image data may be blurred, have different orientations and/or reso-
lutions than training data. To improve robustness, multicondition training on CNN 
for tea diseases detection is proposed in [60].

In addition, the DL models are placed in the servers due to their large sizes for the 
implementations. This is due to the large size of the networks. The targeted image 
data are then transferred to the server for further processing and classification, and 
the results are transmitted back to the devices. Most studies usually work with decent 
quality images (with resolutions of 256× 256 ). However, many developing countries 
such as Indonesia may still have limited speed for internet connectivity, especially in 
remote areas where many small farmers live. Therefore, it is better to have the sys-
tems that are trained with low resolution images. In addition, the systems must be 
robust against various image transformations as it is very likely that the images are 
taken on different conditions as the data training.

Meanwhile, it is well-known that increasing the size of the deep learning networks 
by increasing the depth of the networks is effective improve the performance of deep 
learning systems. Later variants of CNN usually come with increasing depth of convo-
lutional layers. But, this causes two drawbacks. First, this may increase computational 
loads due to the high number of model parameters. Second, very deep networks may 
prone to overfit especially when the number of training data is limited, and hence 
adding more layers do not necessarily improve the performance. This is called the 
gradient vanishing problem[23].

One solution to this problem is to use skip connections. Skip connections are lay-
ers that are designed to skip few layers of the networks so the layers could reuse the 
activations of the skip connections layers during training, and hence avoiding the gra-
dient to vanish. Residual network is an example of skip connections. This is applied 
in ResNet and Xception where residual networks are added to the output  of the 
convolutional layers [18]. However, information fusion as in Xception may alleviate 
information passed through to the next layers. Meanwhile, to reduce the number of 
the parameters, other studies replace convolutional layers with separable convolu-
tion [25] as in MobileNet and Xception. With this finding, several newer networks 
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use more branch of skip connections such as DenseNet [21] and ResNext [58]. But, 
such networks usually require more memory to train and hence may not applicable 
for machines with limited resources.

The contributions of this paper are two-folds. First is a new DCNN architectures to 
significantly reduce the number of the training parameters and to overcome vanishing 
gradient problems. We called it Compact Networks (ComNet). Our method works by 
applying two branch of concatenation layers only to minimize the need for more memory 
for training. The first layer is to carry information from previous layers and the second 
is concatenated the output of first concatenation layer with small kernels convolutional 
layers to avoid the gradients to vanish during training. We evaluate the performance and 
robustness of five major DCNN architectures: VGGNet[50], AlexNet[29], Xception[7], 
MobileNet[20] and ResNet[18] on low resolution data. Secondly, we develop a dataset 
of tea diseases that consists of 5 types of diseases that are common in Indonesia and a 
healthy class. In addition to the evaluation our dataset, we also evaluated them on subset 
of Plantvillage dataset[37] with reduced resolution due our limited resource for training. 
We evaluated the methods on 3 plants: apple, corn, and potato, with 11 class labels that 
were made up by 8 types of diseases and three healthy classes.

The remainder of the paper is organized as follow. We explain all the architectures 
we used in this study in “Convolutional neural networks and their variants” section. 
Our proposed method is explained in “Proposed method” section in more details. We 
describe our experimental setup in “Experimental setup” section and the results are 
discussed and analysed in “Results and discussions” section. We conclude the paper in 
“Conclusion” section.

Convolutional neural networks and their variants
DL caught attentions of many researchers in the areas of machine learning in recent 
years. DL systems won numerous competitions in pattern recognition and machine 
learning[3, 8]. For object recognition tasks such as Large Scale Visual Recognition Chal-
lenge (ILSVRC)[45], DL achieves the best performance and outperformes many other 
conventional methods.

Deep learning technologies are mostly based on artificial neural network (ANN). In 
ANN, perceptrons are stacked in such way to approximate the relation between the 
inputs with the outputs (usually the target classes). Therefore, DL can be seen as uni-
versal function approximators. By having many hidden layer in the network, DL can 
model any complex relation using large number of hidden layers, allowing the networks 
to learn about various abstractions of the data in different layers of the networks. This 
would allow the networks to learn about the representations of the data by themselves 
given only the raw information. This is one of the advantages of the DL architectures. 
Thus, it is unnecessary to design a handcrafted features, which is a common approach 
when conventional machine learning methods are used.

For object recognition, deep convolutional neural networks (DCNN) and their vari-
ations are mainly used for object recognitions. DCNN is built upon stacked convo-
lutional neural networks (CNNs). CNN is a variant of feed-forward network (FFN) 
where the flow of information has no feedback from the output layer to the previous 
layers. Like a typical FFN, CNN consists of input, hidden, and output layers with the 
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hidden layers are typically constructed by convolutional layers, pooling layers, and 
fully connected layers. The CNN architecture is first proposed in the 80’s [17]. In the 
paper, the structure, which is called Neocognitron, has very similar structure to the 
current CNN except on how the weights are updated. It is updated in unsupervised 
manner and pre-wired. Meanwhile in current CNN, the weights are updated with the 
use of gradient descent based methods [31]. CNN is applied for many tasks in com-
puter visions [56]. Currently, CNN is the leading architecture for image recognition, 
classification, and detection [29].

In convolutional layers, a convolution operation is applied to the input like standard 
FFN. The difference is, the nodes in a convolutional layer only connected to a particu-
lar inputs unlike FFN where they are connected to all inputs. This is one advantages of 
CNN over FFN on image data. For image data, the local relation between inputs may 
need to be emphasized first before the network learn more of the global relations of 
the images. By doing so, the networks can learn larger area of abstraction and differ-
ent kind of abstraction when the data pass the higher layers of the networks to obtain 
different abstraction. Additionally, applying FFN on images would be impractical as it 
would produce significantly larger number of parameters. This could significantly be 
reduced by using CNN.

A pooling layer is usually included after the convolutional layers. In the pooling layer, 
outputs of grouped neuron are combined to produce a single node that would be passed 
into the following layers. The commonly used combination rule is max-pooling where 
the output is the maximum values of the grouped neurons. Other approach is average 
pooling where the average value of the nearby inputs is used as the output.

A fully connected layer is usually put at the top of CNN architecture. This layer con-
nect every neuron in previous layer to every neuron in the next layer. So in principle, 
it is the same with standard multi-layer perceptron network. The purpose is the find 
the global relation of the data.

There have been many architectures of DCNN. However, due to our limitation for 
training, we are only capable to evaluate 5 DCNN architectures in this study. They are 
AlexNet, VGGNet, MobileNet, Xception, and ResNet. Newer architectures such as 
DenseNet, ResNext, Inception-v4, and Incetion-Resnet-v2 [52] are inapplicable in our 
current machines.

AlexNet

AlexNet is proposed in [29]. AlexNet is the winner of ILSVRC in 2012 where CNN 
gain its global recognition for the first time. It achieves significantly better perfor-
mance than conventional methods. It is comprised with five convolutional layers and 
three fully connected layers. After the first, second, and fifth convolutional layers, 
max-pooling is applied. Dropout is applied after the first and second fully connected 
layers.

Originally, AlexNet is used for images with size of 224 × 224 . To make it able to 
accommodate low resolution images ( 64 × 64 ), we modify the filter size of each con-
volutional layers from 96-256-384-256 in the original design to 64-256-384-384-256. 
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We also modify the kernel size of 11× 11 to 3× 3 on the first layers. The details of our 
implementation of AlexNet is shown in Fig. 1.

VGGNet

VGGNet is proposed in[50]. It is the runner-up at the ILSVRC 2014. VGGNet is 
similar to AlexNet except it is deeper by utilizing smaller convolutional kernels. It 
has 12 convolutional layers instead of 4 as in AlexNet and 3 fully connected layers. 
Even though VGGNet achieved the second place in ILSVRC 2014, it is quite popular 
architecture for learning features from image due to its simplicity. It only uses 3× 3 
convolution and 2× 2 pooling for the whole networks. This architecture shows that 
improving the networks can be done by keep adding new convolutional layers. One 
drawback of VGGNet is the size of the networks. It has significantly larger param-
eters and requires longer training time. There are two variants of VGGNet. They are 
VGGNet16 with 16 layers and VGGNet19 with 19 layers. Here, we implement VGG-
Net16. The details of VGGNet we use is shown in Fig. 2.

MobileNet

MobileNet is proposed in[20]. DCNN architectures such as VGGNet require heavy 
computational loads and great number of parameters. To make it smaller, CNN is 
replaced by depth-wise separable convolution in MobileNet. Conventional convolu-
tional layers operate by performing summing and filtering operation between input 
and a defined filter, i.e. cross-correlation operation to be exact, to produce a new set 
of output. Here, CNN operations are separated by depth-wise separable convolu-
tion into two operation: 3× 3 depthwise convolution for filtering for the first chan-
nel and 1× 1 pointwise convolution combining the inputs to other channels. This 
division produces much smaller computation and model size since full convolution 
operations are conducted in the first channel only.

Fig. 1  AlexNet architecture
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The structures of a MobileNet is shown in Fig. 3. First layer uses a regular convolu-
tional layer. Then, it is followed by 13 layers of deep wise convolution and pointwise 

Fig. 2  VGGNet architecture

Fig. 3  MobileNet architecture
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convolution layers. After that, average pooling and dropout are used before applying 
CNN as final layer.

ResNet

ResNet is proposed to overcome the vanishing gradients problems [55]. Due to the 
use of small kernels, studies found that VGGNet that use smaller kernels could only 
works until certain depth. In ResNet, skip connections are implemented. Here, resid-
ual networks are introduced as skip connections. The residual networks is illustrated 
in Fig. 4. The network is designed to learn “the residual” of the networks by adding 
the input of the block to its output.

In the paper, we implement ResNet50. ResNet is build by stacking Conv Block and 
Identity block with the structure illustrated in Fig. 5. The image data pass a layers of a 
CNN in the beginning. ResNet 50 consists of five Conv Blocks and 13 Identity blocks. 
At final stage, average pooling is applied before passing it into softmax classification.

Xception

Xception is proposed in [7]. Xception stands for eXtreme inception. Xception is 
similar to ResNet by applying residual networks to enable very deep networks. The 
difference is Xception apply inception module [53]. Inception modules work by con-
catenating convolutional layers with various sizes. The purpose of  it is to keep good 
resolution for small area of images while also getting the information on larger area. 
But, in Xception, the inputs are projected into various output channel by using deep-
wise separable convolution layer instead. The architecture of Xception is shown in 
Fig. 6.

In Xception, the data first pass 2 layers of regular CNN before it is passed into the 
entry block. In entry block, 2 layers of 3× 3 Deepwise Separable Convolution are 

Fig. 4  Structure of a residual network
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concatenated with 1× 1 convolution layer. This procedure is repeated for three times. 
Then, in middle block, three layers of deepwise separable convolution are stacked. 
This is repeated for 8 times. Then in exit block, 2 layers of 3× 3 Deepwise Separable 
Convolution are combined with 1× 1 convolution layer and it is followed by 2 layers 
of Deepwise separable convolution.

Proposed method
The most straightforward approach to improve the performance of DCNN is to 
increase the model complexity by adding the width or the depth of the networks. 
However, adding more layers would make the networks prone to gradient vanishing/
exploding. As the results, the networks are unable to converge. This could be over-
come by adding skip connections. This means a layer skips some layers. By doing so, 
the networks could reuse activations from much lower layers, and hence vanishing 
gradient could be avoided. One implementations of skip connections are in resid-
ual networks [18]. This concept is applied at Xception, where residual networks are 
applied as skip connections.

Residual networks work as follows. Let us consider Sub-Middle Block of Xception 
(See Fig. 6). An output of the lth layer with transformation function f of a residual net-
work can be expressed as:

Fig. 5  ResNet architecture
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where Hl is the nonlinear transformation due to stacking process. In Xception, it is a 
composite of batch normalization, rectified linear units (ReLU), pooling, and convolu-
tional layers. In Xception, a layer receives the outputs of previous layers and added them 
with the residual networks. Therefore, vanishing gradients could be avoided.

With this finding, more recent studies apply more branches of skip connections as 
in DenseNet[21], ResNext[58], and Inception-V4[52]. However, due to the multiple 
branches of skip connections, it requires larger memory capacity for the GPU, mak-
ing it inapplicable for computers with limited GPU memory size.

To overcome this, we limit only two branches of skip connections. In addition, due 
to the addition process in Xception, some information may be lost. To avoid this, 
we to concatenate the layers instead. We called it the compact modules since all the 
input compacted at the output. The comparisons between the proposed architec-
tures and residual networks is illustrated in Fig. 7.

(1)xl = f
(

Hl

(

xl−1

)

+ xl−1

)

Fig. 6  Xception architecture
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Fig. 7  Comparison of a residual networks on Xception and b concatenation layers of the proposed system

Fig. 8  The proposed architecture
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The detail implementations of the proposed architectures is shown in Fig.  8 and 
Table  1. Our networks is comprise of two convolutional layers, then followed by 
three compact modules, with transition modules in between, and then Global aver-
age pooling followed by output layers. The transition modules are built from a 
convolutional layer, batch normalization, and average pooling. We refer this archi-
tectures as ComNet.

Experimental setup
Dataset

We used subset of Database published in [22]. The database itself contains 54,306 
images of plant leaves with total of 38 class labels. There are 14 plants in the data-
set. From the data, we selected three plants: Apple, Corn, and Potato due to our lim-
ited computation resources. There were a total of 9,176 data for the experiments. The 
original size of the dataset is 256× 256 pixels. We rescaled them into 64 × 64.  The 
sample images of the dataset is shown in Fig. 10.

We also develop a dataset for tea diseases. We collected 11,367 images of tea leaves 
which comprise of four classes: one healthy class and 6 types of diseases that are com-
monly find in tea. They are tea plants with blister blight, leafhopper attacks, looper 
caterpillars attacks, mosquito bugs attacks, and yellow-mite attacks. The data are col-
lected at Research Center for Tea and Cinchona, Gambung, West Java, Indonesia. The 
data are collected using two digital cameras and five smartphone cameras. All images 
are taken indoor with only room lighting. The data are collected during various hours 
from 8 a.m. in the morning until 5.30 p.m. in the afternoon. The data are scaled into 
256× 256 and then rescaled down into 64 × 64 for the experiments. This dataset in an 
extension of dataset that we published in [28, 60]. The sample images of this dataset is 
shown in Fig. 9.

Table 1  Architectures of the proposed model

Blocks Sub Types Output size # Params

Initialization – Conv2D 3× 3 31× 31× 64 1728

– Conv2D 3× 3 29× 29× 64 36,864

Compact block 1 Branch 1
[

Prev. layer
Conv2D 3× 3

]

15× 15× 192 368,896

Branch 2 Conv2D 1× 1 15× 15× 320 8192

Transition – Conv2D 3× 3 8× 8× 128 369,920

Compact block 2 Branch 1
[

Prev. layer
Conv2D 3× 3

]

4× 4× 384 885,248

Branch 2 Conv2D 1× 1 4× 4× 640 32,768

Transition – Conv2D 3× 3 2× 2× 256 1,477,120

Compact block 3 Branch 1
[

Prev. layer
Conv2D 3× 3

]

2× 2× 768 3,539,968

Branch 2 Conv2D 1× 1 1× 1× 1280 131,072

Transition – Conv2D 3× 3 1× 1× 256 2,954,240

Classification layer – Glob. Av. pool. 256× 1 –

– 11 FC layer 11× 1 2827
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The distribution of the data for each plant and class label is shown in Table  2. We 
apply various image transformations to the test data: Gaussian blur with 5× 5 kernel 
size, median blur with median size is set to 5, 90 degrees rotations, 180 degrees rota-
tion, scaled-down to 32× 32 and 48× 48 . The sample images for training are shown in 

Fig. 9  Samples of collected images of tea plants

Table 2  List of  plants and  class labels used in  the  experiments with  the  number of  data 
for each class

Plants Class Causes # Data

Apple Apple cedar rust Gymnosporangium juniperi-virginiaea 276

Apple scab Venturia inaequalis 630

Apple black rot Botryosphaeria obtusa 621

Healthy – 1645

Corn Corn gray leaf spot Cercospora zeae-maydis 513

Corn common rust Puccinia sorghi 1192

Corn nothern leaf blight Exserohilum turcicum 985

Healthy – 1162

Potato Potato early blight Alternaria solani 1000

Potato late blight Phytophthora infestans 1000

Healthy – 152

Tea Blister blight Exobasidium vexans 984

Leafhopper attacks Empoasca sp. 3224

Caterpillar attacks Looper caterpillars 1541

Mosquito bug attacks Helopeltis spp. 2140

Yellow-mite attacks Polyphagotarsonemus latus 2151

Healthy – 1327
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Fig. 10 while the sample of the test data (apple) with the resulting transformed images 
are depicted in Fig. 11.

Experimental configurations

For the experiments, we use 10-fold cross validations on each model. For learning rate, 
we use 0.00001 and Adam method[27] for adaptive learning and cross-entropy as loss 
function. For Plantvillage, we trained all six architectures for all three plants altogether 
and set the epochs into 100. We also train all architectures for tea dataset with the same 
configurations as above.

Fig. 10  Samples of training images for Plantvillage dataset

Fig. 11  Samples of apple test images: original and after various transformations
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Results and discussions
Number of parameters and training time

As shown in Table 3, of all evaluated architectures, VGGNet has the largest parameters 
whereas MobileNet is the smallest. This is due to the use of separable convolutional lay-
ers. ComNet has only around 9.666 millions parameters. It is much smaller than VGG-
Net, ResNet, Xception, and AlexNet.

It is also clear that the training times of our method are smaller than VGGNet, ResNet, 
Xception, and MobileNet, indicating its smaller computational complexity. The compu-
tational times depicted in Table  3 are the average computational time over 100 times 
iterations for both datasets. The experiments are conducted on Intel Xeon E5 2.10GHz 
CPU and TESLA P100 GPU with 4GB RAM. This is not surprising since our architec-
ture has much smaller number parameters than VGGNet and Xceptions. Interestingly, 
we notice that compare to MobileNet that has smaller number of parameters, ComNet 
requires less computational time. This may due to the use of depthwise separable con-
volutions which are yet to be supported by cuDNN library [40]. Meanwhile, the training 
time of our method is slightly worse than AlexNet despite having less number of param-
eters. The use of concatenation layers requires the network to consume more memory 
space. Since our computational resources have very limited memory space, more com-
munications to the storage are expected, thus making it slower.

Table 3  The number of parameters (in millions) and the average training time (in seconds) 
of an epoch for each CNN architectures

Architectures Num. parameters Training time

Plantvillage Tea

AlexNet 29.78 2.59 3.86

VGGNet 39.93 7.00 10.35

MobileNet 3.24 3.51 5.43

ResNet 23.59 6.85 10.20

Xception 20.88 7.79 11.78

ComNet 9.66 3.33 4.94

Table 4  The average accuracy of DCNN architectures

The best performance for each dataset is printed in italics

Architectures Ave. accuracy

Plantvillage Tea

AlexNet 94.44 79.82

VGGNet 93.79 81.31

MobileNet 61.17 37.45

ResNet 93.79 70.37

Xception 92.62 73.22

ComNet 96.61 86.17
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a b

Fig. 12  Box-plot of accuracies of evaluated DCNN using 10-fold cross validations

a b

c d

Fig. 13  Progression of a Training loss, b Training accuracy, c Testing Loss, and d Testing Accuracy for all DCNN 
architectures on Plantvillage. The results are the average values of 10-fold cross validations
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Performance comparisons

The results are summarized in Table 4. The results are the average accuracy over 10-fold 
cross validations. The results clearly show that the proposed method has higher accuracy 
on both datasets despite its less number of parameters. The boxplot results are shown in 
Fig. 12. ComNet achieves more than 2% improvements over AlexNet (which has the sec-
ond best performance) on Plantvillage and almost 5% over VGGNet (the second best) on 
Tea. Over 10 times repeat, ComNet has quite small range for the boxplot, which suggest 
the performance of the method is consistents. The results are consistent on both dataset.

The progressions of accuracy and loss of training and testing data for the net-
works are plotted in Figs.   13 and  14. For Plantvillage, we observe the followings. 
First, on training data, ResNet has the slowest loss to converge and then followed by 
MobileNet, and VGGNet. ComNet and Xception are comparable in terms of how 
fast the loss to converge. On the progression of the accuracy, MobileNet and VGG-
Net are the slowest to converge. This is as expected as their losses are also slow to 
converge. Interestingly, the accuracy of training data for ResNet is pretty quick to 
converge despite the slow losses progression. Meanwhile on testing data, MobileNet 
appears that it fails to learn and as the results, the performance is the worst among 

a b

c d

Fig. 14  Progression of a Training loss, b Training accuracy, c Testing Loss, and d Testing Accuracy for all DCNN 
architectures on Tea. The results are the average values of 10-fold cross validations
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all the networks. It may be stuck in local minimum for the solutions and larger learn-
ing rate may be needed for it to work.

For tea dataset, we notice similar results as Plantvillage for training data. Mean-
while for testing data, we notice that the losses are slowly increasing when the 
epochs are larger than around 25 for MobileNet, Xception, and AlexNet. This indi-
cates hat the networks may already be overfit. As the consequences, the accuracies 
on testing data are also slowly decreasing. MobileNet also fails to learn for this case.

Our results confirm very promising results that DCNN could be used to recog-
nize plant diseases even when trained with low resolution data. We achieve the 
accuracy more than 90 % for Plantvillage except for MobileNet. Lower accuracies 
are obtained for Tea dataset. The results strongly indicate the need for more data for 
tea. This is due to high variations of data acquisition for tea. The results also show 
that the DCNN architectures could be used the without any usage of complex fea-
ture engineering.

Evaluations on the robustness

Table  5 shows the performance of evaluated DCNN when tested with transformed 
images: blurred, rotated, or scaled down. We transformed the image data using Gaussian 
Blur with 5× 5 kernel (notated as GauBlr), Median Blur with size of 5 (notated as Med-
Blr), 90 degrees rotation (notated as Rot90), 180° rotation (notated as Rot180), scaled 
down to 32× 32 (notated as Sc32), and scaled down to 48× 48 (notated as Sc48). In 
most experiments, the transformations cause drop in performance. We notice blurring 
and rotations are found to cause huge drops in performance and scaled-down to have 
the least effect. When we test on images that are scaled down to 48× 48 , the perfor-
mances are only slightly worse in most cases. This should be expected as we can see a 
convolutional layers act as a scaling-down operations on image. DCNN aims to learn the 
abstraction of image data with various sizes to capture various resolution of the data. So 
a more robust to scaling down operations are expected.

Table 5  The robustness of evaluated DCNN architectures against images transformations

The best performance for each transformation is printed in italics

Dataset Architecture Conditions

GauBlr MedBlr Rot90 Rot180 Sc32 Sc48

Plantvillage AlexNet 62.83 65.76 79.73 81.06 86.06 93.49

VGG 62.46 66.63 77.37 78.83 81.54 91.98

MobileNet 46.66 48.12 51.98 55.29 57.37 61.18

ResNet 65.44 66.52 75.72 64.51 89.05 91.12

Xception 63.16 65.49 75.78 64.77 87.65 92.04

ComNet 72.49 74.00 84.20 85.71 93.45 95.90

Tea AlexNet 57.54 63.83 58.38 53.34 74.31 78.22

VGG 54.68 60.54 62.08 60.57 71.75 78.57

MobileNet 34.77 36.45 30.50 32.13 38.00 37.84

ResNet 57.23 62.84 46.33 42.54 67.67 69.88

Xception 56.72 64.83 48.66 46.79 69.44 71.46

ComNet 66.56 75.08 62.21 60.09 83.20 85.40
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We observed that ComNet is consistently more robust than other networks. The two 
stages of concatenation process and average pooling may contribute to these perfor-
mances. Mostly, the diseases are identified by the spots found in the leaves. At higher 
layers with adding and global average pooling operations where larger convolution win-
dows are used, these operations may produced outputs similar to a blurred version of 
the image, contributing to its robustness. Need to be noted however, our architectures 
have not been evaluated on realistic “noisy” data as the data are only transformed artifi-
cially. Evaluations on more realistic scenarios are needed.

Conclusions
We propose a DCNN architecture for plant diseases detection in this paper using two 
branches of skip connections. We compared it with other 5 popular DCNN architec-
tures: AlexNet, ResNet, Xception, MobileNet, and VGGNet. We found that our method 
is consistently better than the reference methods even with smaller number of param-
eters and faster training time. It is also more robust when it is tested with blurred, 
rotated, and scaled-down image. However, we should say that the methods have not 
been evaluated with data with very different conditions as the actual conditions on the 
fields. Therefore, adding different types of data collected from different conditions are 
substantial to improve the robustness of the systems on various environmental condi-
tions. This is in our future plans.

It is worth noting that the plant diseases are not meant to replace the actual diagno-
sis from experts instead it meant to supplement that. Since machine learning methods 
could only predict with some uncertainty, laboratory test remain the most reliable way 
to diagnose the plant diseases. However, the implementation could be used to be a help 
for smallholder farmers who may find it difficult to have fast response from experts
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