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Introduction
During the last years, a significant progress has been made in DDBS design. Mostly, 
this progress has been concentrated on fragmentation and allocation techniques due to 
their critical impact on DDBS productivity, particularly in relational databases. On one 
extreme, the fragmentation process (horizontal, vertical or mixed) describes how each 
relation could be split into different data fragments (smaller relations). On the other 
extreme, data allocation seeks to promote DDBS performance by placing the properly-
broken fragments into their relative sites in which they are most needed. Consequently, 
when data fragmentation and allocation are well performed, DDBS throughput is sub-
stantially optimized. This optimization is often met by promoting performance through 
minimizing the irrelevant access for data (i.e. transmission minimization), which is 
already stored in different sites, as distributed query under processing. Briefly, paper’s 
contributions are summarized as follows:
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1.	 Developing K-means clustering based vertical fragmentation method in the relational 
database context. Unlike most of earlier techniques, this work does not need data 
statistics, empirical results, mid-term predicates, affinity, attributes affinity matrix or 
even query frequency matrix to perform data fragmentation and allocation, at least, 
at the initial stage. What is just taken: the considered queries as the most frequently 
used, and the Query Usage Matrix (QUM) in which each point refers to whether a 
specific site releases the relevant query or not. In fact, this step marks the novelty 
and creativity of the proposed work as it is essentially committed to the initial stage 
of DDBS design.

2.	 Proposing a novel algorithm for the fragments refinement process. This algorithm 
produces the non-overlapping schemes out of the overlapping schemes generated 
from the clustering process.

3.	 Compiling many techniques into the proposed approach to make an effective work 
so the data locality maximization and communication costs reduction are met. 
Among these techniques are: K-means-based process for query clustering, schemes 
refinement process, fragmentation evaluation technique, site clustering process, and 
data allocation and replication. Consequently, a competitive DDBS design approach 
is expected to meet the acquired performance of DDBS in either a static or dynamic 
environment.

4.	 Finally, the proposed work of this paper has been evaluated, on both artificially-cre-
ated and real datasets, against two counterparts in DDBS design literature. Experi-
mental results illustrated a significant performance for the proposed work compar-
ing with its peers.

The rest of this paper is structured as follows. In “Related work” section, the earlier 
relevant studies of DDBS design are explored. The proposed methodology including the 
approach’s heuristics and architecture, fragmentation and allocation cost model and 
clustering process, is elegantly given in “Proposed methodology” section). Results and 
discussion are presented in “Results” and “Discussion” section. Finally, “Conclusions and 
future work” draws the conclusions along with future work.

Related work
According to the literature, the fragmentation techniques are horizontal, vertical and 
hybrid. While fragmentation is often done independently of data allocation. The data 
allocation process, however, is always heavily contingent on the fragmentation pro-
cess. In other words, it is done on the assumption that fragmentation is antecedent. In 
its turn, vertical fragmentation (VF) grabs DDBS researchers’ attention. In fact, this is 
back to the positive effects vertical fragmentation has on DDBS rendering. As first of 
its kind in the DDBS field [1], came as a fine-grained taxonomy on DDBS design. The 
basic issues examined in this taxonomy were data fragmentation and allocation. Data 
replication was significantly scrutinized as well. This taxonomy was comprehensively 
analyzed that all these issues were considered to classify and analyze a big number 
of the previous works. The driving aim of this taxonomy was to take the observation 
of earlier works’ drawbacks to increase the likelihood of producing more productive 
methods to improve DDBS performance. The decrease of transmission costs (TC), 
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involving the costs of communication, has been the objective for which most of DDBS 
design works have been striving to meet. However, to meet this objective, the DDBS 
design work has to maximize the data locality and minimize the access for remote 
data significantly. It was observed in [1] that most of the studied works failed to draw 
a clear “unified or consensually agreed-upon” definition for TC as a metric for DDBS 
performance which is considered a huge shortcoming.

A simultaneous relational-model-based vertical fragmentation and allocation tech-
nique was proposed along with a cost model in [2]. Communication costs minimi-
zation was the prime motivation of the work. However, when authors performed 
fragmentation, there has been no involvement for any cost model to evaluate the 
resulting fragmentation solution(s) due to the fact that only one single solution is set 
to be produced regardless of its quality. Moreover, authors did not consider the site 
clustering or distinguish given for the reading and write queries. Finally, the repli-
cation strategy had not been addressed as well. While in [3], the DAP problem was 
sought to be solved through the hybrid solution using the algorithm of differential 
evolution (DE) along with the technique of variable neighborhood search (VNS). 
The key intention revolved around promoting DE rendering through the operators 
of selection and crossover. The given work was experimentally seen effective as it 
explored the search space by DE along with the technique of neighborhood search. 
On the other extreme, hypothesizing the existence of interlocking horizontally-
fragmented data, the data replication problem (DRP) was deeply dealt with in [4] as 
an integer linear problem. Hence, data replication was addressed as the problem of 
optimization for the sake of keeping copies of fragments and sites at a minimum. On 
the same line [5], developed a particle swarm optimization-based method (PSO) to 
reduce TC costs. The aim was to use PSO to find a solution for the data allocation 
problem (DAP) only.

While most of the earlier work used an attribute affinity as the key element to frag-
ment data, there have been many clustering-based fragmentation techniques. In [6], a 
heuristic technique for vertical fragmentation and data allocation was elegantly evolved. 
The work was the first of its kind that sought to incorporate several techniques in one 
single work with the aim of maximizing DDBS performance. Extensive evaluation on 
several data allocation scenarios was performed to assert the proposed work’s effective-
ness. As a follow-up optimization [7], came to add a new data allocation scenario to the 
work of [6]. This scenario was shown to be non-efficient in some cases in which update 
queries grow steadily, though. Moreover [8], came to further enhance DDBS perfor-
mance by proposing a new approach based on an aggregated similarity measure used 
to cluster queries. The authors proposed a greedy algorithm to solve the data allocation 
problem. A comprehensive evaluation was promised to be made with [6] to assert the 
proposed work’s superiority. No evaluation was given yet, though. On the same line [9], 
evolved an enhanced technique to design DDBS. This work was also evaluated against 
[6] and shown to behave slightly better in most cases. Moreover, an acceptable experi-
mental study was conducted to prove the concept. Following the same of pattern of [6, 9, 
10] came to propose an enhanced scheme for vertical fragmentation and allocation. The 
aim of the work was to improve DDBS performance through finding an influential solu-
tion for the round-trip response time minimization. Comparing with the relative works, 
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author claimed that their proposed schemes decreased the round-trip response time by 
23%.

On the other hand [11], worked on finding a vertical fragmentation method. An algo-
rithm based on differential bond energy (DBE) was proposed. Based on the global affin-
ity measure (GAM), a comparison was made for the proposed algorithm with a classical 
bond energy algorithm (BEA) in terms of performance. The experimental results attested 
that developed DBE was suitable for the high dimensional problems with having a high 
GAM value comparing with BEA on several datasets. For improving DDBS performance 
[12], proposed a non-redundant dynamic fragment allocation approach. This approach 
amended the read and write data volume to Threshold Time Volume and Distance Con-
straints Algorithm. Fragments were being allocated based on access patterns made to 
each fragment. On the same page, an enhanced approach to split data at the initial stage 
of DDBS design and then assign data at runtime over the cloud environment was pro-
posed in [13]. The data replication scenario was adopted in a way that allowed DDB-
SMs to work simultaneously to meet the client’s orders. In [14], a method to boost the 
performance and reliability of distributed systems was presented. The method sought 
to find the optimum placement in network nodes of the information and technologi-
cal reserve (ITR). This method used information and software redundancy in the form 
of distributed copies of ITR. It was mathematically shown able to boost the reaction of 
DDPS. It established that after setting ITR copies and allocating them over the network, 
these copies served as an information base for DDPS when requests of users are being 
processed.

Finally, in the same line for solving the DAP problem, [15] came to present a greedy 
based algorithm called ASGOP to tackle DAP. The data allocation was treated as an 
optimization problem and the cost model solved using the knapsack algorithm. In each 
time, each fragment was not allocated to the intended site unless it was guaranteed that 
this site is the prime container based on its transmission costs. Two data allocation sce-
narios were addressed, the replication-based and non-replication based. The experiment 
results shown that ASGOP outperformed its counterparts in terms of data allocation 
due to its being greedy.

Proposed methodology
Requirements

To perform data fragmentation and allocation, the next information requirement is 
needed:

•	 A set of relations of Database (R1, R2,……, Rr)., where (r) represents the number of 
considered relations.

•	 For each Ri (A1; A2;…; An): is the data schema, R, which consists of (N) attributes.
•	 A data query set running against Ri, Q (Q1; Q2;…; Qq), where (q) is the number of 

running queries.
•	 Query Access Matrix: each QAM value refers to whether query Qk is released from 

site Sj or not, be given by DBA. Where (k and j) are just indices for query and site 
respectively.
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Motivations to prefer K‑means over hierarchical clustering (HC)

Hierarchical clustering (and its variations) is efficiently used in applications where 
points/patterns are at the range of tens and even hundreds and it has long proven 
effective [6, 7, 9]. Nevertheless, as the size of data sets is increasing, HC is being 
infeasible due to its non-linear time that grows exponentially with dataset size and 
the growing demands of space required. As a matter of fact, it is not an easy task to 
visualize a dendrogram for, let say, “1000” patterns (and not to mention the complex-
ity involved when patterns in thousands). To accurately examine the number of pat-
terns in HC, an exponential time is required to perform the task at hand. To sum up, 
HC (and its variation) does not scale up perfectly in the context of large-scale applica-
tions that would involve thousands and even millions of patterns. On the other hand, 
naturally, K-means is a hard clustering algorithm that is adequately applied often on 
large datasets and it has long proven efficient in literature [16]. Moreover, there has 
been a dominant property features k-means algorithm which is its ability to succes-
sively minimize the sum of patterns squared deviations implicitly (called in literature, 
squared-error criterion) from the center in each cluster. Formally speaking, assuming 
there has been cluster Xi and Mi is its center, then the criterion function that sought 
to be minimized by k-means is drawn in Eq. (1):

On the other hand, as a crucial drawback, the k-means algorithm does not secure 
the globally-optimal fragments due to two basic causes: (1) the poor selection for ini-
tial seeds (centers), and (2) The traditional k-means algorithm which leverages the 
“winner-take-all” technique as pattern given to only and only the winning cluster to 
eventually generate the hard fragment. So, to tackle this shortcoming and enhance 
the results, K-mean is being applied according to the next mechanism: initial seeds 
were chosen heuristically. The widely-known heuristic is to pick up the initial “k” cen-
tres. These centers are supposed to be as far away from each other as possible. In 
literature, this heuristic worked well practically. In practice, picking the pair of pat-
terns which are greatly dissimilar in the set as the initial seeds leads to decrease the 
dependency on the initialization process. Experimentally speaking, this mechanism 
serves the interest of the proposed wok substantially in terms of finding a competi-
tive solution for DDBS design efficiency. This efficiency is obviously being reflected 
by the better results that come in favour of K-means-based work comparing with its 
counterparts. It is worth indicating that there have been other alternatives for cen-
troid selection in literature like Random generation, Buckshot approach and ranking 
technique [17, 18]. Some of these strategies are also tested in our work, but no one 
draws better results and serves the major interest of paper like the “greatly dissimilar” 
strategy that is already being leveraged.

Finally, the time complexity is O(NKID), where N is the number of considered pat-
terns, K is the number of generated clusters, I is the iterations number and D is the 
dimensionality. The space requirement is O (KD). This complexity is lower than HC 
complexity making K-means largely appealing to be used for DDBS design.
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Heuristics
Our work is a three-fold approach as drawn in Fig. 1, and detailed as follows

The phase (1): the query set, most-repeatedly-run queries, was identified. For each 
query in the set, the contained attributes replaced by binary value (0, 1) distinguishing 
its presence or absence in the query. In doing so for all queries, Attribute Access Matrix 
(AAM) was constructed so that its rows represented queries and column represented 
attributes (see Table  4). This matrix was used with the help of the hamming distance 
metric [19] to find the different values among patterns that were already being recog-
nized. These difference values would be drawn into a matrix called Query Difference 
Matrix (QDM). Then, using QDM as initial input, the K-means clustering process was 
being activated as presented in the “Clustering methodology” section.

Fig. 1  Approach architecture diagram: briefly and enthusiastically display approach steps
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The phase (2): the refinement process was drawn to guarantee securing the non-over-
lapping fragments. All fragmentation combination has to be created for each cluster. The 
input parameters for this process were all over-lapping (PSs) out of the fragmentation 
phase. So, the expected results of this process were bound to be the non-overlapping 
schemes. However, when query clusters were examined, it happened that attribute(s) 
went missing in some clusters. Such attribute(s) missed through the clustering process 
due to the loss of some queries in each cluster chiefly as clusters are aggressively grown. 
Therefore, since the prime goal of this approach was to keep as high percentage of bind-
ing “connection” among attributes regarding their relevant original queries as possible, 
this attribute(s) would be added according to the proposed function called the affinity 
function (aff_func(Partition, attribute/attributes), Eq.  (2)). For each cluster, this func-
tion would check the strength of the connection of attribute(s) with all partitions of each 
Partitioning Schema (PS) individually based on Eqs. (3) and (4) at the same time. Then, 
whenever happened that certain partition(s) had the max connection with attribute(s) 
at the question, it was the prime candidate container to store them. Nevertheless, if an 
attribute(s) has been equally required by “N” partition in PS, it was added “N” time(s). 
In each time, attribute(s) was being added to each partition making a new PS in each 
addition.

A clear manifestation is drawn in Table 15 so that p3 and p4 were derived from the 
original PS3. This connection was calculated based on the attribute’s appearance, in each 
partition of each cluster, concerning their relevant original queries. In the sense that any 
partition yielded a higher connection with the relevant missing attribute(s), it was the 
candidate partition to store it. However, if an attribute(s) had a zero connection, it was 
created as a new partition on its own inside the underlying PS. The proposed Function of 
affinity was presented in Eq. (2) as follows;

where P stands for concerned partition, A is a shortcut for Attribute/attributes, the con 
is a logical factor to distinguish whether there had been the connection or not, and CNP 
stands for creating a new partition. T and F stand for true and false flags. By strictly fol-
lowing this procedure, the possibilities of getting PSs with a minimum of the remote 
access costs and maximum of data locality has been increased. In other words, among 
all generated combinations, only schemes of a high percentage of connection rate would 
be taken into fragmentation evaluator. However, to select those schemes, an optimality 
measure (OM) “parameter” was proposed. Actually, OM was a criterion to reflect the 
recorded correlation rate of access costs between each PS and all their relevant consid-
ered queries, Eqs. (3) and (4).
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where Cr is an integer counter. The Correlation rate, in its turn, was used to reflect the 
maximum remote access for all queries to reach that relevant PS. In the sense that PS 
which gave higher remote access, it was neglected. Whenever OM was bigger the remote 
access was in fact minimized and local access was maximized. Consequently, a propor-
tion of technique design objective was met. Finally, the ultimate decision to exclude or 
include PS into FE was accomplished as per Eq. (5). Figure 2 depicts the steps of the pro-
cess professionally.

(5)Decision Making(PS) =

{

OM ≥ 50%, Include PS intoFE
Otherwise, exclude PSfrom FE

Fig. 2  Refinement procedure diagram: exhibit the steps taken by refinement procedure to produce disjoint 
schemes
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Finally, for this phase, if it happened to have schema duplication, only one copy was 
kept. This phase keeps only one copy of each schema if it happened to have schema 
duplication.

The phase (3): the evaluation step was done using the presented fragmentation evalu-
ator (FE) [6]. FE uses two measures to assess schemes which were: the relevant remote 
access and irrelevant local access. Basically, according to [6], the successful partitioning 
schema is that of the lowest value of FE. This schema would be considered for the alloca-
tion process, as a result.

Fragmentation and allocation cost model

Based on the running queries, the matrix of attribute access (AAM) is being concluded. 
In this matrix, each aamij signifies the approaching of Ai by Qk. with the assumption that 
the query usage matrix (QUM) was already supported by DBA [6] so that each qumij 
indicates the site Sj, from which Qk was launched. Hence, using these requirements, the 
process of data fragmentation and allocation is done based on the next functions:

where “Sim”, “dif” and P(Q) stands for similarity, the difference between queries, and the 
numerical pattern of Qk respectively. Using Eq.  (6), query difference matrix (QDM) is 
being constructed as seen in Eq.  (7). Each qdmk1k2 represents the similarity calculated 
between each query pair.

Proposed allocation and replication model

Suppose we have a “K” query set, Q = {Q1, Q2,…, Qk} reach N attributes A = {A1, A2,…, 
An}. These queries were tied into CN several clusters {Cq1,Cq2…., CQcn}. Query clus-
ters were placed into a set of M sites S = {S1, S2, …., Sm}. Sites, in their turn, were clus-
tered into CM clusters Cs = {Cs1, Cs2, …., CScm}, and F = {F1, F2,…, Fm} be the disjointed 
fragments already produced out of the process of query clustering. Then, the proposed 
model of data allocation pursues to optimally distribute each fragment (F) over cluster 
set, Cs, and then over sites of each cluster.

Allocation scenarios

First scenario: first Phase (replication adopted): each (F) was replicated over all clusters. 
It is worth indicating that the replication concept of the proposed work has adopted the 
replication principles given in [4] to replicate the data when it is needed.

Second scenario: First Phase (non-replication adopted): each (F) was assigned to C of 
the maximum cost of access.

Both scenarios: Second Phase 2 (no replication inside each cluster): The total cost 
to each Sj, to reach all A(s) of Fi was the assignment controller. So, the total cost of 
access of each Sj (NACSij) has to be precisely computed. NACS matrix was created 

(6)Similarity (Qk1,Qk2) =

q
∑

k1=1

q
∑

k2=1

(1 − difference(P((Qk1),P(Qk2)),

(7)QDMk1k2 =

q
∑

k1=1

q
∑

k2=1

Similarity (Qk1,Qk2)
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using both site attribute access (SAAM), which was computed in Eq.  (8), and com-
munication costs (CMS) matrices, see Eq. (9). In NACS, the site of maximum cost for 
the intended fragment was selected as the candidate site to store the fragment at the 
question.

Allocation cost functions

where AAM, QUM, CMS, and CMS stands for attribute access matrix, query usage 
matrix, communication costs between sites and communication costs between clusters 
respectively. Equation (8) built SAAM which used later to build the NACS matrix along 
with using Eq.  (9). Equation  (10) accumulated the access costs for each attribute over 
its relevant clusters with respect to sites contained in each cluster. Lastly, Eq. (11) drew 
the last step of fragments allocation over each site cluster in the second scenario. Last 
but not least, the following constraints were maintained throughout the data allocation 
process. It is worth indicating that this cost model (including equations) has been solved 
using integer linear programming (ILP) as the objective function of the whole work is to 
maximally minimize transmission costs.

Constraint (12) ensured that the net size of fragments that already assigned to one site 
must not overpass the site capacity, as shown in Table 1. On the other hand, constraint 
(13) guaranteed that the number of assigned attributes was between the lower limit of 
the allowed attribute (LAL) and the upper limit (UAL). Finally, constraint (13) was the 

(8)SAAM =

q
∑

k=1

m
∑

j=1

n
∑

i=1

AAMik ∗ QUMji

(9)NACS =

m
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n
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m
∑
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SAAMij1 ∗ CMSji

(10)NACC =
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∑
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n
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SAAMij1 + 1
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n
∑
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Xij ≤ UAi, ∀j = 1, . . . ,m.

(14)Xij ∈ (0, 1),
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decision variable on the binary form. Table  1 describes these constraints as capacity 
measured in Megabyte, LAL, and UAL.

Fragmentation evaluator (FE)

This work used FE to evaluate schemes. FE has two metrics: relevant remote access and 
irrelevant local access. The first metric calculates the total costs of remote access for 
attributes that already exist at the remote site. The second metric associated with attrib-
utes that are processed locally. The first metric of FE is computed in Eq. (15), which gave 
the local access costs:

where TQF is the total frequency of query (how many times query is being released over 
network sites) that accesses data, |Alij| is the number of attributes in Fi that are locally 
approached by Qk, NA is the number of attributes of targeted relation. On the other 
hand, Eq. (16) provided the second term of FE as it computes the ratio of remote attrib-
utes being accessed:

where |AD| is the attributes number in Fi which was remotely reached with regard to Fj, 
by Qk. Hence, FE was given by its two metrics as follows;

Clustering methodology

The clustering process is iteratively applied upon query difference matrix (QDM) until 
satisfying either one of two conditions. While the first condition is that each cluster 
should reach its stable state. The second condition is placed to keep repeating the pro-
cess until each pattern takes its turn of being centroid. After that, for the second condi-
tion, the most stable cluster would be selected at the final step. To group similar patterns 
in each loop, the least difference value (LDV) is utilized (see Eqs.  (5) and (6), respec-
tively). In this process, each pair of patterns “queries” will be compared in the bottom-up 
method until all query clusters constituted in a box named a solution space. This space 
will eventually hold all partitioning schemes combinations.

(15)E2
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nf
∑
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∑
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(17)FE = E2
nf + E2
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Table 1  Site constraints

Site S1 S2 S3 S4 S5 S6

Capacity (KB) 10,000 15,000 9000 12,000 9000 10,000

LAL 1 1 1 1 1 1

UAL 12 14 11 7 10 14
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As a matter of fact, the rationale behind proposing the solution space is to con-
tain all partitioning schemes (PSs) that surpass OM threshold (see Eq. (5)) since each 
PS represents an optimal solution with a certain percentage. Therefore, containing 
all possible combinations, in solution space, should contribute to finding optimal 
schema at a success rate of roughly 100%. This scientific fact is being demonstrated in 
the performance evaluation section.

K‑means clustering process

Technically, K-means clustering process which was presented in [16] and being uti-
lized with slight modifications as follows:

1)	 Determining the number of clusters (CN) is made using Eq. (18).

where n is the number of queries has to be clustered and CN is an even number.

2)	 Choosing members of least dissimilarity values among all numerical patterns of origi-
nal queries to be a centroids of the already-drawn empty-filled clusters CQ1,…,CQn/2.

3)	 For each cluster, numerical patterns are pulled hierarchically [20] based on the pro-
posed difference value metric. This step shall be repeatedly performed until no mem-
ber excluded. If pattern (Pi) has the same difference value with more than one cen-
troid, Pi would be added to the cluster with which it is mostly being tied as per the 
calculated average cost of access for each cluster. However, if Pi still has difficulty 
joining the relative cluster, Pi could be added to either one.

4)	 After getting all the patterns involved in the first loop, the results are to be kept in the 
solution space. Then, the clustering process starts over again by releasing all patterns 
of clusters and randomly choosing new centroids, other than those of the first loop, 
for all clusters.

5)	 Step 3 and step 4 will be iteratively repeated until each cluster reach its stable state or 
each pattern successfully takes its turn to be centroid. All clusters in each loop would 
be kept in solution space. It is worth pointing that the stability state is satisfied when 
the cluster reaches a “non-change” state. Thus, whenever a cluster is being stable, 
the process would isolate and maintain this cluster as “a stable cluster”, with no addi-
tional processing.

Site clustering algorithm

Initialization: Given a set of sites M as input, communication costs matrix between 
sites, let the initial clusters initiated using LDV value which was basically proposed in 
[21].

Loop: for any new site, do the following:
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1.	 Calculate communication costs between the new site and each site cluster using 
average communication costs. Average costs will be used as a decisive membership 
for each site with respect to clusters under consideration.

2.	 The site cluster of the lowest average cost is bound to be the candidate container for 
the site at hand.

3.	 If more than one candidate container recorded, the container of the lowest distance 
with the targeted site is the primary and sole container.

4.	 Repeat steps (1–3) until all sites are clustered successfully.

Results
This work has been implemented in C++ programming language using a processor 
of 2.2 GHz Intel (R) Dual-Core (TM) i3CPU with 4 GB of main memory and 80-GB 
hard drive. It is worth indicating that all requirements like queries and the query fre-
quencies are hypothesized to be collected from the workload of DDBS. Within the 
relational DB context, the proposed approach was implemented in the virtual fully-
connected six-site network. To conduct experiments, the “Car” dataset was artificially 
proposed based on the description given in Table 2. This dataset has six attributes and 
initially stacked with 400 data rows. To make an external evaluation with [6, 9], five 
more problems were addressed on the same dataset while maximizing the number 
of queries to reach 300 queries and the number of records to reach 4000 records. In 
the first three problems, the retrieval queries were occupying the larger area of con-
sidered queries. However, in the last two problems, the update queries were assumed 
to have a larger percentage. For computation simplicity, the attributes: Car-no, Car-
model, Engine-id, Speed-Limit, Manufacturer, and workshop-id referred to as A1, A2, 
A5, A6, A5, and A6 respectively.

For the first problem, it was hypothesized that only eight queries as the most-occa-
sionally operating against the “Car” database (see Table 2). If the attribute appeared 
in the query, it means that it is being accessed attribute by the intended query. Using 
this hypothesis on queries, the matrix of attribute access was established. In its turn, 
each aamkj, (see Table 3), indicates whether attribute Aj is accessed or not by the cor-
responding query.

Furthermore, only QUM (Table 4) was needed as it was assumedly given by DB admin-
istrator [6]. Each qumkj refers to whether query Qk was issued from the underlying site 
Sj or not.

Table 2  Car database description

Attributes Symbol Type Length 
(bytes)

Car-no A1 Nominal 4

Car-model A2 Categorical 30

Engine-id A3 Categorical 4

Speed-Limit A4 Numerical 3

Manufacturer A5 Categorical 5

Workshop-id A6 Nominal 4
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Then, the hamming distance is used in congruence with AAM to build Query Differ-
ence Matrix (QDM) in Table  5, (see Eqs.  (2) and (3)). On the other hand, each qdmij 
gives the value of the difference between the numerical pattern pairs of queries.

K‑means‑utilizing clustering process

Using the algorithm described in query clustering (see “Clustering methodology” sec-
tion) along with QDM matrix, the first results were shown in Tables 6, 7, 8, 9, 10.   

It is worth indicating that query membership was calculated as per the least difference 
value measure.

Table 3  Attribute Access Matrix (AAM)

Query/attribute A1 A2 A3 A4 A5 A6

Q1 1 1 0 0 1 1

Q2 0 0 1 0 1 0

Q3 0 1 0 1 1 0

Q4 1 0 1 0 0 1

Q5 1 1 0 0 1 0

Q6 0 0 1 1 0 1

Q7 0 1 0 0 0 1

Q8 1 0 1 0 1 1

Table 4  Query Usage Matrix (QUM)

Query/site S1 S2 S3 S4 S5 S6 SFM

Q1 1 0 0 0 1 1 3

Q2 1 1 0 0 1 0 3

Q3 0 0 1 1 0 0 2

Q4 0 0 0 1 0 1 2

Q5 0 1 0 0 0 1 2

Q6 0 1 1 1 0 0 3

Q7 1 0 0 1 0 0 2

Q8 0 1 1 0 1 1 4

Table 5  Query Difference Matrix (QDM)

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q1 0 4 3 3 1 5 2 2

Q2 0 3 3 3 3 4 2

Q3 0 6 2 4 3 5

Q4 0 4 2 3 1

Q5 0 6 3 3

Q6 0 3 3

Q7 0 4

Q8 0
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Second loop (Q7,Q2)

Release members of clusters and select new centroids so that the newest were those 
which have the least difference values with the oldest. Thus, Q7 chosen as centroid for 
the first cluster and Q3 as the centroid of the second.

From the second loop (affiliation Tables 7 and 9) it is obvious that the obtained clusters 
are in the stable case since they are a complete replica of those of the first loop. Finally, 
the net results of this process would be drawn in the solution space (Table 10).

Refinement process

The refinement process was elegantly drawn in Table 11 according to the procedure that 
was earlier given in “Heuristic” section.

From Table 11, we can see the impact of the correlation rate on reducing the number 
of partitions yielded from each partitioning scheme. For example, P1 is yielded from the 
cluster (CQ235) but A6 is missing. So, instead of randomly generate several combinations 

Table 6  First loop

Centeroid/query Q2 Q3 Q4 Q6 Q7 Q8

Q1 4 3 3 5 2 2

Q5 3 4 2 6 3 3

Table 7  Member’s affiliation (first loop

Centeroid/query Q2 Q3 Q4 Q6 Q7 Q8

Q1 0 0 1 1 1 1

Q5 1 1 0 0 0 0

Table 8  Second loop

Centeroid/query Q1 Q2 Q4 Q5 Q6 Q8

Q7 2 4 3 3 3 4

Q3 3 3 6 2 4 5

Table 9  Member’s affiliation (second loop)

Centeroid/query Q1 Q2 Q4 Q5 Q6 Q8

Q7 1 0 1 0 1 1

Q3 0 1 0 1 0 0

Table 10  Solution space

Cluster Members

CQ1 Q2, Q3 and Q5

CQ2 Q1, Q4, Q6, Q7 and Q8
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which are three, four and also four combinations (in total it is “11” combinations) for P1, 
P2, and P3 respectively, as done in [6, 9], the proposed technique measures the affinity of 
A6 with each partition in P1 using Eq. (3). As per calculation, A6 is found to have a higher 
rate with the partition (A1), so it is being joined with this partition. Consequently, the 
solution space is being reduced significantly and the number of schemes that would be 
passed into FE will much less compared with techniques used in [6, 9]. This also inter-
prets the statistics drawn in Tables 22, 23, 24 which come in favour of proposed work.

Fragmentation evaluation

The next step was to pass fragments through the fragmentation evaluator to be exam-
ined so that the optimal schema was to be selected, Table 12 and Fig. 3.

From Table 12 and Fig. 3, it was clear that the successful schema is the PS4 since it was 
of the lowest FE value. This schema was evaluated as per Eqs. (12, 13 and 14), NA means 
that no access possible to that attribute, as follows:

For local access:

Table 11  Refinement process

Cluster Cluster 
members 
(overlapping 
clusters)

P# Partitioning 
schemes

Missing 
partition 
(added)

Schemes 
combinations 
Non-
overlapping 
PS

PS state Optimality 
measure 
(OM)

Decision 
making

CQ235 Q2(A3,A5)
Q3(A2,A4,A5)
Q5(A1,A2,A5)

P1 (A3,A5) (A2,A4) 
(A1)

A6 (A3,A5) (A2,A4)
(A1,A6)

Kept 37.5% Exclude

P2 (A2,A4,A5) 
(A1,A3)

(A2,A4,A5) 
(A1,A3,A6)

Kept 62.5% Include

P3 (A1,A2,A5) 
(A3,A4)

(A1,A2,A5) 
(A3,A4,A6)

Kept 62.5% Include

P4 (A1,A2,A5,A6) 
(A3,A4)

Kept 75% Include

CQ14678 Q1(A1,A2,A3,A6)
Q4(A1,A3,A6)
Q6(A3,A4,A6)
Q7(A2,A6)
Q8(A1,A3,A5,A6)

P5 (A1,A2,A5,A6) 
(A3,A4)

None Replica of P4 Deleted – –

P6 (A1,A3,A6) 
(A2,A4,A5)

Replica of P2 Deleted – –

P7 (A3,A4,A6) 
(A1,A2,A5)

Replica of P3 Removed – –

P8 (A2,A6) 
(A1,A3,A5) 
(A4)

(A2,A6) 
(A1,A3,A5) 
(A4)

Kept 37.5% Exclude

P9 (A1,A3,A5,A6) 
(A2,A4)

(A1,A3,A5,A6) 
(A2,A4)

Kept 75% Include

Table 12  Fragmentation evaluation

PS number PS EL
2 EM

2 PE value

1 (A2,A4,A5) (A1,A3,A6) 56 97 153

2 (A1,A2,A5) (A3,A4,A6) 58 87 145

3 (A1,A2,A5,A6) (A3,A4) 58 82 140

4 (A1,A3,A5,A6) (A2,A4) 52 61 113



Page 17 of 31Amer ﻿J Big Data            (2020) 7:31 	

For remote access:

So, the total access cost is: 52 + 61 = 113
As a result, the query clusters obtained from the clustering process were drawn in the 

following SQL statements:
DataF1 = CQ1: Select A2, A4 from Table; Size (DataF1) = 9900 Byte
DataF2 = CQ2: Select A1, A3, A5, A6 from Table; Size (DataF2) = 5100 Byte

Allocation process

Firstly, based on QUM and AAM along with Eq.  (5), Site Attribute Access Matrix 
(SAAM) was constructed. In SAAM, every point of each row describes the total cost for 
each site Sj, through its relevant queries to reach certain Attribute Ai, Table 13.

Then, by multiplying SAAM with communication cost matrix between sites (Eq. (6)), 
Net Access Cost Matrix (NACS) was to be constructed as shown in Table 14.

Cost of F1 + cost of F2 = (7+ 9+ 3+ 3+ 4 + 9+ 3+ 0)+ (5+ 0+ 0+ 0+ 2+ 5+ 2+ 0)

= 38+ 14 = 52.

Cost of F1 + cost of F2 = (5 + 0 + 8 + 0 + 1 + 3 + 1 + 0) + (20 + NA + 4 + NA + 5 + 12 + 2 + NA)

= 18+ 43 = 61

Fig. 3  Fragmentation evaluator: display the results of both parts of FE as each schema exposed on query set

Table 13  Site Access Attribute Matrix (SAAM)

Site Attribute

A1 A2 A3 A4 A5 A6

S1 2 4 2 0 4 4

S2 3 2 3 1 5 2

S3 1 3 2 4 4 2

S4 1 4 4 6 3 5

S5 3 1 5 0 5 2

S6 9 5 4 0 6 7
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The first Allocation scenario (fragments replicated over cluster of sites):
Phase 1: The first phase was more straight-forward and fragment would be directly 

allocated to all sites’ clusters using replication principal as shown in Table 15.
Phase 2: Data fragment F1 and F2 were set to be assigned to sites of each cluster. The 

Decision Allocation Matrix is drawn in Table 16.
For scenario 1, depending upon the Decision Allocation Matrix, the final allocation for 

fragments was drawn in Table 16.
The second scenario (no replication adopted over clusters of sites)
Site Attribute Access Matrix (SAAM) would be used as input parameters for this pro-

cess. The results should be the net access cost each sites’ cluster (NACC) which was 

Table 14  Net Access Cost Matrix (NACS)

Site Attribute

A1 A2 A3 A4 A5 A6

S1 106 86 98 54 144 96

S2 81 98 87 46 126 107

S3 91 85 79 25 116 100

S4 94 59 94 15 120 77

S5 81 101 91 79 112 120

S6 49 72 79 54 104 77

Table 15  Scenario (1)—Decision Allocation Matrix

Sites’ cluster/
fragment

Sites Attributes

A2 A4 Total cost (F1) A1 A3 A5 A6 Total cost (F3)

CS1 S1 86 54 140 106 98 144 96 444

S5 101 79 180 81 91 112 120 404

CS2 S2 98 46 144 81 87 126 107 401

S3 85 25 110 91 79 116 100 366

S4 59 15 74 94 94 120 77 385

CS3 S6 72 54 126 49 79 104 77 309

Table 16  Scenario (1)—final allocation

Fragment/sites’ 
cluster

CS2 CS3 Cs3

S1 S5 S2 S3 S4 S6

F1 1 1 1

F2 1 1 1

Table 17  Net Access Cost Cluster Matrix (NACC)

Cluster # A1 A2 A3 A4 A5 A6

C1 6 9 7 5 13 8

C2 4 6 9 6 8 7

C3 9 5 4 0 6 7
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needed to reach attributes individually (Table 17). The summation of all queries cost for 
each cluster to access every attribute Ai was calculated as shown in TACC matrix which 
was produced as applying Eq. (7) on SAAM.

Then, multiplying TACC matrix by communication cost matrix of clusters (Eq.  (8)), 
the pay of attributes access matrix (PACM), across clusters, would be produced as shown 
in Table 18.

Phase 1: Fragments are allocated to all clusters of sites using non-replication princi-
pal so as to each fragment was to be assigned to the cluster of maximum access cost as 
shown in Table 19.

Phase 2: Data fragment F1 and F2 were set to be assigned to sites of each cluster. The 
Decision Allocation Matrix was drawn in Tables 20 and 21. 

The competition, to have these fragments allocated, had been between all sites of each 
cluster, Table 20. Each fragment was directly assigned to the site of the highest fragment 
access cost, Table 21.

Table 18  PACM Matrix

Cluster # A1 A2 A3 A4 A5 A6

C1 38 40 53 30 52 49

C2 66 65 51 25 89 68

C3 28 42 50 34 58 44

Table 19  Scenario (2)—Decision Making Matrix

Cluster # A2 A4 Total cost 
of F1

A1 A3 A5 A6 Total cost of F3

C1 40 30 70 38 53 52 49 192

C2 65 25 90 66 51 89 68 274

C3 42 34 76 28 50 58 44 180

Table 20  Scenario (2)—the final allocation of data fragment

Sites’ Cluster/Fragment Sites Attributes

A2 A4 Total cost (F1) A1 A3 A5 A6 Total cost (F3)

CS2 S2 98 46 144 81 87 126 107 401

S3 85 25 110 91 79 116 100 366

Table 21  Scenario (2)—the final allocation of data fragment

Cluster Sites Fragment

F1 F2

CS2 S2 1 1

S3



Page 20 of 31Amer ﻿J Big Data            (2020) 7:31 

Discussion
As mentioned earlier, the prime pursuit of this work is directed solely at the performance 
optimality of DDBS. So, this technique was designed with the aim of optimally, at least 
to a large extent, maximizing data locality and minimizing remote access. In the quest 
to achieve the intended objective, besides fragmenting data precisely, these fragment 
should be assigned to those sites in where it is intensively accessed. In doing so, the costs 
of communication and response time are bound to be significantly mitigated. To verify 
whether this goal was achieved, a simple yet effective assessment has been conducted. 
The evaluation has been made in two parts. For the first part of the evaluation, five prob-
lems have been simulated, namely, 8 queries on a datasets of 300 records; 24, 32 queries 
on a dataset of 500 records; and 64 and 120 queries on a dataset of 1200 records. As 
given in “Result” section, the first problem was done exclusively for demonstration pur-
poses. It is limited for queries of retrieval type, though. The consecutive two problems 
addressed queries of both retrieval and update type. The retrieval queries took a big-
ger space. On the other hand, the fourth and fifth problems addressed both types while 
update queries taking in the larger space. For site clustering, on the other hand, the pro-
cedure given in [18] has been adopted. The second part of evaluation composes of two 
sections. Section  (1) sought to increase the volume of the artificially-created datasets 
(up to 4000 records) and the size of query set (up to 300 query) to assert the superiority 
of proposed k-means based work in terms of performance factors under consideration 
which are execution time (ET), solution space size, fragmentation evaluator (FE) values, 
and finally the overall reduction observed in transmission costs (TC). Section (2) of sec-
ond part, sought to meet the same objectives on real datasets that was retrieved from the 
machine learning repository [22]. The number of records of this dataset is 48842, and 
the size is 3.8 MB.

Firstly, in regard to performance element represented in the time (calculated in sec-
onds) taken to perform fragments using both hierarchical clustering and the proposed 
work of this paper which depends on K-means (Fig. 4). From queries of the first experi-
ment to almost 40 queries of experiment 3, it was obvious that time taken to fragment 
data using K-means went slightly in parallel with the time taken by hierarchical cluster-
ing (HC) with a noticeable increase in HC time. However, as shown from experiment 3 
to experiment 5, as query set grew, HC time started to grow exponentially while the time 
taken by K-means grew slightly and gradually. In short, as the first contribution of this 
work, k-means based clustering process (proposed work of this paper) initially proved its 
efficiency over HC based works in [6, 9].

As it is drawn in Fig. 4, there has been a significant gap in time between HC based 
procedure and K-means based procedure particularly when the query set is grow-
ing steadily from 80-160 queries. For problem (1), both works moved at a closer 
rate. However, starting from the problem (2) till Problem (5), the time gaps between 
both works started to be steadily and significantly widened. It can be even concluded 
that the size of the problem (when the number of queries growing in each succes-
sive problem) has a substantial contribution in widening the time gap between all 
techniques under consideration. The bigger the size of the query set, the longer time 
would be needed to process such set in all works with K-means based work being 
faster as drawn in Fig. 4. In fact, the recorded gaps which come in favour of K-means 
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based work come down to some reasons. First, the nature of K-means itself which 
is faster than hierarchical in finding the partitioning schemes. Second, the proposed 
filtering procedure in k-means-based approach which sought to reduce the solution 
space substantially while this process is completed randomly in [6, 9] till all solutions 
contained. In consequence, as the third reason, FE in the K-means-based approach 
took much less time to evaluate the non-overlapping schemes comparing with that 
time taken in HC based approach. That is why K-means based work is faster than HC 
based works [6, 9].

Secondly, the second contribution was recorded for the performance factor rep-
resented in fragmentation evaluator values. These results (values obtained of FE, 
Tables 22, 23, 24) were accurately compared with results drawn in [6, 9] and clearly 
shown that the proposed work more effective. The cost reduction of values and cost 
reduction rate in total, which greatly reached to unexpected rate, were drawn in 
Table 24 to accentuate proposed work optimality in reducing remote access costs and 
rising local access costs at the same time.

Fig. 4  Fragmentation execution time: visually exhibit time take to perform fragmentation by both methods 
hierarchical clustering and K-means

Table 22  Partitioning schemes [6] and [9]

PS number PS EL
2 EM

2 PE value

1 (A1,A2,A4,A5) (A3,A6) 199 292 491

2 (A2,A5) (A1,A3,A4,A6) 244 315 559

3 (A1,A2,A5) (A3,A4,A6) 234 283 517

4 (A2,A4,A5) (A1,A3,A6) 184 266 450

5 (A1,A2,A4,A5,A6) (A3) 230 158 388

6 (A1,A2,A5,A6) (A3,A4) 222 237 459

7 (A2,A4,A5,A6) (A1,A3) 252 307 559
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In Table 24, both works [6] and [9] were seen to have the same numbers in terms of 
solution space size and costs reduction due to the fact that both work used the same 
HC based procedure to fragment datasets.

Thirdly, the third contribution has been represented in meeting the desired mini-
mization of TC which was monitored for each problem over all works. Every query, 
in the considered set, was tested upon “Car” dataset according to four scenarios 
designed for data allocation: 1) data allocation scenario (1) in which the partial repli-
cation adopted; 2) data allocation scenario (2) in which no replication adopted; 3) The 
non-replicated random allocation; and 4) The random allocation for the whole non-
fragmented relation.

Figure 5 clearly induces the great effects the data replication has on TC minimiza-
tion, particularly when query set of retrieval type were bigger than update. Moreo-
ver, four more problems were addressed as follows; 24, 32 queries with dataset of 500 
records and 64 and 120 queries along with dataset of 1200 records, respectively. As a 
result, the results of Fig. 5 showed that scenario (1) was the best option when query of 
retrieval type occupied bigger space (P1, P2 and P3). On the other hand, the second 
and third scenarios were seen to be the best option as queries of update type bigger 
than retrieval type (P4 and P5). Unsurprisingly, the great results obtained with data 
replication in scenario (1) came with price on TC minimization when update-type 

Table 23  Fragmentation evaluation (proposed work of this paper)

PS number PS EL
2 EM

2 PE value

1 (A2,A4,A5) (A1,A3,A6) 56 97 153

2 (A1,A2,A5) (A3,A4,A6) 58 87 145

3 (A1,A2,A5,A6) (A3,A4) 58 82 140

4 (A1,A3,A5,A6) (A2,A4) 52 61 113

Table 24  FE values of schemes produced in (proposed work, and [6, 9]

Criterion/approach Experiment# [6] [9] Proposed work

Solution space size 1 7 7 4

Costs reduction (FE) 1 3423/7 = 489 3423/7 = 489 551/4 = 137.75

Costs reduction rate 1 0.22 0.22 0.78

Solution space size 2 9 9 5

Costs reduction (FE) 2 712 712 241

Costs reduction rate 2 0.25 0.25 0.75

Solution space size 3 11 11 6

Costs reduction (FE) 3 1312 1312 489

Costs reduction rate 3 0.27 0.27 0.73

Solution space size 4 14 14 8

Costs reduction (FE) 4 1688 1688 711

Costs reduction rate 4 0.30 0.30 0.70

Solution space size 5 18 18 9

Costs reduction (FE) 5 2132 2132 893

Costs reduction rate 5 0.29 0.29 0.71

Cost reduction rate in Total 1-5 0.27 0.27 0.73
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queries were grown. Interestingly, these results came in complete consistent with the 
theories given in [8] in which replication impact on DDBS performance was thor-
oughly investigated.

To further assert proposed work optimality in almost all scenarios, the proposed 
work was experimentally tested against [9] on a dataset of 4000 records and a query 
set of 300. Five more experiments were conducted to draw the averaged results of all 
experiments as shown in Figs. 7, 8, 9, 10. Number of queries was varied from 40, 80, 
160, 250, and 300. Once again, asserting the results of Fig. 4, Fig. 6 comes to assert 
that from queries of first experiment to almost 80 queries of experiment 2, it was clear 
that time taken to fragment data using K-means went in parallel with time taken by 

Fig. 5  TC minimization in percentage: gives the rate of minimization occurred in TC over several scenarios of 
data allocation

Fig. 6  Fragmentation execution time
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hierarchical clustering (HC) with slight increase in HC time. However, as shown from 
experiment 3 to experiment 5, as query set grew, HC time started to grow exponen-
tially while time taken by K-means grew slightly and gradually. In short, for the inter-
est of proposed work, k-means based clustering process showed its efficiency over HC 
based works in [6, 9].  

Fig. 7  Scenario 1—TC minimization in percentage: take the average TC over all problems

Fig. 8  Scenario 2—TC minimization in percentage: take the average TC over all problems
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Like Fig. 4, there has been a significant gap in time between AHC based procedure 
and K-means based procedure particularly when the query set is growing steadily 
from 80–300 queries. The rationale behind these gaps is already-given earlier in the 
interpretation that followed Fig. 4.

In terms of TC, in Fig. 7, the proposed work was clearly proven to outperforms [9] 
in all problems addressed in scenario (1) in which partial replication was adopted. 
The same results were evidently affirmed in both scenario (2) and (3) in which non-
replication and the whole relation allocation were adopted, (see Figs. 7 and 9). How-
ever, in scenario (3) in which random allocation was chosen, both works were seen to 
have close results particularly in problems (P1–P3) in which retrieval queries were of 
larger space. The proposed work was seen to behave better, in particular, problems 
P4 and P5 in which update queries were of larger portion, though. Moreover, even in 
scenario (4), proposed work still has the lead over [9].

To recap, over all addressed scenarios, our proposed work was shown to outweigh 
[9] either highly (Figs.  7, 8 and 10) or slightly (Fig.  9). In fact, the rational reason 
behind this lied in the well-documented behaviour of K-means that lead to having 
a significant reduction in the solution space that contains schemes, and then much 
lower FE costs in terms of remote access and local access costs of survival schemes 
(see Table  24). As a result, the proposed work outperforms its peers in almost all 
cases.

Last but not least, to confirm the proposed work’s superiority on real datasets, three 
problems (P1–P3) had been artificially created to conduct the final three experiments 
on the Adult database [22] which is being retrieved from the machine learning reposi-
tory. The number of records of this DB is 48842, and the size is 3.8  MB. The adult 
description is drawn in Table 25.

Fig. 9  Scenario 3—TC minimization in percentage: take the average TC over all problems
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The query set (150 queries) for the Adult dataset is generated in the same way que-
ries of the first experiment, in the result section, were generated with 40, 50 and 60 
queries used in all three experiments consecutively. The transaction workload has 
80% SELECT (120 queries), and 20% UPDATE (INSERT and DELETE, 30 queries). 
However, over all these experiments, not all queries used all attributes as 60% queries 
used 9 attributes, and 40% queries used 6 attributes. Over both scenarios, the results 
of TC had been accumulated over all three experiments and averaged the same way 
done when evaluating the given-above Car datasets for both works under considera-
tion. Only two scenarios are tested as follows; in the first scenario, the partial replica-
tion was adopted for the fragmented database (which gives five fragments, F1–F5). 

Fig. 10  Scenario 4—TC minimization in percentage: take the average TC over all problems

Table 25  Adult description (UCI, 1999)

Attribute Type Size (bytes)

Age Continuous 1

WorkClass Nominal 16

Final weight Continuous 4

Education Nominal 12

Education Continuous 1

marital-status Nominal 21

Occupation Nominal 17

Relationship Nominal 14

Race Nominal 18

Sex Nominal 6

Capital-gain Continuous 3

Capital-lose Continuous 2

Hours-per-week Continuous 1

Native-country Nominal 26

Class Nominal 5
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The DB before fragmentation was tested with its being partially replicated using the 
same queries. In the second scenario, the non-replication was adopted for both works 
as well as for the original DB. According to Figs. 11 and 12, the results in both scenar-
ios showed that the proposed K-means based work still has the lead over [9]. On the 
other hand, the worst performance was seen for the original DB before fragmenta-
tion. Indisputably [9], has been significantly superior comparing with the original DB.

In the first scenario (Fig. 11), both works behaved closely with the proposed work 
being slightly superior as TC minimization average reached 55% while it was 47% in 

Fig. 11  Scenario 1—TC minimization in percentage: take the average TC over all problems

Fig. 12  Scenario 2—TC minimization in percentage: take the average TC over all problems
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[9]. That is because of the update queries that affected DDBS performance negatively 
as each update query needed to be multiplied by the number of sites in which the 
concerned query was run. In the first two experiments, both works were close to each 
other though. However, as the query set grew, the proposed work showed a signif-
icant TC minimization. In the average results, the proposed work had a noticeable 
lead comparing with [9] and superior lead comparing with original DB. Both works, 
nevertheless, had a close performance in P2. On the other hand [9], was seen superior 
comparing with the original DB. In its turn, original DB had seen to have the worst 
performance with only 24% in TC minimization.

On the other extreme, in the second scenario (Fig. 12), the proposed work behaved 
much better comparing with [9] and highly superior comparing with original as TC 
minimization average reached 69%, 55%, and 28% respectively. Unlike scenario 1, 
update queries, which negatively affected DDBS performance, had not been multi-
plied by the number of sites as no replication was adopted. In all three experiments, 
the proposed work was significantly superior to [9] and highly superior to the original 
DB. In the averaged results, the proposed work had a significant lead comparing with 
[9] and superior lead comparing with original DB. Nevertheless [9], was seen much 
superior comparing with the original DB. In its turn, similarly to scenario 1, the origi-
nal DB had the worst performance with only 28% in TC minimization.

It can be also deduced that, from both figures, both [9] and original DB had a dif-
ference in performance in both scenarios with [9] had a significant improvement in 
both scenarios. However, the proposed work had a maximally significant improve-
ment with a highly noticeable difference in its behaviour in both scenarios as it was 
promoted from 55% in the first scenario up to 69% in the second scenario.

Finally, theoretically, it is worth indicating that the proposed K-means-based work 
of this paper differs significantly from [6, 9] in some important aspects as follows;

(1)	 For data fragmentation, this work used K-means to perform clustering of queries 
while they used hierarchical clustering. As shown from in this paper, K-means 
based work demonstrated a better performance in terms of finding the survival 
schemes of the lowest remote access. Moreover, it contributed highly to reducing 
the size of solution space that would contain all solutions found out of the fragmen-
tation process.

(2)	 While [6, 9] used a random way for performing the filtering process that would 
help eliminate the overlapping schemes, the proposed K-means based work used 
a heuristic technique as drawn in paper to remove this overlapping. In doing so, 
the K-means based work contributed vividly in finding the schemes of the low-
est remote access and highest local access at the same time comparing with hier-
archical based works. This is being reflected in the overall performance of DDBS, 
though.

(3)	 Third, Unlike [6, 9], the proposed K-means based work sought to find the solution 
for DDBS design without even the need for query frequencies which makes the 
K-means based work capable of being effectively implemented in the initial stage 
(in which query frequencies have rarely provided, or they have not been given at 
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all) of DDBS design. These claims have been emphasized along the paper and dem-
onstrated by the running example and experimental results.

(4)	 The proposed K-means based work aimed to reduce the time of computation across 
applying the clustering algorithm on the Query Difference Matrix which has been 
directly deduced from applying hamming on QUM matrix. So, only two steps were 
taken to find this matrix. However, [6, 9] used a lengthy procedure to find their 
QACM matrix which would also lead to the QDM matrix. Consequently, their 
hierarchical clustering based works were shown to consume a longer time than the 
proposed K-means based work.

Conclusions and future work
In this work, for DDBS design, a heuristic K-means clustering algorithm based approach 
was proposed for data fragmentation and allocation. Several design-related techniques 
were consolidated. The proposed approach has been shown to shrink the transmission 
costs of distribution significantly. On the other extreme, the proposed work committed 
to be operated within the relational database context at the initial and later stages of 
DDBSs design.

The proposed approach was a three-fold methodology aimed at vertically divid-
ing relations and then assigning the resulted data fragments to network sites. The 
K-means-based clustering method was introduced to produce disjoint fragments. These 
fragments, in their turn, were packed into the solution space in each loop of the clus-
tering process. The K-means based solution space was seen to have a great reduction 
in the number of solutions contained compared to the hierarchical clustering based 
approaches as drawn in “Discussion” section. The solution space would then hold the 
overlapping schemes. These schemes are in need to be refined by passing them through 
the refinement process. In its turn, the refinement process was precisely designed so that 
it worked mathematically on producing non-overlapping schemes (PSs). This process 
was also seen effective as it remarkably contributed in reducing the number of schemes 
(PSs) passed into fragmentation evaluator. These PSs were thoroughly examined by pro-
posed FE so the successful allocation-considered schema is found. The FE technique has 
two components. These components were used together to assess the quality of parti-
tioning schemes (PSs) that are already held in the solution space.

In the second phase, sites of the network were clustered hierarchically driven by the 
idea of clustering sites based on their lowest communication costs. In the third phase, an 
effective allocation algorithm was presented based on the proposed cost model. Moreo-
ver, data replication was considered to support data availability and reliability. In doing 
so, DDBS performance has been improved. Through this work, to prove the concepts, 
several practical experiments were conducted to verify the proposed approach on dif-
ferent data allocation scenarios. The experiments have been conducted on both artifi-
cially-created and real datasets. Four data allocation scenarios were addressed with the 
major aim of searching the best scenario in which the minimization of transmission 
costs (tacitly involves communication costs) was being achieved. A brief yet effective 
external evaluation has been made with two earlier works in the same line on both the 
artificially-created and real datasets. The proposed K-means based work was seen more 
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efficient in terms of execution and more effective in terms of TC reduction compared 
to its HC based peers. Finally, it is worth stressing that the proposed work does not 
argue the superiority of K-means clustering over the hierarchical clustering algorithm. 
The proposed work just proved that K-means based work behaved better than hierarchi-
cal cluster-based works in terms of DDBS design problem for which the current paper 
comes essentially to find a solution.

To conclude, our work basically sought to merge many techniques into one efficient 
work to promote DDBS performance across using K-means-based clustering method to 
fragment data, proposing a process for data refinement, merging the fragmentation eval-
uator, utilizing clustering of network sites, and finally allocate and replicate survival data 
fragments according to four scenarios.

The future work will be dedicated toward conducting in-depth experiments with the 
state-of-art while varying the query types according to [23] just to confirm the proposed 
work optimality in the context of comparative study so the proposed work would be 
implemented in cloud environment effectively.
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