
On K‑means clustering‑based approach
for DDBSs design
Ali A. Amer* 

Introduction
During the last years, a significant progress has been made in DDBS design. Mostly,
this progress has been concentrated on fragmentation and allocation techniques due to
their critical impact on DDBS productivity, particularly in relational databases. On one
extreme, the fragmentation process (horizontal, vertical or mixed) describes how each
relation could be split into different data fragments (smaller relations). On the other
extreme, data allocation seeks to promote DDBS performance by placing the properly-
broken fragments into their relative sites in which they are most needed. Consequently,
when data fragmentation and allocation are well performed, DDBS throughput is sub-
stantially optimized. This optimization is often met by promoting performance through
minimizing the irrelevant access for data (i.e. transmission minimization), which is
already stored in different sites, as distributed query under processing. Briefly, paper’s
contributions are summarized as follows:

Abstract 

In Distributed Database Systems (DDBS), communication costs and response time have
long been open-ended challenges. Nevertheless, when DDBS is carefully designed,
the desired reduction in communication costs will be achieved. Data fragmenta-
tion (data clustering) and data allocation are on popularity as the prime strategies in
constant use to design DDBS. Based on these strategies, on the other hand, several
design techniques have been presented in the literature to improve DDBS perfor-
mance using either empirical results or data statistics, making most of them imperfect
or invalid particularly, at least, at the initial stage of DDBSs design. In this paper, thus,
a heuristic k-means approach for vertical fragmentation and allocation is introduced.
This approach is primarily focused on DDBS design at the initial stage. Many techniques
are being joined in a step to make a promising work. A brief yet effective experimental
study, on both artificially-created and real datasets, has been conducted to demon-
strate the optimality of the proposed approach, comparing with its counterparts, as
the obtained results has been shown encouraging.

Keywords:  DDBS, Data allocation, Data replication, Query clustering, K-means
algorithm

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Amer ﻿J Big Data (2020) 7:31
https://doi.org/10.1186/s40537-020-00306-9

*Correspondence:
aliaaa2004@yahoo.com;
aliaaa2004@gmail.com
College of Science, Computer
Science Department, Taiz
University, Taiz 6803, Yemen

http://orcid.org/0000-0002-2002-948X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00306-9&domain=pdf

Page 2 of 31Amer ﻿J Big Data (2020) 7:31

1.	 Developing K-means clustering based vertical fragmentation method in the relational
database context. Unlike most of earlier techniques, this work does not need data
statistics, empirical results, mid-term predicates, affinity, attributes affinity matrix or
even query frequency matrix to perform data fragmentation and allocation, at least,
at the initial stage. What is just taken: the considered queries as the most frequently
used, and the Query Usage Matrix (QUM) in which each point refers to whether a
specific site releases the relevant query or not. In fact, this step marks the novelty
and creativity of the proposed work as it is essentially committed to the initial stage
of DDBS design.

2.	 Proposing a novel algorithm for the fragments refinement process. This algorithm
produces the non-overlapping schemes out of the overlapping schemes generated
from the clustering process.

3.	 Compiling many techniques into the proposed approach to make an effective work
so the data locality maximization and communication costs reduction are met.
Among these techniques are: K-means-based process for query clustering, schemes
refinement process, fragmentation evaluation technique, site clustering process, and
data allocation and replication. Consequently, a competitive DDBS design approach
is expected to meet the acquired performance of DDBS in either a static or dynamic
environment.

4.	 Finally, the proposed work of this paper has been evaluated, on both artificially-cre-
ated and real datasets, against two counterparts in DDBS design literature. Experi-
mental results illustrated a significant performance for the proposed work compar-
ing with its peers.

The rest of this paper is structured as follows. In “Related work” section, the earlier
relevant studies of DDBS design are explored. The proposed methodology including the
approach’s heuristics and architecture, fragmentation and allocation cost model and
clustering process, is elegantly given in “Proposed methodology” section). Results and
discussion are presented in “Results” and “Discussion” section. Finally, “Conclusions and
future work” draws the conclusions along with future work.

Related work
According to the literature, the fragmentation techniques are horizontal, vertical and
hybrid. While fragmentation is often done independently of data allocation. The data
allocation process, however, is always heavily contingent on the fragmentation pro-
cess. In other words, it is done on the assumption that fragmentation is antecedent. In
its turn, vertical fragmentation (VF) grabs DDBS researchers’ attention. In fact, this is
back to the positive effects vertical fragmentation has on DDBS rendering. As first of
its kind in the DDBS field [1], came as a fine-grained taxonomy on DDBS design. The
basic issues examined in this taxonomy were data fragmentation and allocation. Data
replication was significantly scrutinized as well. This taxonomy was comprehensively
analyzed that all these issues were considered to classify and analyze a big number
of the previous works. The driving aim of this taxonomy was to take the observation
of earlier works’ drawbacks to increase the likelihood of producing more productive
methods to improve DDBS performance. The decrease of transmission costs (TC),

Page 3 of 31Amer ﻿J Big Data (2020) 7:31 	

involving the costs of communication, has been the objective for which most of DDBS
design works have been striving to meet. However, to meet this objective, the DDBS
design work has to maximize the data locality and minimize the access for remote
data significantly. It was observed in [1] that most of the studied works failed to draw
a clear “unified or consensually agreed-upon” definition for TC as a metric for DDBS
performance which is considered a huge shortcoming.

A simultaneous relational-model-based vertical fragmentation and allocation tech-
nique was proposed along with a cost model in [2]. Communication costs minimi-
zation was the prime motivation of the work. However, when authors performed
fragmentation, there has been no involvement for any cost model to evaluate the
resulting fragmentation solution(s) due to the fact that only one single solution is set
to be produced regardless of its quality. Moreover, authors did not consider the site
clustering or distinguish given for the reading and write queries. Finally, the repli-
cation strategy had not been addressed as well. While in [3], the DAP problem was
sought to be solved through the hybrid solution using the algorithm of differential
evolution (DE) along with the technique of variable neighborhood search (VNS).
The key intention revolved around promoting DE rendering through the operators
of selection and crossover. The given work was experimentally seen effective as it
explored the search space by DE along with the technique of neighborhood search.
On the other extreme, hypothesizing the existence of interlocking horizontally-
fragmented data, the data replication problem (DRP) was deeply dealt with in [4] as
an integer linear problem. Hence, data replication was addressed as the problem of
optimization for the sake of keeping copies of fragments and sites at a minimum. On
the same line [5], developed a particle swarm optimization-based method (PSO) to
reduce TC costs. The aim was to use PSO to find a solution for the data allocation
problem (DAP) only.

While most of the earlier work used an attribute affinity as the key element to frag-
ment data, there have been many clustering-based fragmentation techniques. In [6], a
heuristic technique for vertical fragmentation and data allocation was elegantly evolved.
The work was the first of its kind that sought to incorporate several techniques in one
single work with the aim of maximizing DDBS performance. Extensive evaluation on
several data allocation scenarios was performed to assert the proposed work’s effective-
ness. As a follow-up optimization [7], came to add a new data allocation scenario to the
work of [6]. This scenario was shown to be non-efficient in some cases in which update
queries grow steadily, though. Moreover [8], came to further enhance DDBS perfor-
mance by proposing a new approach based on an aggregated similarity measure used
to cluster queries. The authors proposed a greedy algorithm to solve the data allocation
problem. A comprehensive evaluation was promised to be made with [6] to assert the
proposed work’s superiority. No evaluation was given yet, though. On the same line [9],
evolved an enhanced technique to design DDBS. This work was also evaluated against
[6] and shown to behave slightly better in most cases. Moreover, an acceptable experi-
mental study was conducted to prove the concept. Following the same of pattern of [6, 9,
10] came to propose an enhanced scheme for vertical fragmentation and allocation. The
aim of the work was to improve DDBS performance through finding an influential solu-
tion for the round-trip response time minimization. Comparing with the relative works,

Page 4 of 31Amer ﻿J Big Data (2020) 7:31

author claimed that their proposed schemes decreased the round-trip response time by
23%.

On the other hand [11], worked on finding a vertical fragmentation method. An algo-
rithm based on differential bond energy (DBE) was proposed. Based on the global affin-
ity measure (GAM), a comparison was made for the proposed algorithm with a classical
bond energy algorithm (BEA) in terms of performance. The experimental results attested
that developed DBE was suitable for the high dimensional problems with having a high
GAM value comparing with BEA on several datasets. For improving DDBS performance
[12], proposed a non-redundant dynamic fragment allocation approach. This approach
amended the read and write data volume to Threshold Time Volume and Distance Con-
straints Algorithm. Fragments were being allocated based on access patterns made to
each fragment. On the same page, an enhanced approach to split data at the initial stage
of DDBS design and then assign data at runtime over the cloud environment was pro-
posed in [13]. The data replication scenario was adopted in a way that allowed DDB-
SMs to work simultaneously to meet the client’s orders. In [14], a method to boost the
performance and reliability of distributed systems was presented. The method sought
to find the optimum placement in network nodes of the information and technologi-
cal reserve (ITR). This method used information and software redundancy in the form
of distributed copies of ITR. It was mathematically shown able to boost the reaction of
DDPS. It established that after setting ITR copies and allocating them over the network,
these copies served as an information base for DDPS when requests of users are being
processed.

Finally, in the same line for solving the DAP problem, [15] came to present a greedy
based algorithm called ASGOP to tackle DAP. The data allocation was treated as an
optimization problem and the cost model solved using the knapsack algorithm. In each
time, each fragment was not allocated to the intended site unless it was guaranteed that
this site is the prime container based on its transmission costs. Two data allocation sce-
narios were addressed, the replication-based and non-replication based. The experiment
results shown that ASGOP outperformed its counterparts in terms of data allocation
due to its being greedy.

Proposed methodology
Requirements

To perform data fragmentation and allocation, the next information requirement is
needed:

•	 A set of relations of Database (R1, R2,……, Rr)., where (r) represents the number of
considered relations.

•	 For each Ri (A1; A2;…; An): is the data schema, R, which consists of (N) attributes.
•	 A data query set running against Ri, Q (Q1; Q2;…; Qq), where (q) is the number of

running queries.
•	 Query Access Matrix: each QAM value refers to whether query Qk is released from

site Sj or not, be given by DBA. Where (k and j) are just indices for query and site
respectively.

Page 5 of 31Amer ﻿J Big Data (2020) 7:31 	

Motivations to prefer K‑means over hierarchical clustering (HC)

Hierarchical clustering (and its variations) is efficiently used in applications where
points/patterns are at the range of tens and even hundreds and it has long proven
effective [6, 7, 9]. Nevertheless, as the size of data sets is increasing, HC is being
infeasible due to its non-linear time that grows exponentially with dataset size and
the growing demands of space required. As a matter of fact, it is not an easy task to
visualize a dendrogram for, let say, “1000” patterns (and not to mention the complex-
ity involved when patterns in thousands). To accurately examine the number of pat-
terns in HC, an exponential time is required to perform the task at hand. To sum up,
HC (and its variation) does not scale up perfectly in the context of large-scale applica-
tions that would involve thousands and even millions of patterns. On the other hand,
naturally, K-means is a hard clustering algorithm that is adequately applied often on
large datasets and it has long proven efficient in literature [16]. Moreover, there has
been a dominant property features k-means algorithm which is its ability to succes-
sively minimize the sum of patterns squared deviations implicitly (called in literature,
squared-error criterion) from the center in each cluster. Formally speaking, assuming
there has been cluster Xi and Mi is its center, then the criterion function that sought
to be minimized by k-means is drawn in Eq. (1):

On the other hand, as a crucial drawback, the k-means algorithm does not secure
the globally-optimal fragments due to two basic causes: (1) the poor selection for ini-
tial seeds (centers), and (2) The traditional k-means algorithm which leverages the
“winner-take-all” technique as pattern given to only and only the winning cluster to
eventually generate the hard fragment. So, to tackle this shortcoming and enhance
the results, K-mean is being applied according to the next mechanism: initial seeds
were chosen heuristically. The widely-known heuristic is to pick up the initial “k” cen-
tres. These centers are supposed to be as far away from each other as possible. In
literature, this heuristic worked well practically. In practice, picking the pair of pat-
terns which are greatly dissimilar in the set as the initial seeds leads to decrease the
dependency on the initialization process. Experimentally speaking, this mechanism
serves the interest of the proposed wok substantially in terms of finding a competi-
tive solution for DDBS design efficiency. This efficiency is obviously being reflected
by the better results that come in favour of K-means-based work comparing with its
counterparts. It is worth indicating that there have been other alternatives for cen-
troid selection in literature like Random generation, Buckshot approach and ranking
technique [17, 18]. Some of these strategies are also tested in our work, but no one
draws better results and serves the major interest of paper like the “greatly dissimilar”
strategy that is already being leveraged.

Finally, the time complexity is O(NKID), where N is the number of considered pat-
terns, K is the number of generated clusters, I is the iterations number and D is the
dimensionality. The space requirement is O (KD). This complexity is lower than HC
complexity making K-means largely appealing to be used for DDBS design.

(1)
#clusters
∑

I=1

#X
∑

j=1

(

X
(

j
)

−M(i)
)T (

X
(

j
)

−M(i)
)

Page 6 of 31Amer ﻿J Big Data (2020) 7:31

Heuristics
Our work is a three-fold approach as drawn in Fig. 1, and detailed as follows

The phase (1): the query set, most-repeatedly-run queries, was identified. For each
query in the set, the contained attributes replaced by binary value (0, 1) distinguishing
its presence or absence in the query. In doing so for all queries, Attribute Access Matrix
(AAM) was constructed so that its rows represented queries and column represented
attributes (see Table 4). This matrix was used with the help of the hamming distance
metric [19] to find the different values among patterns that were already being recog-
nized. These difference values would be drawn into a matrix called Query Difference
Matrix (QDM). Then, using QDM as initial input, the K-means clustering process was
being activated as presented in the “Clustering methodology” section.

Fig. 1  Approach architecture diagram: briefly and enthusiastically display approach steps

Page 7 of 31Amer ﻿J Big Data (2020) 7:31 	

The phase (2): the refinement process was drawn to guarantee securing the non-over-
lapping fragments. All fragmentation combination has to be created for each cluster. The
input parameters for this process were all over-lapping (PSs) out of the fragmentation
phase. So, the expected results of this process were bound to be the non-overlapping
schemes. However, when query clusters were examined, it happened that attribute(s)
went missing in some clusters. Such attribute(s) missed through the clustering process
due to the loss of some queries in each cluster chiefly as clusters are aggressively grown.
Therefore, since the prime goal of this approach was to keep as high percentage of bind-
ing “connection” among attributes regarding their relevant original queries as possible,
this attribute(s) would be added according to the proposed function called the affinity
function (aff_func(Partition, attribute/attributes), Eq. (2)). For each cluster, this func-
tion would check the strength of the connection of attribute(s) with all partitions of each
Partitioning Schema (PS) individually based on Eqs. (3) and (4) at the same time. Then,
whenever happened that certain partition(s) had the max connection with attribute(s)
at the question, it was the prime candidate container to store them. Nevertheless, if an
attribute(s) has been equally required by “N” partition in PS, it was added “N” time(s).
In each time, attribute(s) was being added to each partition making a new PS in each
addition.

A clear manifestation is drawn in Table 15 so that p3 and p4 were derived from the
original PS3. This connection was calculated based on the attribute’s appearance, in each
partition of each cluster, concerning their relevant original queries. In the sense that any
partition yielded a higher connection with the relevant missing attribute(s), it was the
candidate partition to store it. However, if an attribute(s) had a zero connection, it was
created as a new partition on its own inside the underlying PS. The proposed Function of
affinity was presented in Eq. (2) as follows;

where P stands for concerned partition, A is a shortcut for Attribute/attributes, the con
is a logical factor to distinguish whether there had been the connection or not, and CNP
stands for creating a new partition. T and F stand for true and false flags. By strictly fol-
lowing this procedure, the possibilities of getting PSs with a minimum of the remote
access costs and maximum of data locality has been increased. In other words, among
all generated combinations, only schemes of a high percentage of connection rate would
be taken into fragmentation evaluator. However, to select those schemes, an optimality
measure (OM) “parameter” was proposed. Actually, OM was a criterion to reflect the
recorded correlation rate of access costs between each PS and all their relevant consid-
ered queries, Eqs. (3) and (4).

(2)func − aff

�

partition,
A

As

�

=







add(A, partition), con = T

CNP

�

A

As

�

, con = F

(3)Optimality Measure (OM) = 1− Correlation Rate

(4)Correlation Rate =

∑ps
i=1

∑q
j=1 Cr++

Q

Page 8 of 31Amer ﻿J Big Data (2020) 7:31

where Cr is an integer counter. The Correlation rate, in its turn, was used to reflect the
maximum remote access for all queries to reach that relevant PS. In the sense that PS
which gave higher remote access, it was neglected. Whenever OM was bigger the remote
access was in fact minimized and local access was maximized. Consequently, a propor-
tion of technique design objective was met. Finally, the ultimate decision to exclude or
include PS into FE was accomplished as per Eq. (5). Figure 2 depicts the steps of the pro-
cess professionally.

(5)Decision Making(PS) =

{

OM ≥ 50%, Include PS intoFE
Otherwise, exclude PSfrom FE

Fig. 2  Refinement procedure diagram: exhibit the steps taken by refinement procedure to produce disjoint
schemes

Page 9 of 31Amer ﻿J Big Data (2020) 7:31 	

Finally, for this phase, if it happened to have schema duplication, only one copy was
kept. This phase keeps only one copy of each schema if it happened to have schema
duplication.

The phase (3): the evaluation step was done using the presented fragmentation evalu-
ator (FE) [6]. FE uses two measures to assess schemes which were: the relevant remote
access and irrelevant local access. Basically, according to [6], the successful partitioning
schema is that of the lowest value of FE. This schema would be considered for the alloca-
tion process, as a result.

Fragmentation and allocation cost model

Based on the running queries, the matrix of attribute access (AAM) is being concluded.
In this matrix, each aamij signifies the approaching of Ai by Qk. with the assumption that
the query usage matrix (QUM) was already supported by DBA [6] so that each qumij
indicates the site Sj, from which Qk was launched. Hence, using these requirements, the
process of data fragmentation and allocation is done based on the next functions:

where “Sim”, “dif” and P(Q) stands for similarity, the difference between queries, and the
numerical pattern of Qk respectively. Using Eq. (6), query difference matrix (QDM) is
being constructed as seen in Eq. (7). Each qdmk1k2 represents the similarity calculated
between each query pair.

Proposed allocation and replication model

Suppose we have a “K” query set, Q = {Q1, Q2,…, Qk} reach N attributes A = {A1, A2,…,
An}. These queries were tied into CN several clusters {Cq1,Cq2…., CQcn}. Query clus-
ters were placed into a set of M sites S = {S1, S2, …., Sm}. Sites, in their turn, were clus-
tered into CM clusters Cs = {Cs1, Cs2, …., CScm}, and F = {F1, F2,…, Fm} be the disjointed
fragments already produced out of the process of query clustering. Then, the proposed
model of data allocation pursues to optimally distribute each fragment (F) over cluster
set, Cs, and then over sites of each cluster.

Allocation scenarios

First scenario: first Phase (replication adopted): each (F) was replicated over all clusters.
It is worth indicating that the replication concept of the proposed work has adopted the
replication principles given in [4] to replicate the data when it is needed.

Second scenario: First Phase (non-replication adopted): each (F) was assigned to C of
the maximum cost of access.

Both scenarios: Second Phase 2 (no replication inside each cluster): The total cost
to each Sj, to reach all A(s) of Fi was the assignment controller. So, the total cost of
access of each Sj (NACSij) has to be precisely computed. NACS matrix was created

(6)Similarity (Qk1,Qk2) =

q
∑

k1=1

q
∑

k2=1

(1 − difference(P((Qk1),P(Qk2)),

(7)QDMk1k2 =

q
∑

k1=1

q
∑

k2=1

Similarity (Qk1,Qk2)

Page 10 of 31Amer ﻿J Big Data (2020) 7:31

using both site attribute access (SAAM), which was computed in Eq. (8), and com-
munication costs (CMS) matrices, see Eq. (9). In NACS, the site of maximum cost for
the intended fragment was selected as the candidate site to store the fragment at the
question.

Allocation cost functions

where AAM, QUM, CMS, and CMS stands for attribute access matrix, query usage
matrix, communication costs between sites and communication costs between clusters
respectively. Equation (8) built SAAM which used later to build the NACS matrix along
with using Eq. (9). Equation (10) accumulated the access costs for each attribute over
its relevant clusters with respect to sites contained in each cluster. Lastly, Eq. (11) drew
the last step of fragments allocation over each site cluster in the second scenario. Last
but not least, the following constraints were maintained throughout the data allocation
process. It is worth indicating that this cost model (including equations) has been solved
using integer linear programming (ILP) as the objective function of the whole work is to
maximally minimize transmission costs.

Constraint (12) ensured that the net size of fragments that already assigned to one site
must not overpass the site capacity, as shown in Table 1. On the other hand, constraint
(13) guaranteed that the number of assigned attributes was between the lower limit of
the allowed attribute (LAL) and the upper limit (UAL). Finally, constraint (13) was the

(8)SAAM =

q
∑

k=1

m
∑

j=1

n
∑

i=1

AAMik ∗ QUMji

(9)NACS =

m
∑

j1=1

n
∑

i=1

m
∑

j=1

SAAMij1 ∗ CMSji

(10)NACC =

cn
∑

k=1

n
∑

i=1

m
∑

j=1

SAAMij1 + 1

(11)PACM =

cn
∑

k1=1

n
∑

i=1

cn
∑

k=1

NACCik1 ∗ CCMki

(12)
cq
∑

k=1

Size(Fk) ≤ Capacity
(

Sj
)

, ∀j = 1, . . . ,m.

(13)LAi ≤

n
∑

i=1

Xij ≤ UAi, ∀j = 1, . . . ,m.

(14)Xij ∈ (0, 1),

Page 11 of 31Amer ﻿J Big Data (2020) 7:31 	

decision variable on the binary form. Table 1 describes these constraints as capacity
measured in Megabyte, LAL, and UAL.

Fragmentation evaluator (FE)

This work used FE to evaluate schemes. FE has two metrics: relevant remote access and
irrelevant local access. The first metric calculates the total costs of remote access for
attributes that already exist at the remote site. The second metric associated with attrib-
utes that are processed locally. The first metric of FE is computed in Eq. (15), which gave
the local access costs:

where TQF is the total frequency of query (how many times query is being released over
network sites) that accesses data, |Alij| is the number of attributes in Fi that are locally
approached by Qk, NA is the number of attributes of targeted relation. On the other
hand, Eq. (16) provided the second term of FE as it computes the ratio of remote attrib-
utes being accessed:

where |AD| is the attributes number in Fi which was remotely reached with regard to Fj,
by Qk. Hence, FE was given by its two metrics as follows;

Clustering methodology

The clustering process is iteratively applied upon query difference matrix (QDM) until
satisfying either one of two conditions. While the first condition is that each cluster
should reach its stable state. The second condition is placed to keep repeating the pro-
cess until each pattern takes its turn of being centroid. After that, for the second condi-
tion, the most stable cluster would be selected at the final step. To group similar patterns
in each loop, the least difference value (LDV) is utilized (see Eqs. (5) and (6), respec-
tively). In this process, each pair of patterns “queries” will be compared in the bottom-up
method until all query clusters constituted in a box named a solution space. This space
will eventually hold all partitioning schemes combinations.

(15)E2
nf =

nf
∑

i=1

Q
∑

q=1

[

TFQ ∗
∣

∣Alik
∣

∣

(

1−

∣

∣Alik
∣

∣

|NAi|

)]

(16)E2
ad =

nf
�

i=1

Q
�

q=1





m
�

j=1

TFQi
qi ∗

�

�Adik
�

� ∗

�

�

�Adik
�

�

|NAiqk |

�





(17)FE = E2
nf + E2

Ad

Table 1  Site constraints

Site S1 S2 S3 S4 S5 S6

Capacity (KB) 10,000 15,000 9000 12,000 9000 10,000

LAL 1 1 1 1 1 1

UAL 12 14 11 7 10 14

Page 12 of 31Amer ﻿J Big Data (2020) 7:31

As a matter of fact, the rationale behind proposing the solution space is to con-
tain all partitioning schemes (PSs) that surpass OM threshold (see Eq. (5)) since each
PS represents an optimal solution with a certain percentage. Therefore, containing
all possible combinations, in solution space, should contribute to finding optimal
schema at a success rate of roughly 100%. This scientific fact is being demonstrated in
the performance evaluation section.

K‑means clustering process

Technically, K-means clustering process which was presented in [16] and being uti-
lized with slight modifications as follows:

1)	 Determining the number of clusters (CN) is made using Eq. (18).

where n is the number of queries has to be clustered and CN is an even number.

2)	 Choosing members of least dissimilarity values among all numerical patterns of origi-
nal queries to be a centroids of the already-drawn empty-filled clusters CQ1,…,CQn/2.

3)	 For each cluster, numerical patterns are pulled hierarchically [20] based on the pro-
posed difference value metric. This step shall be repeatedly performed until no mem-
ber excluded. If pattern (Pi) has the same difference value with more than one cen-
troid, Pi would be added to the cluster with which it is mostly being tied as per the
calculated average cost of access for each cluster. However, if Pi still has difficulty
joining the relative cluster, Pi could be added to either one.

4)	 After getting all the patterns involved in the first loop, the results are to be kept in the
solution space. Then, the clustering process starts over again by releasing all patterns
of clusters and randomly choosing new centroids, other than those of the first loop,
for all clusters.

5)	 Step 3 and step 4 will be iteratively repeated until each cluster reach its stable state or
each pattern successfully takes its turn to be centroid. All clusters in each loop would
be kept in solution space. It is worth pointing that the stability state is satisfied when
the cluster reaches a “non-change” state. Thus, whenever a cluster is being stable,
the process would isolate and maintain this cluster as “a stable cluster”, with no addi-
tional processing.

Site clustering algorithm

Initialization: Given a set of sites M as input, communication costs matrix between
sites, let the initial clusters initiated using LDV value which was basically proposed in
[21].

Loop: for any new site, do the following:

(18)CN =

∣

∣

∣

∣

2

√

n

2

∣

∣

∣

∣

Page 13 of 31Amer ﻿J Big Data (2020) 7:31 	

1.	 Calculate communication costs between the new site and each site cluster using
average communication costs. Average costs will be used as a decisive membership
for each site with respect to clusters under consideration.

2.	 The site cluster of the lowest average cost is bound to be the candidate container for
the site at hand.

3.	 If more than one candidate container recorded, the container of the lowest distance
with the targeted site is the primary and sole container.

4.	 Repeat steps (1–3) until all sites are clustered successfully.

Results
This work has been implemented in C++ programming language using a processor
of 2.2 GHz Intel (R) Dual-Core (TM) i3CPU with 4 GB of main memory and 80-GB
hard drive. It is worth indicating that all requirements like queries and the query fre-
quencies are hypothesized to be collected from the workload of DDBS. Within the
relational DB context, the proposed approach was implemented in the virtual fully-
connected six-site network. To conduct experiments, the “Car” dataset was artificially
proposed based on the description given in Table 2. This dataset has six attributes and
initially stacked with 400 data rows. To make an external evaluation with [6, 9], five
more problems were addressed on the same dataset while maximizing the number
of queries to reach 300 queries and the number of records to reach 4000 records. In
the first three problems, the retrieval queries were occupying the larger area of con-
sidered queries. However, in the last two problems, the update queries were assumed
to have a larger percentage. For computation simplicity, the attributes: Car-no, Car-
model, Engine-id, Speed-Limit, Manufacturer, and workshop-id referred to as A1, A2,
A5, A6, A5, and A6 respectively.

For the first problem, it was hypothesized that only eight queries as the most-occa-
sionally operating against the “Car” database (see Table 2). If the attribute appeared
in the query, it means that it is being accessed attribute by the intended query. Using
this hypothesis on queries, the matrix of attribute access was established. In its turn,
each aamkj, (see Table 3), indicates whether attribute Aj is accessed or not by the cor-
responding query.

Furthermore, only QUM (Table 4) was needed as it was assumedly given by DB admin-
istrator [6]. Each qumkj refers to whether query Qk was issued from the underlying site
Sj or not.

Table 2  Car database description

Attributes Symbol Type Length
(bytes)

Car-no A1 Nominal 4

Car-model A2 Categorical 30

Engine-id A3 Categorical 4

Speed-Limit A4 Numerical 3

Manufacturer A5 Categorical 5

Workshop-id A6 Nominal 4

Page 14 of 31Amer ﻿J Big Data (2020) 7:31

Then, the hamming distance is used in congruence with AAM to build Query Differ-
ence Matrix (QDM) in Table 5, (see Eqs. (2) and (3)). On the other hand, each qdmij
gives the value of the difference between the numerical pattern pairs of queries.

K‑means‑utilizing clustering process

Using the algorithm described in query clustering (see “Clustering methodology” sec-
tion) along with QDM matrix, the first results were shown in Tables 6, 7, 8, 9, 10.

It is worth indicating that query membership was calculated as per the least difference
value measure.

Table 3  Attribute Access Matrix (AAM)

Query/attribute A1 A2 A3 A4 A5 A6

Q1 1 1 0 0 1 1

Q2 0 0 1 0 1 0

Q3 0 1 0 1 1 0

Q4 1 0 1 0 0 1

Q5 1 1 0 0 1 0

Q6 0 0 1 1 0 1

Q7 0 1 0 0 0 1

Q8 1 0 1 0 1 1

Table 4  Query Usage Matrix (QUM)

Query/site S1 S2 S3 S4 S5 S6 SFM

Q1 1 0 0 0 1 1 3

Q2 1 1 0 0 1 0 3

Q3 0 0 1 1 0 0 2

Q4 0 0 0 1 0 1 2

Q5 0 1 0 0 0 1 2

Q6 0 1 1 1 0 0 3

Q7 1 0 0 1 0 0 2

Q8 0 1 1 0 1 1 4

Table 5  Query Difference Matrix (QDM)

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q1 0 4 3 3 1 5 2 2

Q2 0 3 3 3 3 4 2

Q3 0 6 2 4 3 5

Q4 0 4 2 3 1

Q5 0 6 3 3

Q6 0 3 3

Q7 0 4

Q8 0

Page 15 of 31Amer ﻿J Big Data (2020) 7:31 	

Second loop (Q7,Q2)

Release members of clusters and select new centroids so that the newest were those
which have the least difference values with the oldest. Thus, Q7 chosen as centroid for
the first cluster and Q3 as the centroid of the second.

From the second loop (affiliation Tables 7 and 9) it is obvious that the obtained clusters
are in the stable case since they are a complete replica of those of the first loop. Finally,
the net results of this process would be drawn in the solution space (Table 10).

Refinement process

The refinement process was elegantly drawn in Table 11 according to the procedure that
was earlier given in “Heuristic” section.

From Table 11, we can see the impact of the correlation rate on reducing the number
of partitions yielded from each partitioning scheme. For example, P1 is yielded from the
cluster (CQ235) but A6 is missing. So, instead of randomly generate several combinations

Table 6  First loop

Centeroid/query Q2 Q3 Q4 Q6 Q7 Q8

Q1 4 3 3 5 2 2

Q5 3 4 2 6 3 3

Table 7  Member’s affiliation (first loop

Centeroid/query Q2 Q3 Q4 Q6 Q7 Q8

Q1 0 0 1 1 1 1

Q5 1 1 0 0 0 0

Table 8  Second loop

Centeroid/query Q1 Q2 Q4 Q5 Q6 Q8

Q7 2 4 3 3 3 4

Q3 3 3 6 2 4 5

Table 9  Member’s affiliation (second loop)

Centeroid/query Q1 Q2 Q4 Q5 Q6 Q8

Q7 1 0 1 0 1 1

Q3 0 1 0 1 0 0

Table 10  Solution space

Cluster Members

CQ1 Q2, Q3 and Q5

CQ2 Q1, Q4, Q6, Q7 and Q8

Page 16 of 31Amer ﻿J Big Data (2020) 7:31

which are three, four and also four combinations (in total it is “11” combinations) for P1,
P2, and P3 respectively, as done in [6, 9], the proposed technique measures the affinity of
A6 with each partition in P1 using Eq. (3). As per calculation, A6 is found to have a higher
rate with the partition (A1), so it is being joined with this partition. Consequently, the
solution space is being reduced significantly and the number of schemes that would be
passed into FE will much less compared with techniques used in [6, 9]. This also inter-
prets the statistics drawn in Tables 22, 23, 24 which come in favour of proposed work.

Fragmentation evaluation

The next step was to pass fragments through the fragmentation evaluator to be exam-
ined so that the optimal schema was to be selected, Table 12 and Fig. 3.

From Table 12 and Fig. 3, it was clear that the successful schema is the PS4 since it was
of the lowest FE value. This schema was evaluated as per Eqs. (12, 13 and 14), NA means
that no access possible to that attribute, as follows:

For local access:

Table 11  Refinement process

Cluster Cluster
members
(overlapping
clusters)

P# Partitioning
schemes

Missing
partition
(added)

Schemes
combinations
Non-
overlapping
PS

PS state Optimality
measure
(OM)

Decision
making

CQ235 Q2(A3,A5)
Q3(A2,A4,A5)
Q5(A1,A2,A5)

P1 (A3,A5) (A2,A4)
(A1)

A6 (A3,A5) (A2,A4)
(A1,A6)

Kept 37.5% Exclude

P2 (A2,A4,A5)
(A1,A3)

(A2,A4,A5)
(A1,A3,A6)

Kept 62.5% Include

P3 (A1,A2,A5)
(A3,A4)

(A1,A2,A5)
(A3,A4,A6)

Kept 62.5% Include

P4 (A1,A2,A5,A6)
(A3,A4)

Kept 75% Include

CQ14678 Q1(A1,A2,A3,A6)
Q4(A1,A3,A6)
Q6(A3,A4,A6)
Q7(A2,A6)
Q8(A1,A3,A5,A6)

P5 (A1,A2,A5,A6)
(A3,A4)

None Replica of P4 Deleted – –

P6 (A1,A3,A6)
(A2,A4,A5)

Replica of P2 Deleted – –

P7 (A3,A4,A6)
(A1,A2,A5)

Replica of P3 Removed – –

P8 (A2,A6)
(A1,A3,A5)
(A4)

(A2,A6)
(A1,A3,A5)
(A4)

Kept 37.5% Exclude

P9 (A1,A3,A5,A6)
(A2,A4)

(A1,A3,A5,A6)
(A2,A4)

Kept 75% Include

Table 12  Fragmentation evaluation

PS number PS EL
2 EM

2 PE value

1 (A2,A4,A5) (A1,A3,A6) 56 97 153

2 (A1,A2,A5) (A3,A4,A6) 58 87 145

3 (A1,A2,A5,A6) (A3,A4) 58 82 140

4 (A1,A3,A5,A6) (A2,A4) 52 61 113

Page 17 of 31Amer ﻿J Big Data (2020) 7:31 	

For remote access:

So, the total access cost is: 52 + 61 = 113
As a result, the query clusters obtained from the clustering process were drawn in the

following SQL statements:
DataF1 = CQ1: Select A2, A4 from Table; Size (DataF1) = 9900 Byte
DataF2 = CQ2: Select A1, A3, A5, A6 from Table; Size (DataF2) = 5100 Byte

Allocation process

Firstly, based on QUM and AAM along with Eq. (5), Site Attribute Access Matrix
(SAAM) was constructed. In SAAM, every point of each row describes the total cost for
each site Sj, through its relevant queries to reach certain Attribute Ai, Table 13.

Then, by multiplying SAAM with communication cost matrix between sites (Eq. (6)),
Net Access Cost Matrix (NACS) was to be constructed as shown in Table 14.

Cost of F1 + cost of F2 = (7+ 9+ 3+ 3+ 4 + 9+ 3+ 0)+ (5+ 0+ 0+ 0+ 2+ 5+ 2+ 0)

= 38+ 14 = 52.

Cost of F1 + cost of F2 = (5 + 0 + 8 + 0 + 1 + 3 + 1 + 0) + (20 + NA + 4 + NA + 5 + 12 + 2 + NA)

= 18+ 43 = 61

Fig. 3  Fragmentation evaluator: display the results of both parts of FE as each schema exposed on query set

Table 13  Site Access Attribute Matrix (SAAM)

Site Attribute

A1 A2 A3 A4 A5 A6

S1 2 4 2 0 4 4

S2 3 2 3 1 5 2

S3 1 3 2 4 4 2

S4 1 4 4 6 3 5

S5 3 1 5 0 5 2

S6 9 5 4 0 6 7

Page 18 of 31Amer ﻿J Big Data (2020) 7:31

The first Allocation scenario (fragments replicated over cluster of sites):
Phase 1: The first phase was more straight-forward and fragment would be directly

allocated to all sites’ clusters using replication principal as shown in Table 15.
Phase 2: Data fragment F1 and F2 were set to be assigned to sites of each cluster. The

Decision Allocation Matrix is drawn in Table 16.
For scenario 1, depending upon the Decision Allocation Matrix, the final allocation for

fragments was drawn in Table 16.
The second scenario (no replication adopted over clusters of sites)
Site Attribute Access Matrix (SAAM) would be used as input parameters for this pro-

cess. The results should be the net access cost each sites’ cluster (NACC) which was

Table 14  Net Access Cost Matrix (NACS)

Site Attribute

A1 A2 A3 A4 A5 A6

S1 106 86 98 54 144 96

S2 81 98 87 46 126 107

S3 91 85 79 25 116 100

S4 94 59 94 15 120 77

S5 81 101 91 79 112 120

S6 49 72 79 54 104 77

Table 15  Scenario (1)—Decision Allocation Matrix

Sites’ cluster/
fragment

Sites Attributes

A2 A4 Total cost (F1) A1 A3 A5 A6 Total cost (F3)

CS1 S1 86 54 140 106 98 144 96 444

S5 101 79 180 81 91 112 120 404

CS2 S2 98 46 144 81 87 126 107 401

S3 85 25 110 91 79 116 100 366

S4 59 15 74 94 94 120 77 385

CS3 S6 72 54 126 49 79 104 77 309

Table 16  Scenario (1)—final allocation

Fragment/sites’
cluster

CS2 CS3 Cs3

S1 S5 S2 S3 S4 S6

F1 1 1 1

F2 1 1 1

Table 17  Net Access Cost Cluster Matrix (NACC)

Cluster # A1 A2 A3 A4 A5 A6

C1 6 9 7 5 13 8

C2 4 6 9 6 8 7

C3 9 5 4 0 6 7

Page 19 of 31Amer ﻿J Big Data (2020) 7:31 	

needed to reach attributes individually (Table 17). The summation of all queries cost for
each cluster to access every attribute Ai was calculated as shown in TACC matrix which
was produced as applying Eq. (7) on SAAM.

Then, multiplying TACC matrix by communication cost matrix of clusters (Eq. (8)),
the pay of attributes access matrix (PACM), across clusters, would be produced as shown
in Table 18.

Phase 1: Fragments are allocated to all clusters of sites using non-replication princi-
pal so as to each fragment was to be assigned to the cluster of maximum access cost as
shown in Table 19.

Phase 2: Data fragment F1 and F2 were set to be assigned to sites of each cluster. The
Decision Allocation Matrix was drawn in Tables 20 and 21.

The competition, to have these fragments allocated, had been between all sites of each
cluster, Table 20. Each fragment was directly assigned to the site of the highest fragment
access cost, Table 21.

Table 18  PACM Matrix

Cluster # A1 A2 A3 A4 A5 A6

C1 38 40 53 30 52 49

C2 66 65 51 25 89 68

C3 28 42 50 34 58 44

Table 19  Scenario (2)—Decision Making Matrix

Cluster # A2 A4 Total cost
of F1

A1 A3 A5 A6 Total cost of F3

C1 40 30 70 38 53 52 49 192

C2 65 25 90 66 51 89 68 274

C3 42 34 76 28 50 58 44 180

Table 20  Scenario (2)—the final allocation of data fragment

Sites’ Cluster/Fragment Sites Attributes

A2 A4 Total cost (F1) A1 A3 A5 A6 Total cost (F3)

CS2 S2 98 46 144 81 87 126 107 401

S3 85 25 110 91 79 116 100 366

Table 21  Scenario (2)—the final allocation of data fragment

Cluster Sites Fragment

F1 F2

CS2 S2 1 1

S3

Page 20 of 31Amer ﻿J Big Data (2020) 7:31

Discussion
As mentioned earlier, the prime pursuit of this work is directed solely at the performance
optimality of DDBS. So, this technique was designed with the aim of optimally, at least
to a large extent, maximizing data locality and minimizing remote access. In the quest
to achieve the intended objective, besides fragmenting data precisely, these fragment
should be assigned to those sites in where it is intensively accessed. In doing so, the costs
of communication and response time are bound to be significantly mitigated. To verify
whether this goal was achieved, a simple yet effective assessment has been conducted.
The evaluation has been made in two parts. For the first part of the evaluation, five prob-
lems have been simulated, namely, 8 queries on a datasets of 300 records; 24, 32 queries
on a dataset of 500 records; and 64 and 120 queries on a dataset of 1200 records. As
given in “Result” section, the first problem was done exclusively for demonstration pur-
poses. It is limited for queries of retrieval type, though. The consecutive two problems
addressed queries of both retrieval and update type. The retrieval queries took a big-
ger space. On the other hand, the fourth and fifth problems addressed both types while
update queries taking in the larger space. For site clustering, on the other hand, the pro-
cedure given in [18] has been adopted. The second part of evaluation composes of two
sections. Section (1) sought to increase the volume of the artificially-created datasets
(up to 4000 records) and the size of query set (up to 300 query) to assert the superiority
of proposed k-means based work in terms of performance factors under consideration
which are execution time (ET), solution space size, fragmentation evaluator (FE) values,
and finally the overall reduction observed in transmission costs (TC). Section (2) of sec-
ond part, sought to meet the same objectives on real datasets that was retrieved from the
machine learning repository [22]. The number of records of this dataset is 48842, and
the size is 3.8 MB.

Firstly, in regard to performance element represented in the time (calculated in sec-
onds) taken to perform fragments using both hierarchical clustering and the proposed
work of this paper which depends on K-means (Fig. 4). From queries of the first experi-
ment to almost 40 queries of experiment 3, it was obvious that time taken to fragment
data using K-means went slightly in parallel with the time taken by hierarchical cluster-
ing (HC) with a noticeable increase in HC time. However, as shown from experiment 3
to experiment 5, as query set grew, HC time started to grow exponentially while the time
taken by K-means grew slightly and gradually. In short, as the first contribution of this
work, k-means based clustering process (proposed work of this paper) initially proved its
efficiency over HC based works in [6, 9].

As it is drawn in Fig. 4, there has been a significant gap in time between HC based
procedure and K-means based procedure particularly when the query set is grow-
ing steadily from 80-160 queries. For problem (1), both works moved at a closer
rate. However, starting from the problem (2) till Problem (5), the time gaps between
both works started to be steadily and significantly widened. It can be even concluded
that the size of the problem (when the number of queries growing in each succes-
sive problem) has a substantial contribution in widening the time gap between all
techniques under consideration. The bigger the size of the query set, the longer time
would be needed to process such set in all works with K-means based work being
faster as drawn in Fig. 4. In fact, the recorded gaps which come in favour of K-means

Page 21 of 31Amer ﻿J Big Data (2020) 7:31 	

based work come down to some reasons. First, the nature of K-means itself which
is faster than hierarchical in finding the partitioning schemes. Second, the proposed
filtering procedure in k-means-based approach which sought to reduce the solution
space substantially while this process is completed randomly in [6, 9] till all solutions
contained. In consequence, as the third reason, FE in the K-means-based approach
took much less time to evaluate the non-overlapping schemes comparing with that
time taken in HC based approach. That is why K-means based work is faster than HC
based works [6, 9].

Secondly, the second contribution was recorded for the performance factor rep-
resented in fragmentation evaluator values. These results (values obtained of FE,
Tables 22, 23, 24) were accurately compared with results drawn in [6, 9] and clearly
shown that the proposed work more effective. The cost reduction of values and cost
reduction rate in total, which greatly reached to unexpected rate, were drawn in
Table 24 to accentuate proposed work optimality in reducing remote access costs and
rising local access costs at the same time.

Fig. 4  Fragmentation execution time: visually exhibit time take to perform fragmentation by both methods
hierarchical clustering and K-means

Table 22  Partitioning schemes [6] and [9]

PS number PS EL
2 EM

2 PE value

1 (A1,A2,A4,A5) (A3,A6) 199 292 491

2 (A2,A5) (A1,A3,A4,A6) 244 315 559

3 (A1,A2,A5) (A3,A4,A6) 234 283 517

4 (A2,A4,A5) (A1,A3,A6) 184 266 450

5 (A1,A2,A4,A5,A6) (A3) 230 158 388

6 (A1,A2,A5,A6) (A3,A4) 222 237 459

7 (A2,A4,A5,A6) (A1,A3) 252 307 559

Page 22 of 31Amer ﻿J Big Data (2020) 7:31

In Table 24, both works [6] and [9] were seen to have the same numbers in terms of
solution space size and costs reduction due to the fact that both work used the same
HC based procedure to fragment datasets.

Thirdly, the third contribution has been represented in meeting the desired mini-
mization of TC which was monitored for each problem over all works. Every query,
in the considered set, was tested upon “Car” dataset according to four scenarios
designed for data allocation: 1) data allocation scenario (1) in which the partial repli-
cation adopted; 2) data allocation scenario (2) in which no replication adopted; 3) The
non-replicated random allocation; and 4) The random allocation for the whole non-
fragmented relation.

Figure 5 clearly induces the great effects the data replication has on TC minimiza-
tion, particularly when query set of retrieval type were bigger than update. Moreo-
ver, four more problems were addressed as follows; 24, 32 queries with dataset of 500
records and 64 and 120 queries along with dataset of 1200 records, respectively. As a
result, the results of Fig. 5 showed that scenario (1) was the best option when query of
retrieval type occupied bigger space (P1, P2 and P3). On the other hand, the second
and third scenarios were seen to be the best option as queries of update type bigger
than retrieval type (P4 and P5). Unsurprisingly, the great results obtained with data
replication in scenario (1) came with price on TC minimization when update-type

Table 23  Fragmentation evaluation (proposed work of this paper)

PS number PS EL
2 EM

2 PE value

1 (A2,A4,A5) (A1,A3,A6) 56 97 153

2 (A1,A2,A5) (A3,A4,A6) 58 87 145

3 (A1,A2,A5,A6) (A3,A4) 58 82 140

4 (A1,A3,A5,A6) (A2,A4) 52 61 113

Table 24  FE values of schemes produced in (proposed work, and [6, 9]

Criterion/approach Experiment# [6] [9] Proposed work

Solution space size 1 7 7 4

Costs reduction (FE) 1 3423/7 = 489 3423/7 = 489 551/4 = 137.75

Costs reduction rate 1 0.22 0.22 0.78

Solution space size 2 9 9 5

Costs reduction (FE) 2 712 712 241

Costs reduction rate 2 0.25 0.25 0.75

Solution space size 3 11 11 6

Costs reduction (FE) 3 1312 1312 489

Costs reduction rate 3 0.27 0.27 0.73

Solution space size 4 14 14 8

Costs reduction (FE) 4 1688 1688 711

Costs reduction rate 4 0.30 0.30 0.70

Solution space size 5 18 18 9

Costs reduction (FE) 5 2132 2132 893

Costs reduction rate 5 0.29 0.29 0.71

Cost reduction rate in Total 1-5 0.27 0.27 0.73

Page 23 of 31Amer ﻿J Big Data (2020) 7:31 	

queries were grown. Interestingly, these results came in complete consistent with the
theories given in [8] in which replication impact on DDBS performance was thor-
oughly investigated.

To further assert proposed work optimality in almost all scenarios, the proposed
work was experimentally tested against [9] on a dataset of 4000 records and a query
set of 300. Five more experiments were conducted to draw the averaged results of all
experiments as shown in Figs. 7, 8, 9, 10. Number of queries was varied from 40, 80,
160, 250, and 300. Once again, asserting the results of Fig. 4, Fig. 6 comes to assert
that from queries of first experiment to almost 80 queries of experiment 2, it was clear
that time taken to fragment data using K-means went in parallel with time taken by

Fig. 5  TC minimization in percentage: gives the rate of minimization occurred in TC over several scenarios of
data allocation

Fig. 6  Fragmentation execution time

Page 24 of 31Amer ﻿J Big Data (2020) 7:31

hierarchical clustering (HC) with slight increase in HC time. However, as shown from
experiment 3 to experiment 5, as query set grew, HC time started to grow exponen-
tially while time taken by K-means grew slightly and gradually. In short, for the inter-
est of proposed work, k-means based clustering process showed its efficiency over HC
based works in [6, 9].

Fig. 7  Scenario 1—TC minimization in percentage: take the average TC over all problems

Fig. 8  Scenario 2—TC minimization in percentage: take the average TC over all problems

Page 25 of 31Amer ﻿J Big Data (2020) 7:31 	

Like Fig. 4, there has been a significant gap in time between AHC based procedure
and K-means based procedure particularly when the query set is growing steadily
from 80–300 queries. The rationale behind these gaps is already-given earlier in the
interpretation that followed Fig. 4.

In terms of TC, in Fig. 7, the proposed work was clearly proven to outperforms [9]
in all problems addressed in scenario (1) in which partial replication was adopted.
The same results were evidently affirmed in both scenario (2) and (3) in which non-
replication and the whole relation allocation were adopted, (see Figs. 7 and 9). How-
ever, in scenario (3) in which random allocation was chosen, both works were seen to
have close results particularly in problems (P1–P3) in which retrieval queries were of
larger space. The proposed work was seen to behave better, in particular, problems
P4 and P5 in which update queries were of larger portion, though. Moreover, even in
scenario (4), proposed work still has the lead over [9].

To recap, over all addressed scenarios, our proposed work was shown to outweigh
[9] either highly (Figs. 7, 8 and 10) or slightly (Fig. 9). In fact, the rational reason
behind this lied in the well-documented behaviour of K-means that lead to having
a significant reduction in the solution space that contains schemes, and then much
lower FE costs in terms of remote access and local access costs of survival schemes
(see Table 24). As a result, the proposed work outperforms its peers in almost all
cases.

Last but not least, to confirm the proposed work’s superiority on real datasets, three
problems (P1–P3) had been artificially created to conduct the final three experiments
on the Adult database [22] which is being retrieved from the machine learning reposi-
tory. The number of records of this DB is 48842, and the size is 3.8 MB. The adult
description is drawn in Table 25.

Fig. 9  Scenario 3—TC minimization in percentage: take the average TC over all problems

Page 26 of 31Amer ﻿J Big Data (2020) 7:31

The query set (150 queries) for the Adult dataset is generated in the same way que-
ries of the first experiment, in the result section, were generated with 40, 50 and 60
queries used in all three experiments consecutively. The transaction workload has
80% SELECT (120 queries), and 20% UPDATE (INSERT and DELETE, 30 queries).
However, over all these experiments, not all queries used all attributes as 60% queries
used 9 attributes, and 40% queries used 6 attributes. Over both scenarios, the results
of TC had been accumulated over all three experiments and averaged the same way
done when evaluating the given-above Car datasets for both works under considera-
tion. Only two scenarios are tested as follows; in the first scenario, the partial replica-
tion was adopted for the fragmented database (which gives five fragments, F1–F5).

Fig. 10  Scenario 4—TC minimization in percentage: take the average TC over all problems

Table 25  Adult description (UCI, 1999)

Attribute Type Size (bytes)

Age Continuous 1

WorkClass Nominal 16

Final weight Continuous 4

Education Nominal 12

Education Continuous 1

marital-status Nominal 21

Occupation Nominal 17

Relationship Nominal 14

Race Nominal 18

Sex Nominal 6

Capital-gain Continuous 3

Capital-lose Continuous 2

Hours-per-week Continuous 1

Native-country Nominal 26

Class Nominal 5

Page 27 of 31Amer ﻿J Big Data (2020) 7:31 	

The DB before fragmentation was tested with its being partially replicated using the
same queries. In the second scenario, the non-replication was adopted for both works
as well as for the original DB. According to Figs. 11 and 12, the results in both scenar-
ios showed that the proposed K-means based work still has the lead over [9]. On the
other hand, the worst performance was seen for the original DB before fragmenta-
tion. Indisputably [9], has been significantly superior comparing with the original DB.

In the first scenario (Fig. 11), both works behaved closely with the proposed work
being slightly superior as TC minimization average reached 55% while it was 47% in

Fig. 11  Scenario 1—TC minimization in percentage: take the average TC over all problems

Fig. 12  Scenario 2—TC minimization in percentage: take the average TC over all problems

Page 28 of 31Amer ﻿J Big Data (2020) 7:31

[9]. That is because of the update queries that affected DDBS performance negatively
as each update query needed to be multiplied by the number of sites in which the
concerned query was run. In the first two experiments, both works were close to each
other though. However, as the query set grew, the proposed work showed a signif-
icant TC minimization. In the average results, the proposed work had a noticeable
lead comparing with [9] and superior lead comparing with original DB. Both works,
nevertheless, had a close performance in P2. On the other hand [9], was seen superior
comparing with the original DB. In its turn, original DB had seen to have the worst
performance with only 24% in TC minimization.

On the other extreme, in the second scenario (Fig. 12), the proposed work behaved
much better comparing with [9] and highly superior comparing with original as TC
minimization average reached 69%, 55%, and 28% respectively. Unlike scenario 1,
update queries, which negatively affected DDBS performance, had not been multi-
plied by the number of sites as no replication was adopted. In all three experiments,
the proposed work was significantly superior to [9] and highly superior to the original
DB. In the averaged results, the proposed work had a significant lead comparing with
[9] and superior lead comparing with original DB. Nevertheless [9], was seen much
superior comparing with the original DB. In its turn, similarly to scenario 1, the origi-
nal DB had the worst performance with only 28% in TC minimization.

It can be also deduced that, from both figures, both [9] and original DB had a dif-
ference in performance in both scenarios with [9] had a significant improvement in
both scenarios. However, the proposed work had a maximally significant improve-
ment with a highly noticeable difference in its behaviour in both scenarios as it was
promoted from 55% in the first scenario up to 69% in the second scenario.

Finally, theoretically, it is worth indicating that the proposed K-means-based work
of this paper differs significantly from [6, 9] in some important aspects as follows;

(1)	 For data fragmentation, this work used K-means to perform clustering of queries
while they used hierarchical clustering. As shown from in this paper, K-means
based work demonstrated a better performance in terms of finding the survival
schemes of the lowest remote access. Moreover, it contributed highly to reducing
the size of solution space that would contain all solutions found out of the fragmen-
tation process.

(2)	 While [6, 9] used a random way for performing the filtering process that would
help eliminate the overlapping schemes, the proposed K-means based work used
a heuristic technique as drawn in paper to remove this overlapping. In doing so,
the K-means based work contributed vividly in finding the schemes of the low-
est remote access and highest local access at the same time comparing with hier-
archical based works. This is being reflected in the overall performance of DDBS,
though.

(3)	 Third, Unlike [6, 9], the proposed K-means based work sought to find the solution
for DDBS design without even the need for query frequencies which makes the
K-means based work capable of being effectively implemented in the initial stage
(in which query frequencies have rarely provided, or they have not been given at

Page 29 of 31Amer ﻿J Big Data (2020) 7:31 	

all) of DDBS design. These claims have been emphasized along the paper and dem-
onstrated by the running example and experimental results.

(4)	 The proposed K-means based work aimed to reduce the time of computation across
applying the clustering algorithm on the Query Difference Matrix which has been
directly deduced from applying hamming on QUM matrix. So, only two steps were
taken to find this matrix. However, [6, 9] used a lengthy procedure to find their
QACM matrix which would also lead to the QDM matrix. Consequently, their
hierarchical clustering based works were shown to consume a longer time than the
proposed K-means based work.

Conclusions and future work
In this work, for DDBS design, a heuristic K-means clustering algorithm based approach
was proposed for data fragmentation and allocation. Several design-related techniques
were consolidated. The proposed approach has been shown to shrink the transmission
costs of distribution significantly. On the other extreme, the proposed work committed
to be operated within the relational database context at the initial and later stages of
DDBSs design.

The proposed approach was a three-fold methodology aimed at vertically divid-
ing relations and then assigning the resulted data fragments to network sites. The
K-means-based clustering method was introduced to produce disjoint fragments. These
fragments, in their turn, were packed into the solution space in each loop of the clus-
tering process. The K-means based solution space was seen to have a great reduction
in the number of solutions contained compared to the hierarchical clustering based
approaches as drawn in “Discussion” section. The solution space would then hold the
overlapping schemes. These schemes are in need to be refined by passing them through
the refinement process. In its turn, the refinement process was precisely designed so that
it worked mathematically on producing non-overlapping schemes (PSs). This process
was also seen effective as it remarkably contributed in reducing the number of schemes
(PSs) passed into fragmentation evaluator. These PSs were thoroughly examined by pro-
posed FE so the successful allocation-considered schema is found. The FE technique has
two components. These components were used together to assess the quality of parti-
tioning schemes (PSs) that are already held in the solution space.

In the second phase, sites of the network were clustered hierarchically driven by the
idea of clustering sites based on their lowest communication costs. In the third phase, an
effective allocation algorithm was presented based on the proposed cost model. Moreo-
ver, data replication was considered to support data availability and reliability. In doing
so, DDBS performance has been improved. Through this work, to prove the concepts,
several practical experiments were conducted to verify the proposed approach on dif-
ferent data allocation scenarios. The experiments have been conducted on both artifi-
cially-created and real datasets. Four data allocation scenarios were addressed with the
major aim of searching the best scenario in which the minimization of transmission
costs (tacitly involves communication costs) was being achieved. A brief yet effective
external evaluation has been made with two earlier works in the same line on both the
artificially-created and real datasets. The proposed K-means based work was seen more

Page 30 of 31Amer ﻿J Big Data (2020) 7:31

efficient in terms of execution and more effective in terms of TC reduction compared
to its HC based peers. Finally, it is worth stressing that the proposed work does not
argue the superiority of K-means clustering over the hierarchical clustering algorithm.
The proposed work just proved that K-means based work behaved better than hierarchi-
cal cluster-based works in terms of DDBS design problem for which the current paper
comes essentially to find a solution.

To conclude, our work basically sought to merge many techniques into one efficient
work to promote DDBS performance across using K-means-based clustering method to
fragment data, proposing a process for data refinement, merging the fragmentation eval-
uator, utilizing clustering of network sites, and finally allocate and replicate survival data
fragments according to four scenarios.

The future work will be dedicated toward conducting in-depth experiments with the
state-of-art while varying the query types according to [23] just to confirm the proposed
work optimality in the context of comparative study so the proposed work would be
implemented in cloud environment effectively.

Abbreviations
DDBS: Distributed Database Systems; TC: Transmission costs; QUM: Query usage matrix; VF: Vertical fragmentation; DRP:
Data replication problem; R: Relation; A: Attribute; Q: Query; S: Site; AAM: Attribute Access Matrix; QDM: Query Difference
Matrix; PS: Partitioning Schema; OM: Optimality Measure; Cr: An integer counter; FE: Fragmentation evaluator; K: Queries;
N: Attributes; CN: Clusters of queries; M: Sites; CM: Clusters of sites; F: Fragment; NACS: Net access cost for each site; CMS:
Communication costs between sites; CMS: Communication costs between clusters; SAAM: Site Attribute Access Matrix;
LAL: Lower attribute limit; UAL: Upper attribute limit; |Alij|: The number of attributes in Fi that are locally approached by
Qk; NA: Attributes number of targeted relation R; |AD|: The attributes number in Fi which was remotely reached with
regard to FJ, by Qk; LDV: Least difference value.

Acknowledgements
The authors would like to sincerely express his an eternal thanks to both the Journal of Big Data Team (Editors, in particu-
lar) along with those respected anonymous reviewers for their valuable comments and directions that otherwise this
research article would not be released.

Authors’ contributions
AAA has been the key contributor in conception and design, implementing the approach and analyzing results of
all experiments, and the preparation, writing and revising the manuscript. The author read and approved the final
manuscript.

Authors’ information
Ali A. Amer is an assistant professor in Computer Science Department at Taiz University (YEMEN). He has been publish-
ing many research papers in highly-ranked and top-tier journals as well as refereed International conferences. He has
also acted as reviewer for many top-venue platforms. Off these platforms, he has published in, and reviewed for: ACM
Computing Surveys, IEEE Access, Computer in Human Behavior, International Journal on Semantic Web and Information
Systems, Universal Computer Science Journal, Journal of Supercomputing, Heliyon, and Journal of Evolutionary Intel-
ligence, to name a few. His primary interest of research falls into: Information Systems, Database, Distributed and parallel
Database Systems, Data Integration, Data Mining, Network and Information Retrieval.

Funding
No funding received.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 12 November 2019 Accepted: 19 April 2020

References
	1.	 Nashat D, Amer A. A comprehensive taxonomy of fragmentation and allocation techniques in distributed database

design. ACM Comput Surv. 2018;51(1):1–25.

Page 31 of 31Amer ﻿J Big Data (2020) 7:31 	

	2.	 Hui M, Schewe K, Kirchberg M (2006). A heuristic approach to vertical fragmentation incorporating query informa-
tion. 7th International Baltic Conference on Databases and Information Systems.

	3.	 Lotfi N. Data allocation in Distributed Database Systems: a novel hybrid method based on differential evolution and
variable neighborhood search. SN Appl Sci. 2019. https​://doi.org/10.1007/s4245​2-019-1787-3.

	4.	 Wiese L, Waage T, Bollwein F. A replication scheme for multiple fragmentations with overlapping fragments. Com-
put J. 2016;60(3):308–28.

	5.	 Mahi M, Baykan O, Kodaz H. A new approach based on particle swarm optimization algorithm for solving data
allocation problem. Appl Soft Comput. 2018;62:571–8.

	6.	 Sewisy A, Amer A, Abdalla H. A novel query-driven clustering-based technique for vertical fragmentation and alloca-
tion in Distributed Database Systems. Int J Semant Web Inf Syst. 2017;13(2):27–54.

	7.	 Amer A. Data replication impact on DDBS system performance. In: Lytras SM, Aljohani N, Damiani E, Chui K, editors.
Semantic web science and real-world applications. 1st ed. Pennsylvania: IGI Global; 2019. p. 134–62.

	8.	 Amer A, Mohamed M, Al-Asri K (2018). On an effective hierarchical clustering based model for data fragmentation
and allocation in relational DDBS: review and proposal. In: Proceedings of ACM ICCES conference, Kuala Lumpur,
Malaysia, July 14–16, (ICCES ‘18).

	9.	 Abdalla H, Artoli A. Towards an efficient data fragmentation, allocation, and clustering approach in a distributed
environment. Information. 2019;10(3):112.

	10.	 Torshiz M, Esfaji A, Amintoosi H. Enhanced schemes for data fragmentation, allocation, and replication in Distributed
Database Systems. Int J Comput Syst Sci Eng. 2020;35(2).

	11.	 Mehta S, Agarwal P, Shrivastava P, Barlawala J. Differential bond energy algorithm for optimal vertical fragmentation
of distributed databases. J King Saud Univ Comput Inform Sci. 2018. https​://doi.org/10.1016/j.jksuc​i.2018.09.020.

	12.	 Zar Lwin NK, Naing TM (2018). Non-redundant dynamic fragment allocation with horizontal partition in Distributed
Database System. In: International conference on intelligent informatics and biomedical sciences (ICIIBMS), Bang-
kok, p. 300–305.

	13.	 Abdel Raouf A, Badr N, Tolba M. Dynamic data reallocation and replication over a cloud environment. Concurr
Comput. 2018;30(13):e4416.

	14.	 Somov S. Creation of information-technological reserve in Distributed Data Processing Systems. Autom Remote
Control. 2019;80(4):781–90.

	15.	 Amer A, Mohamed M, Al-Asri K. ASGOP: an aggregated similarity-based greedy-oriented approach for relational
DDBSs design. Heliyon. 2020;6(1):e03172.

	16.	 Jain A, Dubes R. Algorithms for clustering data. Englewood Cliffs: Prentice Hall; 1988.
	17.	 Zahra S, Ghazanfar MA, Khalid A, Azam MA, Naeem U, Prugel-Bennett A. Novel centroid selection approaches for

K-means-clustering based recommender systems. Inf Sci. 2015;320:156–89.
	18.	 Sandhya N, Raja Sekar M. Analysis of variant approaches for initial centroid selection in K-means clustering algo-

rithm. In: Satapathy S, Bhateja V, Das S, editors. Smart computing and informatics. Smart Innovation, Systems and
Technologies, vol. 78. Singapore: Springer; 2018.

	19.	 Hamming R. Error detecting and error correcting codes. Bell Syst Tech J. 1950;29(2):147–60.
	20.	 Koga H, Ishibashi T, Watanabe T. Fast agglomerative hierarchical clustering algorithm using locality-sensitive hash-

ing. Knowl Inf Syst. 2006;12(1):25–53.
	21.	 Amer A, Sewisy A, Elgendy T. An optimized approach for simultaneous horizontal data fragmentation and allocation

in Distributed Database Systems (DDBSs). Heliyon. 2017;3(12):e00487.
	22.	 UCI. (1999). Machine learning repository content summary. Retrieved March 4, 2020, from http://www.ics.uci.

edu/~mlear​n/MLSum​mary.html.
	23.	 Amer A, Abdalla H. (2012). A heuristic approach to re-allocate data fragments in DDBSs. Information Technology and

e- Services (ICITeS), International Conference on IEEE.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s42452-019-1787-3
https://doi.org/10.1016/j.jksuci.2018.09.020
http://www.ics.uci.edu/%7emlearn/MLSummary.html
http://www.ics.uci.edu/%7emlearn/MLSummary.html

	On K-means clustering-based approach for DDBSs design
	Abstract
	Introduction
	Related work
	Proposed methodology
	Requirements
	Motivations to prefer K-means over hierarchical clustering (HC)

	Heuristics
	Fragmentation and allocation cost model
	Proposed allocation and replication model
	Allocation scenarios
	Allocation cost functions
	Fragmentation evaluator (FE)
	Clustering methodology
	K-means clustering process
	Site clustering algorithm

	Results
	K-means-utilizing clustering process
	Second loop (Q7,Q2)
	Refinement process
	Fragmentation evaluation
	Allocation process

	Discussion
	Conclusions and future work
	Acknowledgements
	References

