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Introduction
Analyzing and processing massive volumes of data in different applications like sensor 
data, health care and e-Commerce require big data processing technologies. Extracting 
useful information from the enormous size of unstructured data is a crucial thing. As the 
amount of data becomes more extensive, sophisticated pre-processing techniques are 
required to analyze the data. In social networking sites and other online shopping sites, 
a massive volume of online product reviews from a large size of customers are available 
[1]. The impact of online product reviews affects 90% of the current e-Commerce mar-
ket [2]. Customer reviews contribute the product sale to an extent and product life in the 
market depends on online product recommendations.

Online feedback is one of the communication methods which gives direct suggestions 
from the customers [3, 4]. Online reviews and ratings from customers are another infor-
mation source about product quality [5, 6]. Customer reviews can help to decide on a new 
successful product launch. Online shopping has several advantages over retail shopping. In 
retail shopping, the customers visit the shop and receive price information but less product 
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information from shop owners. On the other hand, online shopping sites give product 
reviews and previous customer feedbacks without extra cost and effort for the customers 
[7–10].

Investing in poor quality products potentially affects an industry’s brand loyalty and this 
strategy should be changed by the eCommerce firms [5, 11]. Consumer product success 
depends on different criteria, such as the quality of the product and marketing strategies. 
The users should provide their valuable and accurate reviews about the products [12]. Cus-
tomers bother to give reviews about products, whether they liked it or not. If the users 
provide reviews, then other retailers can create some duplicated reviews [13, 14]. In online 
marketing, the volume and value of product reviews are examined [15, 16]. The number 
of the product reviews on the shopping sites, blogs and forums has increased awareness 
among the users. This large volume of the reviews leads to the need for significant data 
processing methods [17, 18]. The value is the rating on the products. The ratio of positive to 
negative reviews about the product leads to the quality of the product [19, 20].

Feature selection is a crucial phase in data pre-processing [21]. Selecting features from 
an un-structured massive volume of data reduce the model complexity and improves the 
prediction accuracy. Different feature selection methods existing are the filter, wrapper and 
embedded. The wrapper feature selection method evaluates the usefulness of the feature 
and it depends on the performance of the classifier [22]. The filter method calculates the 
relevance of the features and analyzes data in a univariate manner. The embedded process 
is similar to the wrapper method. Embedded and wrapper methods are more expensive 
compared to the filter method. The state-of-art methods in customer review analysis gener-
ally discuss on categorizing positive and negative reviews using different natural language 
processing techniques and spam reviews recognition [23]. Feature selection of customer 
reviews increases prediction accuracy, thereby improves the model performance.

An enhanced method, which is a combination of filter and wrapper method is proposed 
in this work, which focuses on product pre-launch prediction with enhanced distributive 
feature selection method. Since many redundant reviews are available on the web in large 
volumes, a big data processing model has been implemented to filter out duplicated and 
unreliable data from customer reviews in-order to increase prediction accuracy. A scalable 
big data processing model has been applied to predict the success or failure of a new prod-
uct. The realization of the model has been done by Distributed Memory-based Resilient 
Dataset Filter with prediction classifiers.

This paper is organized as follows. “Related work” section discusses related work. “Meth-
odology” section contains the proposed methodology with System design, Resilient Distrib-
uted Dataset and Prediction using classifiers. “Results and discussions” section summarizes 
results and discussion. The conclusion of the paper is shown in “Conclusion and future 
work” section.

Related work
Makridakis et al. [24] illustrate that machine learning methods are alternative methods 
for statistical analysis of multiple forecasting field. Author claims that statistical methods 
are more accurate than machine learning [25] methods. The reason for less accuracy is 
the unknown values of data i.e., improper knowledge and pre-processing of data.
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Different works have been implemented using the Matrix factorization (MF) [14] 
method with collaborative filtering [26]. Hao et al. [15] focused on a work based on the 
factorization of the user rating matrix into two vectors, i.e., user latent and item latent 
with low dimensionality. The sum of squared distance can be minimized by training a 
model that can find a solution using Stochastic Gradient Decent [27] or by least squares 
[28]. Salakhutdinov et al. [29] proposed a method that can be scaled linearly by probabil-
ity related matrix factorization on a big volume of datasets and then comparing it with 
the single value decomposition method. This matrix factorization outperforms other 
probability factorization methods like Bayesian-based probabilistic analysis [29] and 
standard probability-based matrix factorization methods. A conventional approach, like 
traditional collaborative Filtering [13, 30] method depends on customers and items. The 
user item matrix factorization technique has been used for implementation purpose. 
In the recommender system, there is a limitation in the sparsity problem and cold start 
problem. In addition to the user item matrix factorization method, various analyses and 
approaches have been implemented to solve these recommendation issues.

Wietsma et al. [31] proposed a recommender system that gives information about the 
mobile decision aid and filtering function. This has been implemented with a study of 
29 features of student user behavior. The result shows the correlation among the user 
reviews and product reviews from different websites. Jianguo Chen et al. [32] proposed 
a recommendation system for the treatment and diagnosis of the diseases. For cluster 
analysis of disease symptoms, a density-peaked method is adopted. A rule-based apriori 
algorithm is used for the diagnosis of disease and treatment. Asha et al. [33] proposed 
the Gini-index feature method using movie review dataset. The sentimental analysis 
of the reviews are performed and opinion extraction of the sentences are done. Gini-
index impurity measure improves the accuracy of the polarity prediction by sentimental 
analysis using Support vector machine [34, 35]. Depending on the frequency of occur-
rence of a word in the document, the term frequency is calculated and opinion words 
are extracted using the Gini-index method. In this method, high term frequency words 
are not included, as it decreases the precision. The disadvantage of this method is that 
for the huge volume of data, the prediction accuracy decreases.

Luo et al. [36] proposed a method based on historical data to analyze the quality of 
service for automatic service selection. Liu et al. [37] proposed a system in a mobile envi-
ronment for movie rating and review summarization. The authors used Latent Semantic 
Analysis (LSA-based) method for product feature identification and feature-based sum-
marization. Statistical methods [38] have been used for identifying opinion words. The 
disadvantage of this method is that LSA-based method cannot be represented efficiently; 
hence, it is difficult to index based on individual dimensions. This reduces the prediction 
accuracy in large datasets.

Lack of appropriate computing models for handling huge volume and redundancy in 
customer review datasets is a major challenge. Another major challenge handled in the 
proposed work is the existence of a pre-launch product in the industry based on the 
product features, which can be predicted based on the customer feedback in the form 
of reviews and ratings of the existing products. This prediction helps to optimize the 
design of the product to improve its quality with the required product features. Many 
of the relational database management systems are handling structured data, which is 
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not scalable for big data that handles a large volume of unstructured data. This proposed 
model solves the problem of redundancy in a huge volume of the dataset for better pre-
diction accuracy.

Methodology
A pre-launch product prediction using different classifiers has been analysed by huge 
customer review and rating dataset. The product prediction is done through the phases 
consisting of data collection phase, feature selection and duplicate data removal, build-
ing prediction classifier, training as well as testing.

Figure 1 describes the various stages in system design of the model. The input dataset 
consists of multivariate data which includes categorical, real and text data. Input dataset 
is fed for data pre-processing. Data pre-processing consists of feature selection, redun-
dancy elimination and data integration which is done using Feature Information Gain 
and Distributed Memory-based Resilient Dataset Filter approach. The cleaned dataset 
is trained using classification algorithms. The classifiers considered for training are Sup-
port Vector Machine (SVM) and Logistic Regression (LR). Further the dataset is tested 
for pre-launch prediction using LR and SVM.

Data collection phase

This methodology can be applied for different products. Several datasets like Ama-
zon and flip cart customer reviews are available as public datasets [39–41]. The data-
set of customer reviews and ratings of seven brands of mobile phones for a period of 
24 months are considered in this work. The mobile phones product reviews are chosen 
because of two reasons. New mobile phones are launched into the market industry day 
by day which is one of the unavoidable items in everyone’s life. Market sustainability for 
the mobile phones is very low.

Table  1 shows a sample set of product reviews in which input dataset consists of 
user features and product features. User features consists of Author, ReviewID and 
Title depending on the user. Product feature consists of Product categories, Overall 
ratings and Review Content. Since mobile phone is taken as the product, the catego-
rization is done according to the features such as Battery life, price, camera, RAM, 
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Fig. 1  Product prelaunch prediction System Design
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processor, weight etc. Some features are given a priority weightage depending on the 
product and user requirements. Input dataset with JSON file format is taken.

Dataset pre‑processing

In data pre-processing, feature selection plays a major role. In the product review 
dataset of a mobile phone, a large number of features exist. Identifying a feature from 
customer reviews is important for this model to improve the prediction accuracy. 
Enhanced Feature Information Gain measure has been implemented to identify sig-
nificant feature.

Features are identified based on the content of the product reviews, ratings of the 
product reviews and opinion identification of the reviews. Ratings of the product 
reviews can be further categorized based on a rating scale of 5 (1—Bad, 2—Average, 
3—Good, 4—very good, 5—Excellent). For opinion identification of the product, the 
polarity of extracted opinions for each review is classified using Senti-WordNet [42].

Feature Information Gain measures the amount of information of a feature 
retrieved from a particular review. Impurity which is the measure of reliability of fea-
tures in the input dataset should be reduced to get significant features. To measure 
feature impurity, the best information of a feature obtained from each review is calcu-
lated as follows

•	 Let Pi be the probability of any feature instance 
(

f
)

 of k feature set F =
{

f1, f2, . . . fk
}

 
belonging to ith customer review Ri , where i varies from 1 to N.

•	 Let N denotes the total number of customer reviews.
•	 Let OR denotes the polarity of extracted opinions of the Review.
•	 Let SR denotes product rating scale of review (R).

Table 1  Sample set of Product Reviews
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The information of a feature with respect to review rating and opinion is denoted by 
If

Expected information gain of the feature denoted as Ef

Review Feature Impurity R(I) is calculated as

Then Feature Information Gain (�G) to find out significant features are calculated 
as

Features are selected based on the �G value and those with an Information gain 
greater than 0.5 is selected as a significant feature. Table 2 shows the significant fea-
ture from customer reviews and ratings.

Next step is to eliminate the redundant reviews and to replace null values of an 
active customer from the customer review dataset using an enhanced big data pro-
cessing approach. Reviews with significant features obtained from feature identifica-
tion are considered for further processing.

(1)If = log2

(

1

P(R = F)

)

∗ OR ∗ SR.

(2)Ef =

N
∑

i=1

−Pi(R = F).
∥

∥If
∥

∥

1
.

(3)R(I) = −

N
∑

i=1

Pi.log2Ef .

(4)�G = R(I)−

N
∑

i=1

[(

OR

N
∗ Ef

)

−

(

SR

N
∗ Ef

)]

.

Table 2  Significant Features from Customer Reviews and Ratings

No Customer reviewed features No Customer reviewed features

1 Author 17 RAM

2 Title 18 Sim type

3 ReviewID 19 Product category

4 Content 20 Thickness

5 Product brand 21 Weight of mobile phone

6 Ratings 22 Height

7 Battery life 23 Product type

8 Price 24 Product rating

9 Feature information gain 25 Front camera

10 Review type 26 Back camera

11 Product display 27 Opinion of review

12 Processor 28 Multi-band

13 Operating system 29 Network support

14 Water proof 30 Quick charging

15 Rear camera 31 Finger sensor

16 Applications inbuilt 32 Internal storage
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Resilient Distributed Dataset

Resilient Distributed Dataset (RDD) [43] is a big data processing approach, which allows 
to store cache chunks of data on memory and persevere it as per the requirements. 
The in-memory data caching is supported by RDD. Variety of jobs at a point of time 
is another challenge which is handled by RDD. This method deals with chunks of data 
during processing and analysis. RDD can also be used for machine learning supported 
systems as well as in big data processing and analysis, which happens to be an almost 
pervasive requirement in the industry.

In the proposed method the main actions of RDD are:

•	 Reduce (β): Combine all the elements of the dataset using the function β.
•	 First (): This function will return the first element
•	 takeOrdered(n): RDD is returned with first ‘n’ elements.
•	 saveAsSequenceFile(path): the elements in the dataset to be written to the local file 

system with given path.

The main Transformations of RDD are:

•	 map(β): Elements from the input file is mapped and new dataset is returned through 
function β.

•	 filter(β): New dataset is returned if the function β returns true.
•	 groupBykey(): When called a dataset of (key, value) pairs, this function returns a 

dataset of (key, value) pairs.
•	 ReduceBykey(β): A (key, value) pair dataset is returned, where the values of each key 

are combined using the given reduce function β.

In the proposed work an enhanced Distributed Memory-based Resilience Dataset 
Filter (DMRDF) is applied. DMRDF method have long Lineage and it is recomputed 
themselves using prior information, thus it achieves fault-tolerance. DMRDF has been 
implemented to remove the redundancy in the dataset for product pre-launch predic-
tion. This enhanced method is simple and fast.

•	 Let the list of n customers represented as C = {c1, c2, c3 . . . , cn}

•	 Let the list of N reviews be represented as R = {r1, r2, r3 . . . , rN }

•	 Let x significant features are identified from feature set (F  ) represented as Fx ⊂ F

•	 An active customer consists of significant feature having information Gain value 
denoted by �G

In the DMRDF method, a product is chosen and its customer reviews are found out. 
Eliminate customers with similar reviews on the selected product and also reviews 
with insignificant features. Calculate the memory-based Resilient Dataset Filter score 
between each of the customer reviews with significant features.

Let us consider a set C of ‘n’ number of customers, the set R of ‘N’ number of reviews and 
a set of significant features ′F ′

x are considered. The corresponding vectors are represented 
as KC , KR and KFx . Then KRi is represented using a row vector and KFj is represented using 
the column vector. Each entry KCm denote the number of times the mth review arrives in 
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customers. The similarities between ith review of mth customer is found out using L1 norm 
of KRi and KCm . The Distributed Memory-based resilient filter score δ is calculated using the 
Eq. (5).

The δ score is calculated for each customer review whereas the score lies between [0,1]. 
The significant features are found out using Eq. 4. For customer reviews without significant 
features, �G value will be zero. The reviews with δ score value 0 are found to be insignificant 
without any significant feature or opinion and hence those reviews are eliminated and not 
considered for further processing in the work. More than one Distributed Memory-based 
resilient filter score value is identified then the second occurrence of the review is consid-
ered as duplicate.

Prediction classifiers

Logistic regression and Support Vector Machine classifiers are the supervised machine 
learning approaches used in the proposed work for product pre-launch prediction.

Logistic regression (LR)

We have implemented proposed model using logistic regression analysis for prediction. 
This model predicts the failure or success of a new product in the market by analysing 
selected product features from customer reviews. A case study has been conducted using 
the dataset of customer reviews of mobile phones. Success or failure is the predictor vari-
able used for training and testing the dataset. For training the model 75% of the dataset is 
used and for testing the model, remaining 25% is used.

•	 Let p be the prediction variable value, assigning 0 for failure and 1 for success.
•	 p0 is the constant value.
•	 b is the logarithmic base value.

Then the logit function is,

Then the Logistic regression value γ is shown in Eq. (7),

(5)δ =

N
n
�

i = 1

m = 1





�

KRi ∗

�

�x
j=1 KFj

��

∗ KCm

KRi · KCm



 ∗ |�G|

(6)
L0 = b

p0+p
x
∑

i=1

fi

(7.1)γ =
L0

(

bp0+p
∑x

i=1 fi
)

+ 1

(7.2)=
1

1+ b
−

(

b
p0+p

∑x
i=1

fi
)
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The probability value of γ lies between [0,1]. In this work, if this value is greater than 0.5 
the pre-launch prediction of the product is considered as success and for values less than 
0.5, it is considered as failure.

Support Vector Machine (SVM)

SVM is the supervised machine learning method, used to learn from set of data to get new 
skills and knowledge. This classification method can learn from data features relationships 
( zi ) and its class 

(

yi
)

 that can be applied to predict the success or failure class the product 
belongs to.

•	 For a set T  of t training feature vectors, zi ∈ RD, where i = 1 to t.
•	 Let yi ∈ {+1,−1} , where +1 belongs to product success class and -1 belongs to product 

failure class.
•	 The data separation occurs in the real numbers denoted as X in the D dimensional 

input space.
•	 Let w be the hyper plane normal vector element, where w ∈ XD.

The hyper plane is placed in such a way that distance between the nearest vectors of the 
two classes to the hyperplane should be maximum. Thus, the decision hyper plane is calcu-
lated as,

The conditions for training dataset d ∈ X , is calculated as

To maximize the margin the value of w should be minimized.
The products in the positive one class (+1) are considered as successful products, [from 

Eq. (9)] and those in the negative one class (−1) [from Eq. (10)] are in failure class.

Experimental setup

The proposed system was implemented using Apache Spark 2.2.1 framework. Spark pro-
gramming for python using PySpark version 2.1.2, which is the Spark python API has been 
used for the application development. An Ubuntu running Apache web server using Web 
Server Gateway Interface is used. Amazon Web Services is used to run some components 
of the software system large servers (nodes), having two Intel Xeon E5-2699V4 2.2 G Hz 
processors (VCPUs) with 4 cores and 16 GB of RAM on different Spark cluster configura-
tions. According to the scalability requirements the software components can be config-
ured and can run on separate servers.

(8)α(w) =
2

�w�

(9)wtzi + d ≥ 1, where yi = +1.

(10)wtzi + d ≤ −1, whereyi = yi − 1.
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Results and discussions
To evaluate our prediction system several case studies have been conducted. Support 
Vector Machine and Logistic regression classifiers are employed to perform the predic-
tion. Most significant customer review features are used to analyse the system perfor-
mance. The prediction accuracy evaluation is taken as one of the system design factors. 
The system response time is another major concern for big data processing system. In 
the customer review feature identification, we propose feature information gain and 
DMRDF approach to identify significant features and to eliminate redundant customer 
reviews from the input dataset.

Figure  2 illustrates significant features required for the mobile phone sustainability. 
Customer reviews and ratings of 7 brands of mobile phones are identified and evalu-
ated with DMRDF using SVM and LR. The graph shows the significant features identi-
fied by the model against the percentage of customers whose reviews are analysed. 88% 
of the customers identified internal storage as a significant feature. Product price has 
been identified by 79% of customers as significant feature. With this evaluation customer 
requirements for a product can be analysed in a better manner, thus can optimize the 
design of the product for better product quality and for product sustainability in the 
industry.

Figure 3 shows the comparison of the processing time taken by the proposed model 
with different dataset size against that of the state of art techniques. DMRDF method 
takes less time for completion of the application compared to other gini-index and latent 
semantic analysis methods. Hence the proposed model is fast and scalable. It provides a 
high-speed processing performance with large datasets. This shows the DMRDF applica-
bility in big data analytics, whereas gini-index and LSA-based methods processing time 
is larger for large volume of dataset. From the Fig. 3 it can be seen that with 9 GB dataset 
time taken for prediction using LSA-based model, Gini-index model and DMRDF model 
is 342 s, 495 s and 156 s respectively. With 18 GB dataset time taken for prediction using 
LSA-based model, Gini-index model and DMRDF model 740 s, 910 s and 256 s respec-
tively. Gini-index and LSA-based methods time taken for 18 GB dataset is twice that of 
9 GB dataset. But for DMRDF model time taken for 18 GB dataset is 1.6 times that of 
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9 GB dataset and also it is 3 times lesser than Gini-index method. DMRDF model has 
more advantage compared to the other state of art techniques in the case of application 
execution and performance.

The reliability of the methods considered for the pre-launch prediction depends on 
precision [44], recall and prediction accuracy measurement. Table 5 shows a comparison 
of precision, recall and accuracy measures of DMRDF, Gini-index and LSA-based meth-
ods with Support Vector Machine and Logistic Regression classifiers using customer 
reviews dataset over a period of 24 months. The results shown in Table 3 are best proved 
using DMRDF with Support Vector Machine classification with prediction accuracy of 
95.4%. The DMRDF outperforms LSA-based and Gini-index methods in P@R, R@R and 
PA measures. Using proposed method, true positive (TP), false positive (FP), true nega-
tive (TN) and false negative (FN) are found out. The prediction accuracy (PA), precision 
(P@R) and recall (R@R) are computed using Eqs. (10), (11), and (12) respectively.

(10)PA =
TP + TN

TP + TN + FP + FN
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Table 3  Performance comparison of the proposed model with state of art techniques

Classifier Support vector machine

Method used P@R (precision) PA % 
(prediction 
accuracy)

DMRDF 0.941 0.92 95.4

LSA-based 0.894 0.79 87.5

Gini-index 0.66 0.567 83.2

Classifier Logistic regression

Method used P@R R@R % PA %

DMRDF 0.915 0.849 93.5

LSA-based 0.839 0.753 83

Gini-index 0.62 0.52 79.8
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Using DMRDF with SVM classifier and LR classifier, the prediction accuracy varia-
tions are less compared to LSA-based and Gini-index methods. Hence DMRDF out-
performs the other two methods for customer review feature prediction.

Furthermore Fig.  4, shows the DMRDF, LSA-based and Gini-index approaches as 
applied to the customer reviews and ratings datasets for 3, 6, 12, 18 and 24 months. 
In DMRDF many features may appear in different customer review aspects, hence 
performance evaluation will not consider duplicate customer reviews. In Gini- index, 
features are extracted based on the polarity of the reviews and for large dataset P@R 
and R@R are less. The results show that DMRDF method outperforms the other two 
methods in big data analysis. Gini-index approach does not perform well in customer 
review feature prediction.

Conclusion and future work
Technological development in this era brings new challenges in artificial intelligence 
like prediction, which is the next frontier for innovation and productivity. This work 
proposes the implementation of a scalable and reliable big data processing model 

(11)P@R =
TP

TP + FP

(12)R@R =
TP

TP + FN
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which identify significant features and eliminates redundant data using Feature Infor-
mation Gain and Distributed Memory-based Resilient Dataset Filter method with 
Logistic Regression and Support Vector Machine prediction classifiers. A compari-
son of the analysis has been conducted with state of art techniques like Gini-index 
and LSA-based approaches. The prediction accuracy, precision and recall of DMRDF 
method outperforms the other methods. Results show that the prediction accuracy 
of the proposed method increases by 10% using significant feature identification and 
elimination of redundancy from dataset compared to state of art techniques. Large 
feature dimensionality reduces the prediction accuracy of the LSA-based method 
where as number of significant features plays an important role in prediction model-
ling. Results show that proposed DMRDF model is scalable and with huge volume of 
dataset model performance is good as well as time taken for processing the applica-
tion is less compared to state of art techniques.

Resilience property of DMRDF method have long lineage, hence this can achieve 
fault-tolerance. DMRDF model is fast because of the in-memory computation 
method. Proposed design can be extended to other product feature identification big 
data processing domains. As a future work, the model may be developed to make real 
time streaming predictions through a unified API that searches customer comments, 
ratings and surveys from different reliable online websites concurrently to obtain syn-
thesis of sentiments with an information fusion approach. Since the statistical prop-
erties of customer reviews and ratings vary over time, the performance of machine 
learning algorithms can also come down. To cope with the limitations of deep learn-
ing matrix factorization integrated with DMRDF can be adapted.
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