
HaRD: a heterogeneity‑aware replica
deletion for HDFS
Hilmi Egemen Ciritoglu1* , John Murphy1 and Christina Thorpe2

Introduction
In recent years, the number of data sources is increasing exponentially (e.g., IoT devices
and social media applications), and data is incessantly produced every second. Thus, the
volume of data is growing rapidly. Moreover, processing enlarging data-sets has para-
mount importance for businesses as it helps to determine mission-critical objectives
and discover opportunities. Consequently, processing large data-sets in order to extract
meaningful information has become vital for business success and has created the
demand for large-scale distributed data-intensive systems [1–3].

Apache Hadoop [4] is the de facto framework for large-scale distributed data-inten-
sive computing that employs the MapReduce paradigm [5]. The Hadoop project is com-
posed of 4 main components: (i) Hadoop distributed file system (HDFS) [6], (ii) resource

Abstract

The Hadoop distributed file system (HDFS) is responsible for storing very large data-
sets reliably on clusters of commodity machines. The HDFS takes advantage of rep-
lication to serve data requested by clients with high throughput. Data replication
is a trade-off between better data availability and higher disk usage. Recent studies
propose different data replication management frameworks that alter the replication
factor of files dynamically in response to the popularity of the data, keeping more rep-
licas for in-demand data to enhance the overall performance of the system. When data
gets less popular, these schemes reduce the replication factor, which changes the data
distribution and leads to unbalanced data distribution. Such an unbalanced data distri-
bution causes hot spots, low data locality and excessive network usage in the cluster. In
this work, we first confirm that reducing the replication factor causes unbalanced data
distribution when using Hadoop’s default replica deletion scheme. Then, we show that
even keeping a balanced data distribution using WBRD (data-distribution-aware replica
deletion scheme) that we proposed in previous work performs sub-optimally on
heterogeneous clusters. In order to overcome this issue, we propose a heterogeneity-
aware replica deletion scheme (HaRD). HaRD considers the nodes’ processing capabili-
ties when deleting replicas; hence it stores more replicas on the more powerful nodes.
We implemented HaRD on top of HDFS and conducted a performance evaluation on a
23-node dedicated heterogeneous cluster. Our results show that HaRD reduced execu-
tion time by up to 60%, and 17% when compared to Hadoop and WBRD, respectively.

Keywords: Hadoop distributed file system (HDFS), Replication factor, Replica
management framework, Software performance

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Ciritoglu et al. J Big Data (2019) 6:94
https://doi.org/10.1186/s40537‑019‑0256‑6

*Correspondence:
hilmi.egemen.
ciritoglu@ucdconnect.ie
1 Performance Engineering
Laboratory, School
of Computer Science,
University College Dublin,
Dublin, Ireland
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-1259-7011
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0256-6&domain=pdf

Page 2 of 21Ciritoglu et al. J Big Data (2019) 6:94

management framework (YARN) [7], (iii) execution engine, and (iv) Hadoop common.
The component-based approach of Hadoop helps to use the infrastructure more effec-
tively by making use of more sophisticated components, e.g., Apache Spark [8] can be
used instead of the MapReduce engine as it allows in-memory processing of the data.
HDFS proved to be a highly scalable, robust distributed storage system in the big data
ecosystem. Therefore, companies trust in HDFS to store their petabytes of data reliably
on distributed nodes. HDFS not only serves as a reliable storage system but also provides
high throughput for thousands of clients’ concurrent queries. Data stored in HDFS can
be retrieved by simple MapReduce jobs or complex graph processing jobs. Thus, the per-
formance of HDFS is a critical matter for the whole big data ecosystem that stands on
HDFS.

The key idea behind the robustness and efficiency of HDFS is the distributed place-
ment of replicated data. Any file stored on HDFS is divided into fixed-size blocks
(chunks). Each block is stored by replicating three times (by default). Moreover, each
replica is distributed among different nodes in the cluster. This strategy advances sys-
tem performance through effective load-balancing and provides fault-tolerance [9, 10].
Hence, different replica management frameworks have been proposed in the literature
to improve the system performance by adapting the replication factor either proactively
[11], or dynamically [12–14] depending on the popularity of data. Existing replica man-
agement frameworks increase the replication factor for the in-demand data once a par-
ticular data becomes popular. On the contrary, if the data losses its popularity over time,
replica management frameworks adapt the replication factor back to the default level.

Changing the replication factor also changes the block distribution on the cluster. The
influence of increasing the replication factor has been widely studied [9, 15, 16]. How-
ever, our previous work [17] was the first to identify that the current replica deletion
algorithm of Hadoop can be the cause of performance degradation. Consequently, we
proposed Workload-aware Balanced Replica Deletion (WBRD). WBRD achieves up to
48% improvement in job completion time compared to HDFS by balancing the num-
ber of stored blocks for a particular data-set rather than the disk usage in each node
[17]. WBRD’s even block distribution strategy does not take nodes’ processing capabili-
ties into consideration. However, current Hadoop clusters are highly scaled systems and
composed of numerous racks (set of nodes) and generally, each rack contains nodes with
the same characteristics. Racks can be upgraded or replaced separately. Hence, hetero-
geneity occurs in highly scaled Hadoop clusters [18]. WBRD is limited and results in
sub-optimal performance for the case of heterogeneous Hadoop clusters.

In this paper, we propose a novel cost-effective Heterogeneity-aware Replica Dele-
tion algorithm (HaRD) to cover the case of heterogeneous clusters. The primary goal of
HaRD is to balance the ratio of block distribution to the computing capabilities for each
node. Therefore, HaRD tries to enhance the system by placing more blocks in power-
ful machines. HaRD determines the computing capability of each node by calculating
the number of containers it can run simultaneously. We implemented HaRD on top of
HDFS and conducted a comprehensive set of experiments with representative bench-
marks to evaluate the performance of HaRD against WBRD, as well as Hadoop. Experi-
mental results on a heterogeneous 23 nodes Hadoop cluster show that HaRD speeds-up
the system performance for the single query, and reduces execution time by 40% and 8%

Page 3 of 21Ciritoglu et al. J Big Data (2019) 6:94

on average when compared to HDFS and WBRD, respectively. Moreover, improvements
become more compelling when the system is highly-utilised by a large number of con-
current requests, and increase to 60% and 17% compared to HDFS and WBRD, respec-
tively. The present study makes the following contributions:

1. We show the current replica deletion algorithms (both Hadoop and WBRD) do not
consider the processing capability of nodes, and thus heterogeneous clusters become
an edge case.

2. We extend the formal definition of the replica deletion problem to heterogeneous
clusters.

3. We propose a novel cost-effective Heterogeneity-aware Replica Deletion algorithm
(HaRD). In order to consider heterogeneity in the cluster, HaRD uses a container-
based approach to calculate the computing ratio of each machine.

4. We implement the proposed approach and evaluate both the performance improve-
ment and its overhead by conducting an extensive set of experiments on a heteroge-
neous 23-node Hadoop cluster.

The remainder of this paper is organised as follows: "Background" section provides back-
ground information. The related work is reviewed in "Related work" section. "Improv-
ing performance of replica management system through heterogeneity-aware replica
deletion" section identifies the replica deletion problem and models the problem in the
context of heterogeneous clusters and details novel HaRD algorithm. "Methods" section
describes the experimental environment. "Results and discussion" section presents the
results of our evaluation. Finally, "Conclusion" section concludes this paper.

Background
HDFS [6] is one of four core modules of the Hadoop Project [4] and is responsible for
storing data in a distributed fashion. The design principle behind HDFS is to develop a
distributed mass-storage system as a main pillar for the Hadoop ecosystem [6]. There-
fore, HDFS is highly scalable and capable of storing tremendous data-sets on a large
number of commodity machines. On such a scale, node failures are more than a theo-
retical probability and can occur for various reasons, e.g., hardware failure, power losses.
Hence, HDFS’s architecture strengthens fault-tolerance by benefiting from the technique
of replication and distributed storage of replicated data.

HDFS has a master-slave model and is composed of two primary daemons: NameNode
(NN) and DataNode (DN). NameNode, the master, is responsible for storing meta-data
and operations related to meta-data. NN keeps track of DNs by checking their heart-
beat messages periodically. When a DN fails or becomes unavailable, the NN marks it as
dead and coordinates data re-replication. Moreover, the NN manages data requests and
directs them to relevant DNs. DataNode, the slave, is responsible for storing blocks and
serving blocks for data requests. The number of DNs can easily scale to thousands and
can store tens of petabytes [6].

HDFS organises the stored files in a traditional, hierarchical file structure. The main
directory of the system, Root, is at the top of the hierarchy. Therefore, any stored file on
HDFS is a part of Root’s branches. While uploading the data into a Hadoop cluster, first,

Page 4 of 21Ciritoglu et al. J Big Data (2019) 6:94

data is divided into fixed-size blocks. The fixed block size is 64 MB in Hadoop 1; how-
ever, it has been increased to 128 MB in the Hadoop 2. The blocks are replicated three
times by default and placed among the nodes in the cluster. In order to place replicas
over different nodes, HDFS leverages a data pipeline rather than using one centralised
node to transfer all of the replicas. In the pipeline, replicas are passed from one DN to
another DN as shown in Fig. 1. This decentralised strategy improves the efficiency of
the replica transmission by sharing the network load among the nodes and reduces the
chance of a possible network bottleneck.

Block placement is performed according to Hadoop’s data placement policy [19]. The
policy prefers to place the first replica into the DN that sent the request (the client), oth-
erwise it is put on a DN that is on the same rack with the client node [19]. The sec-
ond replica is placed on a node that is on a different rack from the first replica. The last
(third) replica is placed on the same rack as the second replica but a different node. The
default placement policy is rack-aware as it tries to place replicas into at least two differ-
ent racks in the case of multiple rack environment. There are two advantages of using the
rack-aware replica placement. Firstly, it enhances the fault-tolerance of the system. Thus,
submitted jobs can be completed even if a rack fails during the execution. Secondly, the
default placement algorithm benefits from having multiple racks and improves network
usage by reducing off-rack traffic. The reason for this is the network traffic is signifi-
cantly faster between nodes on the same rack than on different racks.

Data locality means processing data where that data is stored and is the fundamen-
tal idea behind data-intensive computing. In data-intensive computing, data-sets are
immense and thus, moving the data from one machine to another requires significant
network traffic. Conversely, the code that needs to be executed is much smaller than
the data itself. Therefore, moving the computation to the data is easier than the oppo-
site. The strategy, “moving computation is cheaper than moving data” [4], is employed by
HDFS to improve the efficiency of the system. When a job is submitted to the Resource
Manager, the job is first divided into smaller tasks. Then, each task is associated with a
split (i.e., a specific portion of data). Most of the time, the splits are created based on the
HDFS block size. However, this is not always the case, as it completely depends on the
job’s getSplits method. Created splits are associated with map tasks. Hadoop prefers to
schedule split-associated map tasks on the node that keeps the split. Moreover, Hadoop
can even delay the start of tasks to reach better data locality [20]. Any map tasks that

Block 1

Block 2

RACK 1

Node 1

Node 2

Node 3

Node 4

RACK 2

Node 1

Node 2

Node 3

Node 4

Block 3

Block 4

Fig. 1 Data uploading to the cluster

Page 5 of 21Ciritoglu et al. J Big Data (2019) 6:94

can not be scheduled to run in data local mode require extra data transmission, increas-
ing the network utilisation; consequently, increasing the total execution time. There are
three different task execution type for the data locality as shown in Fig. 2:

• Local access: the same node stores the data and executes the task, e.g., R1-Slave 1
needs to process Block 3.

• Same rack access: the processing node does not store the data split and requests it
from another node that is located on the same rack in order to start the task, e.g.,
when R2-Slave 4 needs to process Block 2, it requests the block from R2-Slave 3
(which is in the same rack).

• Off rack access: the processing node does not store the data split and requests from a
node that is located on another rack, e.g., when R1-Slave 2 needs to process Block 1,
it requests the block from R2-Slave 4.

In the event that running a task in local access mode is not possible after multiple
attempts, Hadoop’s task scheduler gives priority to running the task on a node that is
located on the same rack where data is stored. The reasoning behind is the same as the
benefits of using multiple racks, the network traffic between nodes on the same rack is
significantly faster compared to the nodes on different racks. Therefore, the scheduler
exploits on-rack access rather than off-rack to reduce slow inter-rack traffic. The worst
case scenario is the last option of task scheduling, allocating a node that is on a com-
pletely different rack and that requires off-rack access.

Related work
Even though large-scale Hadoop clusters can store a tremendous amount of data,
the demand for each stored data-set is not the same. Moreover, the data-set demand
changes over time. Hence, several studies have been conducted to understand the work-
load of Hadoop clusters [11, 21]. Ananthanarayanan et al. [11] underlined that 12% of
the most popular files are more in demand and received ten times more requests than

Fig. 2 Data locality types in Hadoop jobs

Page 6 of 21Ciritoglu et al. J Big Data (2019) 6:94

the bottom third of the data (based on the analysis they have accomplished from logs of
Bing production clusters). Another study [21] was conducted by analysing three differ-
ent workload traces (i.e., OpenCloud, M45, WebMining) with various cluster sizes (from
9 nodes to 400 nodes). The authors [21] draw attention to load balancing problems in the
Hadoop cluster. Furthermore, the same study showed that despite the data distribution
being well-balanced, the task distribution remains unbalanced. Consequently, an unbal-
anced cluster leads to poor data locality and performance degradation for the cluster.

Data replication is a prominent method to improve fault-tolerance and load-balanc-
ing [9, 15, 16]. However, increasing the number of copies stored in the cluster comes
with the price of extra storage. Considering the fact that not all data-sets have the same
demand, there is no one-size-fits-all solution for the replication factor. Therefore, vari-
ous approaches have been proposed in the literature for adapting the replication factor
according to the access pattern of data-sets [11–14, 22]. All of these strategies alter the
replication factor either proactively [11] or dynamically [12–14, 22] based on the ‘hot-
ness’ of the data. Wei et al. [12] propose a cost-effective dynamic replication manage-
ment scheme for the large-scale cloud storage system (CDRM). With the intention of
developing such a system, the authors built a model between data availability and repli-
cation factor. Ananthanarayanan et al. [11] present Scarlett for adapting the replication
factor by calculating a storage budget. Abad et al. [13] propose an adaptive data rep-
lication for efficient cluster scheduling (DARE). DARE aims to identify the replication
factor dynamically based on probabilistic sampling techniques. Cheng et al. [14] intro-
duce an active/standby storage model and propose an elastic replication management
system (ERMS) based on the model. ERMS places new replicas of in-demand data to
active nodes in order to increase data availability. Lin et al. [22] approach the problem
of adapting the replication factor from an energy-efficiency perspective and propose
an energy-efficient adaptive file replication system (EAFR). EAFR places ‘cold’ files into
‘cold’ servers to reach energy efficiency.

In addition to adapting the replication factor, the placement of blocks is another factor
to achieving good load-balancing. Eltabakh et al. [15] propose CoHadoop to co-locate
related files based on the information gathered from the application level. CoHadoop
leverages data pre-partitioning against expensive shuffles. Xie et al. [23] and Lea et al.
[24] propose placing blocks based on the computing ratio of each node. Liao et al. [25]
describe a new approach to the block placement problem based on block access fre-
quency. The authors investigated the history of block access sequences and used the
k-partition algorithm to separate blocks into different groups according to their access
load. Moreover, the placement in hybrid storage systems [26, 27] and smart caching
approaches for remote data accesses [28] is also proposed in the literature. There is a
considerable amount of research about the block placement because the block place-
ment is decisive for the system performance. However, the connection between replica
management systems and the block placement is missing. For instance, which replica
should be deleted when the framework decides to reduce the replication factor? One
simple approach would be to use HDFS’s deletion algorithm.

But altering the replication factor changes the block density on each node. The
framework that adapts the replication factor should also be aware of how the replicas
are distributed. Otherwise, the cluster ends up with unbalanced data distribution and

Page 7 of 21Ciritoglu et al. J Big Data (2019) 6:94

consequently unbalanced load distribution. In our previous work [17], we identified that
decreasing the replication factor leads to data unbalancing in HDFS and we proposed
Workload-aware Balanced Replica Deletion (WBRD) to balance the data-set distribu-
tion among the nodes. As a result, WBRD achieves up to 48% improvement in execution
time on average. But, WBRD does not fully exploit different nodes’ processing capability
as it is designed for homogeneous clusters. One approach to determine nodes’ process-
ing capability is to measure computing ratios for each different application on each node
[23, 24]. However, as the workload of the cluster is highly dynamic and contains multiple
ad-hoc queries, we prefer to use a more flexible and cost-effective approach. Therefore,
instead of following previous approaches, the present work employs a novel cost-effec-
tive container-based approach.

Improving performance of replica management system
through heterogeneity‑aware replica deletion
Replica management

Files stored on HDFS are replicated according to the cluster’s default RF value configuration:
dfs.replication. However, the replication factor (RF) is a file-level setting; different values can
be set for different files. Moreover, the RF can be altered anytime after the creation of a file
through the command: hadoop fs -setrep [-R] [-w] <numReplicas><path>. Keeping more
copies of files increases data availability and the chance of running tasks in data-local mode.
Hence, replication provides better load-balancing, data locality and ultimately, reduces jobs’
execution time. Since a tremendous amount of data is stored on a data-intensive cluster,
keeping a few extra copies for all of the data is clearly an extravagant solution.

Consequently, replication management frameworks were proposed to identify the
‘best’ RF for each file individually to achieve better performance while minimising the
extra storage overhead of increasing replication factor. In addition to identifying the RF,
placing these replicas is another crucial problem. Even though all of the proposed replica
management frameworks strive to enhance the performance, adapting the RF changes
the block distribution. If replica creation/deletion algorithms do not consider balancing
the data-set; they end up with a skewed (unbalanced) distribution.

Typically, even block distribution helps to utilise all nodes equally during the execu-
tion of tasks in the cluster and performs better compared to the skewed distribution in
homogeneous clusters. In the case of skewed data distribution, some nodes keep more
data than others. Consequently, these nodes can transform into a ‘hot spot’ of the cluster
as the data needs to be constantly transferred from hot spots to other nodes during jobs’
processing. Thus, data locality decreases, network utilisation burgeons and processing
takes more time due to the waiting time that occurs in data transmission.

In our previous work [17], we already showed the current deletion algorithm in
Hadoop does not perform well and consequently proposed a workload-aware balanced
replica deletion algorithm. The deletion algorithm in Hadoop only concerns itself with
balancing the overall cluster. More importantly, it does not update the state of utilisation
metrics after each deletion. Unlike HDFS default policy, WBRD aims to balance data-
sets distribution rather than the overall cluster and achieves better performance. The
purpose of the present study is to highlight the limitation of WBRD for a heterogeneous

Page 8 of 21Ciritoglu et al. J Big Data (2019) 6:94

cluster and to propose Heterogeneity-aware Replica Deletion (HaRD) to address the
shortfall of WBRD.

Motivational example

In this section, we would like to illustrate the replica deletion problem empirically and
discuss the limitation of WBRD to motivate the work. Figure 3 shows the evolution of
block distribution on the 23-nodes Hadoop cluster while the RF is altered. More particu-
larly, Fig. 3a, b reports the block distribution by using default (HDFS) placement policy
when the replication factor is increased and decreased, respectively. On the other hand,
Fig. 3c reports the block distribution during the replica deletion by using WBRD.

When the replication factor is increased as shown in Fig. 3a, the number of blocks that
are stored on each node varies. However, the range is small and thus, each node stores a
similar number of blocks. Therefore, the standard deviation (SD) is not substantial and
leads to the narrow inter-quartile range. As a result, the block distribution is well-bal-
anced. On the contrary, Fig. 3b presents the distribution when the RF is decreased. After
the first deletion, the block distribution range starts from zero which means at least
one of the nodes does not participate in data storage. Moreover, the maximum value of
the range stays dominantly the same and shows that at least one of the nodes keeps the
majority of the data. Consequently, the overall range increases and also inter-quartile
range increases and leads to imbalanced data distribution.

Figure 3c shows block distributions when the replication factor is reduced by using
WBRD. Unlike the HDFS deletion approach, WBRD tries to balance the overall data-set
during the replica deletion. Therefore, we can see the inter-quartile range is small and does
not vary. Subsequently, WBRD achieves greater performance compared to default HDFS.
Albeit, WBRD is limited as it does not consider processing capabilities. If each node has
different processing capabilities (e.g., heterogeneous clusters), an even block distribu-
tion would not be an optimal case for efficiency. In such a scenario, powerful nodes finish
their tasks before slower nodes. As a result, either the task in the scheduler queue waits
for slower nodes until slower nodes become available for processing while powerful nodes
are idle or data needs to be transferred from slower nodes to powerful nodes in order to

 0

 20

 40

 60

 80

3 3->4 4->5 5->6 6->7

B
lo

ck
 C

ou
nt

Replication Factor

(a) RF is increased step by
step on HDFS

 0

 20

 40

 60

 80

7 7->6 6->5 5->4 4->3

B
lo

ck
 C

ou
nt

Replication Factor

(b) RF is decreased step by
step on HDFS

 0

 20

 40

 60

 80

7 7->6 6->5 5->4 4->3

B
lo

ck
 C

ou
nt

Replication Factor

(c) RF is decreased step by
step on WBRD

Fig. 3 The block distribution when the replication factor (RF) is altered

Page 9 of 21Ciritoglu et al. J Big Data (2019) 6:94

continue processing. In both cases, jobs are delayed (considering the fact that the job is only
completed when all sub-tasks are processed fully).

Hence, WBRD’s even distribution performs sub-optimally, and heterogeneous clusters
become an edge case. With the intention of improving the performance even further, our
hypothesis is to keep more replicas on the nodes that have more processing capabilities;
therefore, the workload distribution would be more balanced. We modelled the replica
deletion problem in the context of heterogeneous clusters and proposed heterogeneity-
aware replica deletion algorithm to achieve the modelled objectives.

Formal definition

We assume a cluster C is composed of a set of racks Racks. Each rack Rackn ∈ Racks
contains a set of machines m ∈ M such that Rack(m) = Rackn . A set of files F is stored
in the cluster C over the machines m ∈ M . Every file Fi ∈ F is divided into fixed-
sized blocks Bi (128 MB by default) as stated in Eq. (1) and stored in a hierarchical file
organisation.

Root path, Root, is the ‘highest’ level of the hierarchy and every file Fi ∈ F is placed into
a certain path P which is a branch of Root. Each block bij ∈ Bi is replicated RFi ∈ N

∗
times (i.e., the replication factor of file Fi). We denote buij the replica number u of the
block bij where 0 < u =< RFi . Each replica buij is stored a particular machine M(buij).

We want to reduce the replication factor from RFi to RF ′
i such that RFi > RF ′

i . We
introduce a binary variable xuij which takes the value 1 if the replica u of the block bij
exists after reducing the replication factor, or 0 otherwise.

To strengthen fault-tolerance and promote data availability, replicas are distributed over
different racks according to a rack-awareness condition in the default block placement
policy as expressed in Eq. (3). The proposed algorithm continues the rack-awareness
block placement after a successful deletion for ∀ Fi ∈ P, ∀ j ∈ {1, ..., |Bi|}:

We defined a variable for the partial block count PBCm ∈ N for each machine m ∈ M .
For a given path, PBCm is computed as a sum of all replicas for ∀ Fi ∈ P that are stored
on the machine m as expressed in Eq. (4):

Each m has finite resources: (e.g., CPU and RAM) denoted by vCore(m), RAM(m)
respectively. The network connection between machines mi,mj ∈ M in the same rack

(1)|Bi| =

⌈

File Size

Block Size

⌉

(2)
RFi
∑

u=1

xuij = RF ′
i , ∀ Fi ∈ P, ∀ j ∈ {1, ..., |Bi|}

(3)
∣

∣

∣

{

Rack(M(buij)) | u ∈ {1, ...,RF ′
i } and xuij = 1

}∣

∣

∣
≥ 2

(4)
PBCm =

∑

i∈{1,...,|Fi|}

∑

j∈{1,...,|Bi|}

∑

u ∈ {1, ...,RFi}
∧M(buij) = m

xuij

Page 10 of 21Ciritoglu et al. J Big Data (2019) 6:94

(i.e., Rack(mi) = Rack(mj)) is faster compare to machines are in the different rack
(i.e., Rack(mi) = Rack(mj)). Any submitted job (a.k.a., task) runs on a container allo-
cated to particular node m with resource requirements vCoreCont and RAMCont . Note
that vCoreCont and RAMCont both are global properties of the scheduler [29]. A machine
m ∈ M can run a number of containers Km concurrently. Km is determined by com-
position of available machines’ resources (i.e., vCore(m) and RAM(m)) and containers’
resource requirements (i.e., vCoreCont and RAMCont) as expressed in Eq. (5):

While deleting replicas, our main objective is to minimise the maximum ratio of PBCm
to Km for a given path P ⊆ P as shown in Eq. (6). Therefore, in every deletion iteration
our algorithm will select a replica that has the biggest division value. Hence, we expect to
see the number of replica stored on a node become dependent on Km after our replica-
tion deletion algorithm.

Heterogeneity‑aware replica deletion (HaRD)

To address the problem detailed in "Motivational example" section, we propose Het-
erogeneity-aware Replica Deletion (HaRD) as shown in Algorithm 1. The primary
objective of HaRD is to attain a uniform distribution of the ratio of the block distribu-
tion to computing resource for a given path while satisfying the stated constraints.
HaRD starts with the determination of computing capabilities Km of each machine.
One existing approach to define the computing ratio is to measure the performance
of each job in each node [23, 24]. However, measuring the performance of each job on
different types of nodes is not efficient as multiple users concurrently query the sys-
tem with various ad-hoc queries in real Hadoop clusters. Therefore, we put forward
a new approach to determine the computing capability (ratio) of each node through
how many containers can run simultaneously on each node manager. After the estab-
lishment of YARN (announced in Hadoop 2.0), submitted jobs in a Hadoop cluster
run on the container that is allocated by the node manager. The main idea of YARN
is to bring flexibility to the map/reduce task scheduling which was statically defined
in Hadoop 1.0. The resource manager of YARN organises the allocation of containers
by coordinating with node managers and schedules an application based on a node’s
resource usage. Consequently, computing ratios can be used as expressed in Eq. (4).
Our YARN-based approach provides flexibility and extensibility since new processing
features (i.e., the use of GPUs in the Hadoop cluster is becoming mainstream [30])
are implemented on the top of YARN. We would like to underline that HaRD is based
on YARN and therefore, creates an minimal overhead. We are aware that our present
work depends on a correct YARN configuration. Such an assumption is not a strict
constraint as YARN is generally configured during the deployment process [29, 31].

(5)Km = min

(⌊

RAM(m)

RAMCont

⌋

,

⌊

vCore(m)

vCoreCont

⌋)

(6)minimise max
m∈M

(

PBCm

Km

)

Page 11 of 21Ciritoglu et al. J Big Data (2019) 6:94

After Km is determined, HaRD can be used to decrease the replication factor. When
a user or a replica management framework alters RFi to RF ′

i such that RFi > RF ′
i for a

particular path, then HaRD will be executed. HaRD starts with the calculation of PBCm
for each node in the cluster. For this, HaRD retrieves the replica list by iterating every
block of files stored on a P. In the case that an environment is multi-rack, HaRD uses
removeNonRackAware method to remove the set of replicas that violate rack-awareness
constraints. Therefore, HaRD ensures the state after the deletion satisfies rack-aware-
ness constraints. HaRD scans through every replica in the list R and finds the replica
that is stored on the most-utilised node by comparing the ratio of PBCm to Km . Finally,
it removes replicas from the list by using the method deleteBlockAtMachine. Deletion
iterations run for all blocks of each file. If the data distribution is uniform at the begin-
ning, HaRD starts deletions from the least powerful nodes (i.e., min(Km)). After a few
iterations, HaRD balances the nodes’ ratio of PBCm to Km . Then, the rest of the deletion
iterations continue by maintaining the ratio until the last data block is processed.

Page 12 of 21Ciritoglu et al. J Big Data (2019) 6:94

We would like to note that the value of Km would be the same for every node if the
cluster is homogeneous. In such a case, HaRD works in the same way as WBRD. For
homogeneous clusters, we already found that WBRD achieves up to 48% improvement
in execution time when compared to HDFS [17]. Therefore, our experiments in this
paper do not consider the case of homogeneous clusters.

Implementation

Whenever the replication factor is altered for a path, the deletion request is made to
the NN by calling the setReplication method in FSNamesystem.java with a path and a
number of replicas. If the NN is not in safe mode, the requested operation is started
by invoking setReplication method in FSDirAttrOp.java. The method returns true if
the operation completed successfully or return false if any problem occurs during the
operation. If RFi is less than RF ′

i (i.e., the replication factor is increased) in setReplication
method, the order for allocating new replica is placed into the priority queue of under-
replicated blocks. On the contrary, if RFi is bigger than RF ′

i (i.e., the replication factor
is decreased), then processOverReplicatedBlock is executed for the replica deletion. In
order to select the next replica for the deletion, the method collaborates with chooseRep-
licasToDelete method in the class of block placement strategy.

Hadoop supports the use of customised block placement policies by including a
pluggable interface for the block placement [19]. For this reason, Hadoop contains
fundamental methods for the placement which is in the abstract pluggable policy. We
implemented HaRD by modifying the source code of HDFS on the top of Hadoop (ver-
sion 2.7.3). To implement the proposed deletion strategy, we first created a new block
placement policy for HaRD by inheriting the existing block placement policy. Then, we
overrode the method of chooseReplicasToDelete in HaRD’s placement strategy. Moreo-
ver, we also modified the block manager class to retrieve Km and pass it to HaRD’s place-
ment policy.

We prefer to use the pluggable block placement policy; thus the placement policy can
be changed by altering dfs.block.replicator.classname the configuration in hdfs-site.xml
without changing the source code. We are aware that HaRD’s implementation brings
extra operations and can lead to overhead on the system. However, the all of the newly
implemented code is only executed in the case of replica deletion occurs. Otherwise it
will not have impact on the system performance. We evaluated the overhead using dif-
ferent data-set sizes as well as different number of nodes. The scalability of HaRD is dis-
cussed in "Overhead analysis" section.

Methods
Our experiments were conducted on the Performance Engineering Laboratory’s research
cluster (in University College Dublin). The cluster consists of 23 dedicated machines (1
master and 22 slaves). In this cluster, 20 slaves are identical. Therefore, we used cgroups,
Linux kernel feature, to limit computing resources to create heterogeneity in the cluster.
We limited 10 nodes’ CPU to 2 virtual cores and RAM to 4 GB. Overall, the cluster is
composed of 3 different types of nodes. We detailed the resource specification in Table 1
for each type of machines. All nodes are equipped with 1 TB hard-drive and connected
with a Gigabit Ethernet switch.

Page 13 of 21Ciritoglu et al. J Big Data (2019) 6:94

The operating system selected was Lubuntu, which runs on kernel Linux
4.4.0-31-generic, and the java version 1.8.0_131 was installed. All tests were run on
Hadoop version 2.7.3 (native, WBRD and HaRD). Hive version 1.2.2 was selected for
concurrency tests on TPC-H. Ganglia [32] was used for monitoring the cluster.

Testing methodology

In this section, we detail the testing methodology for the experiments. Each test starts
with a new Hadoop cluster deployment. After the successful deployment, the bench-
mark’s data-set is uploaded to the cluster. It is important to note that both TestDFSIO
and Terasort benchmark suites can create their data-set with any given size. So, we
populated them only one time and we repeated tests by using the same data-set during
experiments of both TestDFSIO and Terasort. Hence, we ensured the input is the same
for all algorithms under-test. After the data loading phase, we increased the replication
factor from 3 to 10; consecutively, decreased to three unless otherwise stated. We would
like to note that even though we used 10 as a higher replication factor, any value above 3
creates the similar distribution. Every benchmark is run ten times for statistical signifi-
cance. We normalised results of execution time by using the average of these runs. The
plotted graphs presented indicate the range of results.

Benchmarks

Hadoop tasks can have different bottlenecks: excessive usage of disk I/O, network uti-
lisation, or CPU utilisation. To carry out a reliable test, we selected three well-known
benchmarks [33, 34]. Each benchmark has different characteristic and focuses on stress-
ing different part of the system and all comes out-of-the-box with Hadoop release: (i)
TestDFSIO, (ii) Grep and (iii) Terasort. Hadoop clusters are large-scale distributed and
multi-tenant systems. Therefore, numerous queries can be executed by many users at the
same time. The usage of query-like frameworks is common in the production as high-
lighted by previous studies [35, 36]. Hence, in addition to three popular benchmarks,
we include the concurrency test on Hive [37] to represent production domains and test
concurrency.

TestDFSIO

TestDFSIO is a well-known benchmark to measure the distributed I/O throughput of
HDFS. TestDFSIO stresses the disk performance and reports both read and write perfor-
mance of the system. The benchmark is a highly representative test for tasks that suffer

Table 1 Resource specifications for the cluster

Computer set CPU type Allocated VCore Allocated ram (GB) Number
of machines

Master i7-6700 8 32 1

Slaves-1 i5-6500 4 8 10

Slaves-2 i5-6500 2 4 10

SlavesXL-1 Xeon E5-2430 12 48 2

Total 92 248 23

Page 14 of 21Ciritoglu et al. J Big Data (2019) 6:94

from I/O bottlenecks. During the experiment, we reported only the reading part of the
test, since we assessed the effect of data distribution on the reading performance. To be
fair in each test case, first, we populated a 100 GB data-set by using the benchmark’s
write functionality and conducted reading throughput tests by using the same data-set.

Grep

Grep is another standard Hadoop benchmark and evaluates the system performance by
searching and counting the number of times a given keyword appears in the text. The
benchmark has a read-intensive characteristic and also stresses CPU by sorting data.
Grep runs two jobs sequentially, the first job calculates the number of times a matching
string appears and passes it to the second job. The second job sorts the result of the first
job according to the matching string’s frequency. We run the Grep benchmark on the
NOAA data-set from the National Centres for Environmental Information. The data-set
was composed of 8 years collected data (between 2008/05–2016/04, 47.3 GB). In our
test, we were looking for data that is generated in January 2011 as a condition; thus, the
keyword was chosen as ‘2010,1,’.

Terasort

Terasort is a well-known standard benchmark used to stress the whole system. The
benchmark assesses the performance of Hadoop clusters by sorting data. The task is
not only read-intensive but also network-intensive as it requires expensive data shuffles
while passing data from map tasks to reduce tasks. We created a 50 GB data-set by using
TeraGen and used the same data-set to test each algorithm.

Concurrency test on TPC‑H

TPC-H is a decision support benchmark and in use for assessing the performance of
relational databases [38]. The purpose of including tests with TPC-H is SQL-on-Hadoop
systems (e.g., Hive [37], Impala [39], VectorH [40]) has brought the comfort and flex-
ibility of SQL to Hadoop for querying ‘big’ data; thus, SQL-on-Hadoop has become
mainstream in the industry for big data analytics [41]. To represent the SQL-on-Hadoop
domain, we conducted the concurrency test on a 30 GB TPC-H data set. The concur-
rency test has been performed on Hive version 1.2.2 with different numbers of users:
{25,50,75,100,125} and a 1-second interval between each query run by using Q6.

Results and discussion
We evaluated the performance of HaRD on the 23-node heterogeneous Hadoop cluster
through conducting the following experiments: (i) analysed the data distribution after
the replica deletion with three different data-set sizes: {64 GB, 128 GB, 256 GB}, (ii) exe-
cuted three different well-known benchmarks with various replication factors, (iii) per-
formed concurrency test on TPC-H with numerous concurrent users: {25, 50, 75, 100,
125}, and (iv) conducted in depth-analysis to understand improvements in the aspects of
data locality and network utilisation.

Page 15 of 21Ciritoglu et al. J Big Data (2019) 6:94

Block distribution

Performance of distributed systems is highly dependent on how the data is distributed
among the nodes. Additionally, it is even more important if the distributed system is
running many data-intensive jobs. Therefore, our first comparison is the block distri-
bution. Figure 4 reports the comparison of block distribution after the RF is reduced
from 10 to 3 by using the different deletion algorithms. Each cross-mark in the figures
indicates the number of blocks that is stored on a particular node. Since the cluster is
composed of three different types of nodes (namely, Slaves-1, Slaves-2 and SlavesXL-1),
we used marks with three different colours to demonstrate the processing capability
of nodes. Colour yellow, orange and red identify the marked node belongs to Slaves-1,
Slaves-2 and SlavesXL-1, respectively. It can be seen from the figure that Hadoop’s dele-
tion algorithm has high SD for the spread of numbers blocks per node (91.3 for 64 GB,
182.1 for 128 GB and 368.6 for 256 GB) compared to mean value (74.2 for 64 GB, 141.8
for 128 GB and 283.6 for 256 GB) and causes skewed data distribution in every case, as it
tries to balance overall cluster’s disk utilisation. Unlike Hadoop, WBRD tries to balance
PBCm for every node in the cluster. Thus, WBRD achieves the evenly balanced block dis-
tribution with the low SD (2.3 for 64 GB, 3.4 for 128 GB and 4.9 for 256 GB) compared
to mean value (70.9 for 64 GB, 141.8 for 128 GB and 283.6 for 256 GB); however, the
even block distribution is not fair in terms of the workload distribution since heteroge-
neity exists. Consequently, WBRD causes the unbalanced workload in the heterogene-
ous cluster. On the other hand, HaRD aims to balance the ratio of PBCm to Km for every
node in the cluster. Thus, HaRD stores more blocks on more powerful computers; it cre-
ates three different groups in the block distribution as the cluster is composed of three
different machine types.

Average execution time

We conducted our experiment by using three fundamental well-known benchmarks
and compared the performance of each algorithm according to their execution time
on average. Figure 5 presents the result of three different benchmarks (namely,
TestDFSIO, Terasort and Grep) with the RF of 3 for three different deletion algo-
rithms. During experiments, we observed that WBRD achieves notable improvements

 0

 50

 100

 150

 200

 250

Hadoop
WBRD

HaRD

Bl
oc

k
C

ou
nt

(a) 64 GB

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Hadoop
WBRD

HaRD

Bl
oc

k
C

ou
nt

(b) 128 GB

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Hadoop
WBRD

HaRD

Bl
oc

k
C

ou
nt

(c) 256 GB
Fig. 4 Block distribution after the RF is decreased back to 3

Page 16 of 21Ciritoglu et al. J Big Data (2019) 6:94

against Hadoop. However, the system performance enhances even further with HaRD
due to the balanced workload distribution as the computing capability of each node
is taken into account during the replica deletion. As a result, HaRD reduces average
execution time 7% for TestDFSIO, 6.1% for Terasort and 9.4% for Grep compared to
WBRD. When we compared the performance of HaRD against HDFS, the improve-
ments become remarkable: 60.3% for Grep, 22.8% for TestDFSIO and 25% for Tera-
sort. Even though each test benchmark has a different bottleneck; HaRD consistently
performs best in all tests.

While we were conducting our experiments, we also focused on the performance
evaluation under lower the RF value due to the strong dependency between RF and job
execution time. The impact of having more replicas has a significant effect on the per-
formance when the system scales [9]. So, tests with the RF:1 acts as tests on bigger clus-
ters. Figure 6 shows the result of the same test benchmarks but this time with the RF
of 1. Similar to the results of performance tests with the RF of 3, HaRD outperforms
both WBRD and Hadoop with a single replica. HaRD reaches better performance by
reducing job execution time: 18.1% for TestDFSIO, 9.2% for Terasort and 30.6% for Grep
compared to WBRD. Moreover, the performance gain of HaRD over default Hadoop, in
terms of execution time, is 55.7% for TestDFSIO, 41.4% for Terasort and 77.6% for Grep.

HADOOP WBRD HaRD

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e(

s)

(a) TestDFSIO
 0

 50

 100

 150

 200

 250

 300

 350

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e(

s)
(b) Terasort

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e(

s)

(c) Grep
Fig. 5 Test benchmarks with RF: 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e(

s)

(a) TestDFSIO
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e(

s)

(b) Terasort
 0

 50

 100

 150

 200

 250

 300

 350

 400

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e(

s)

(c) Grep

Fig. 6 Test benchmarks with RF: 1

Page 17 of 21Ciritoglu et al. J Big Data (2019) 6:94

Testing with concurrent users

Hadoop clusters are designed to serve as multi-tenant systems, and the cluster is queried
by numerous users at the same time. Therefore, we include the concurrent user test by
using TPC-H Q6. Figure 7 reports the average execution time for the concurrent users
test and demonstrates that Hadoop performs worst in every case and also shows HaRD
performs better than WBRD. Improvements of HaRD compared to WBRD in job’s exe-
cution time starts from 14% for 25 concurrent users and increases up to 17% as we stress
the system with more concurrent users. Furthermore, the enhancement in execution
time is around 60% for the all different number of users compared to default HDFS. We
want to note that there is no difference observed between HaRD and WBRD while test-
ing with single TPC-H queries since single queries do not fully stress the system; but,
both HaRD and WBRD still perform significantly better than Hadoop. This experiment
underlines that the performance improvements become more significant when the sys-
tem is fully utilised under the heavy load of concurrent users.

In‑depth analysis

We performed an in-depth analysis of the 125 users concurrency test to understand and
observe improvements in data locality and network utilisation. The system is monitored
by using Ganglia for the network metrics and Hadoop’s HistoryServer for the data local-

ity during the experiment. We measured the data locality by
|DataLocalTasks| ∗ 100

|AllTasks|
 . For

125 concurrent users, we found that approximately 85% of all jobs are data-local for
HaRD; however, the data locality drops to 81% for WBRD and 73% for Hadoop Jobs. So,
WBRD transfers 376 more splits during the test compared to HaRD. Running more
data-local jobs reduces the number of blocks that need to be transferred during execu-
tion and in turn leads to less network usage. We inspected the network bandwidth usage
and plotted network graphs in Fig. 8. Fig. 8a, b shows the aggregated network utilisation
both bytes in and bytes out, respectively. Average network bandwidth usage is 402 Mbps
for HaRD, 432 Mbps for WBRD and 378 Mbps for Hadoop. We can see the proposed
algorithm, HaRD, reduces the average network utilisation approximately 30 Mbps (6.9%)
compared to WBRD. When we compared three algorithms for the overall network

 0

 500

 1000

 1500

 2000

 2500

 25 50 75 100 125

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e(

s)

Number of Concurrent Users

HaRD
WBRD

Hadoop

Fig. 7 Concurrency test with TPC-H Q6

Page 18 of 21Ciritoglu et al. J Big Data (2019) 6:94

usage, Hadoop performs worst due to the high execution time. Interestingly, Hadoop has
the lowest average network utilisation even though it has the lowest value for the per-
centage of data-local jobs.

To understand default Hadoop’s network behaviour, we carried out further investiga-
tion by observing the network usage on each node individually. We found that the data
is in a continuous flow from ‘hot spots’ to other nodes due to the fact that the majority
of blocks were located on ‘hot spots’. Thus, we can see higher values for data out on ‘hot
spots’ and lower data out values on other nodes. Conversely, this trend is opposite for
data in; data in is low on ‘hot spots’ and high on the rest of nodes. Therefore, the network
utilisation is not well-balanced on the cluster. Moreover, Hadoop’s network bandwidth
usage is not stable due to the high SD of the block distribution; but more importantly,
reaches higher peaks compared to WBRD and HaRD. On the contrary, we identified that
the network bandwidth usage in both WBRD and HaRD is balanced on each node. The
results show that the default Hadoop deletion algorithm causes an imbalance in the net-
work bandwidth usage in the cluster.

Overhead analysis

Overhead is another critical aspect of the feasibility of our approach. Therefore, we
conducted an experiment to compare the performance gain against the implementa-
tion overhead. It is important to note that HaRD does not create an overhead for any
other scenarios except the one that replica deletion occurs (i.e., setReplication is trig-
gered with RF ′

i is less than RFi). Thus, we only measured the overhead during the replica
deletion through. In order to measure the overhead, we injected nanosecond precision
time counters at the beginning and the end of our implementation. Then the implemen-
tation overhead is calculated by getting difference between time counters. The imple-
mentation of HaRD uses WBRD’s code as a base. WBRD already reached insignificant
overhead (less than 1.75% of the total time spent in reducing replication). During the
development of HaRD, we improved the implementation of WBRD; consequently the
efficiency of WBRD increased. Decreasing the replication factor from 10 to 3 consumes
302 s for a 50 GB data set. Addition to Hadoop’s 302 second overhead, HaRD introduces
a 10.8 millisecond overhead. Figure 9a, b present the HaRD’s computational overhead

 0

 1x108

 2x108

 3x108

 4x108

 5x108

 6x108

00
:0

0:
00

00
:1

0:
00

00
:2

0:
00

00
:3

0:
00

00
:4

0:
00

00
:5

0:
00

01
:0

0:
00

01
:1

0:
00

01
:2

0:
00

N
et

w
or

k
B

an
dw

id
th

 U
sa

ge
 (

M
bp

s)

Time

Hadoop
WBRD
HaRD

(a) Bytes In

 0

 1x108

 2x108

 3x108

 4x108

 5x108

 6x108

00
:0

0:
00

00
:1

0:
00

00
:2

0:
00

00
:3

0:
00

00
:4

0:
00

00
:5

0:
00

01
:0

0:
00

01
:1

0:
00

01
:2

0:
00

N
et

w
or

k
B

an
dw

id
th

 U
sa

ge
 (

M
bp

s)

Time

Hadoop
WBRD
HaRD

(b) Bytes Out

Fig. 8 Network bandwidth usage during the test with 125 concurrent users

Page 19 of 21Ciritoglu et al. J Big Data (2019) 6:94

for various data-set sizes and number of nodes respectively. In both experiment, we see
HaRD’s implementation overheads are significantly less compared to the achieved gain.
Moreover, figures show a linear increase in time for the overhead. Thus, it proves that
HaRD is highly scalable.

Conclusion
Current replica management systems adapt the replication factor for ‘hot’ data in order
to increase the data locality and achieve better performance, while keeping fewer copies
for less frequently accessed data. However, altering the replication factor changes the
data distribution. Our previous work identified that replica deletion in Hadoop can be
the cause of imbalance in the data distribution and proposed a deletion algorithm for
balancing data overall (WBRD). However, WBRD does not consider nodes’ comput-
ing capabilities and consequently, leads to sub-optimal performance in heterogeneous
clusters. In this paper, we extend the formal definition of the replica deletion problem
to heterogeneous clusters. Therefore, we propose a novel cost-effective Heterogeneity-
aware Replica Deletion(HaRD) algorithm to use system resources more efficiently. We
implemented HaRD on top of HDFS and carried out a comprehensive experimental
study to investigate HaRD’s improvements. Experiments show that HaRD improves the
system performance by reducing the average execution time by 40% and 8% when com-
pared to HDFS and WBRD. With more concurrent users, the system is fully utilised and
the average gains increases up to 60% and 17% compared to HDFS and WBRD, respec-
tively. During tests we observed HaRD’s implementation overhead is significantly less
compared to the achieved gain and only 10.8 ms. Moreover, experimental evaluations
showed that HaRD’s overhead scales linearly. As future work, we will develop an adap-
tive replication management framework using the proposed deletion algorithm.

Abbreviations
HDFS: Hadoop distributed file system; WBRD: workload-aware balanced replica deletion; HaRD: a heterogeneity-aware
replica deletion for HDFS; YARN: Yet another resource negotiator—resource management framework; NN: NameNode;
DN: DataNode; RF: replication factor; m: machine; PBCm: partial block count on a machine; Km: a number of contain-
ers can be executed simultaneously on a machine; Cont: container; F: file; B: block; TPC: The Transaction Processing
Performance Council; NOAA: National Centres for Environmental Information.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 50 100 200 400

C
om

pu
ta

tio
na

l O
ve

rh
ea

d
(s

)

Data-set Size (GB)

(a) Overhead test on a 100 GB with differ-
ent number of nodes

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 10 14 18 22

C
om

pu
ta

tio
na

l O
ve

rh
ea

d
(s

)

Number of Nodes

(b) Overhead test on a 22 Nodes with var-
ious data-set sizes

Fig. 9 Overhead test

Page 20 of 21Ciritoglu et al. J Big Data (2019) 6:94

Acknowledgements
This work was supported, in part, by Science Foundation Ireland Grant 13/RC/2094 and co-funded under the European
Regional Development Fund through the Southern & Eastern Regional Operational Programme to Lero - the Irish Soft-
ware Research Centre (www.lero.ie).

Authors’ contributions
HEC conceived the research idea. Then, HEC implemented the present work, conducted extensive sets of experiments
and wrote the initial draft paper. Both JM and CT guided the research idea and reviewed the manuscript. All authors read
and approved the final manuscript.

Funding
This study was supported by Science Foundation Ireland (Grant No. 13/RC/2094).

Availability of data and materials
TPC-H Benchmark: http://www.tpc.org/infor matio n/bench marks .asp. NOAA: https ://www.ncdc.noaa.gov/cdo-web/datas
ets. TestDFSIO and Terasort: https ://hadoo p.apach e.org/.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Performance Engineering Laboratory, School of Computer Science, University College Dublin, Dublin, Ireland. 2 Techno-
logical University Dublin, Dublin, Ireland.

Received: 18 July 2019 Accepted: 3 October 2019

References
 1. Sakr S, Liu A, Batista DM, Alomari M. A survey of large scale data management approaches in cloud environments.

IEEE Commun Surv Tutor. 2011;13(3):311–36.
 2. Sohangir S, Wang D, Pomeranets A, Khoshgoftaar TM. Big data: deep learning for financial sentiment analysis. J Big

Data. 2018;5(1):3.
 3. Tsai CW, Lai CF, Chao HC, Vasilakos AV. Big data analytics: a survey. J Big data. 2015;2(1):21.
 4. Apache Hadoop. http://hadoo p.apach e.org (2018). Accessed 27 June 2019.
 5. Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.
 6. Shvachko K, Kuang H, Radia S, Chansler R. The hadoop distributed file system. In: 2010 IEEE 26th symposium on

mass storage systems and technologies (MSST). New York: IEEE; 2010. p. 1–10.
 7. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, Graves T, Lowe J, Shah H, Seth S, et al. Apache

hadoop yarn: yet another resource negotiator. In: Proceedings of the 4th annual symposium on cloud computing.
New York: ACM; 2013. p. 5.

 8. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ, et al. Apache
spark: a unified engine for big data processing. Commun ACM. 2016;59(11):56–65.

 9. Ciritoglu HE, Batista de Almeida L, Cunha de Almeida E, Buda TS, Murphy J, Thorpe C. Investigation of replication
factor for performance enhancement in the hadoop distributed file system. In: Companion of the 2018 ACM/SPEC
international conference on performance engineering. New York: ACM; 2018. p. 135–40.

 10. Mazumdar S, Seybold D, Kritikos K, Verginadis Y. A survey on data storage and placement methodologies for cloud-
big data ecosystem. J Big Data. 2019;6(1):15.

 11. Ananthanarayanan G, Agarwal S, Kandula S, Greenberg A, Stoica I, Harlan D, Harris E. Scarlett: coping with skewed
content popularity in mapreduce clusters. In: Proceedings of the sixth conference on computer systems. New York:
ACM; 2011. p. 287–300.

 12. Wei Q, Veeravalli B, Gong B, Zeng L, Feng D. Cdrm: a cost-effective dynamic replication management scheme for
cloud storage cluster. In: 2010 IEEE international conference on cluster computing (CLUSTER). New York: IEEE; 2010.
p. 188–96.

 13. Abad CL, Lu Y, Campbell RH. Dare: adaptive data replication for efficient cluster scheduling. In: 2011 IEEE interna-
tional conference on cluster computing (CLUSTER). New York: IEEE; 2011. p. 159–68.

 14. Cheng Z, Luan Z, Meng Y, Xu Y, Qian D, Roy A, Zhang N, Guan G. Erms: an elastic replication management system
for hdfs. In: 2012 IEEE international conference on cluster computing workshops (CLUSTER WORKSHOPS). New York:
IEEE; 2012. p. 32–40.

 15. Eltabakh MY, Tian Y, Özcan F, Gemulla R, Krettek A, McPherson J. Cohadoop: flexible data placement and its exploita-
tion in hadoop. VLDB Endow. 2011;4(9):575–85.

 16. Milani BA, Navimipour NJ. A systematic literature review of the data replication techniques in the cloud environ-
ments. Big Data Res. 2017;10:1–7.

 17. Ciritoglu HE, Saber T, Buda TS, Murphy J, Thorpe C. Towards a better replica management for hadoop distributed file
system. In: 2018 IEEE international congress on Big Data (BigData Congress). New York: IEEE; 2018. p. 104–11.

 18. Zaharia M, Konwinski A, Joseph AD, Katz RH, Stoica I. Improving MapReduce performance in heterogeneous envi-
ronments. In: Osdi, 2008; 8:7.

 19. Pluggable interface for block placement of hadoop. https ://issue s.apach e.org/jira/brows e/HDFS-385 (2014).
Accessed 27 June 2019.

 20. Zaharia M, Borthakur D, Sen Sarma J, Elmeleegy K, Shenker S, Stoica I. Delay scheduling: a simple technique for
achieving locality and fairness in cluster scheduling. In: EuroSys. New York: ACM; 2010. p. 265–78.

http://www.lero.ie
http://www.tpc.org/information/benchmarks.asp
https://www.ncdc.noaa.gov/cdo-web/datasets
https://www.ncdc.noaa.gov/cdo-web/datasets
https://hadoop.apache.org/
http://hadoop.apache.org
https://issues.apache.org/jira/browse/HDFS-385

Page 21 of 21Ciritoglu et al. J Big Data (2019) 6:94

 21. Ren K, Kwon Y, Balazinska M, Howe B. Hadoop’s adolescence: an analysis of hadoop usage in scientific workloads.
Proc VLDB Endow. 2013;6(10):853–64.

 22. Lin Y, Shen H. Eafr: an energy-efficient adaptive file replication system in data-intensive clusters. IEEE Trans Parallel
Distrib Syst. 2017;28(4):1017–30.

 23. Xie J, Yin S, Ruan X, Ding Z, Tian Y, Majors J, Manzanares A, Qin X. Improving mapreduce performance through data
placement in heterogeneous hadoop clusters. In: 2010 IEEE international symposium on parallel & distributed
processing, workshops and Phd forum (IPDPSW). New York: IEEE; 2010. p. 1–9.

 24. Lee CW, Hsieh KY, Hsieh SY, Hsiao HC. A dynamic data placement strategy for hadoop in heterogeneous environ-
ments. Big Data Res. 2014;1:14–22.

 25. Liao J, Cai Z, Trahay F, Peng X. Block placement in distributed file systems based on block access frequency. IEEE
Access. 2018;6:38411–20.

 26. Islam NS, Lu X, Wasi-ur Rahman M, Shankar D, Panda DK. Triple-h: a hybrid approach to accelerate HDFS on HPC
clusters with heterogeneous storage architecture. In: 2015 15th IEEE/ACM international symposium on cluster,
cloud and grid computing. New York: IEEE; 2015. p. 101–10.

 27. Krish K, Anwar A, Butt AR. hats: a heterogeneity-aware tiered storage for hadoop. In: 2014 14th IEEE/ACM interna-
tional symposium on cluster, cloud and grid computing. New York: IEEE; 2014. p. 502–11.

 28. Jalaparti V, Douglas C, Ghosh M, Agrawal A, Floratou A, Kandula S, Menache I, Naor JS, Rao S. Netco: Cache and i/o
management for analytics over disaggregated stores. In: Proceedings of the ACM symposium on cloud computing.
New York: ACM; 2018. p. 186–98.

 29. Yarn container configuration. https ://horto nwork s.com/blog/how-to-plan-and-confi gure-yarn-in-hdp-2-0/ (2013).
Accessed 27 June 2019.

 30. Using GPU On YARN. https ://hadoo p.apach e.org/docs/r3.1.0/hadoo p-yarn/hadoo p-yarn-site/Using Gpus.html
(2018). Accessed 27 June 2019.

 31. Yarn Tunning. https ://www.cloud era.com/docum entat ion/enter prise /5-3-x/topic s/cdh_ig_yarn_tunin g.html (2018).
Accessed 27 June 2019.

 32. Massie ML, Chun BN, Culler DE. The ganglia distributed monitoring system: design, implementation, and experi-
ence. Parallel Comput. 2004;30(7):817–40.

 33. Huang S, Huang J, Dai J, Xie T, Huang B. The hibench benchmark suite: characterization of the mapreduce-based
data analysis. In: 2010 IEEE 26th international conference on data engineering workshops (ICDEW 2010). New York:
IEEE; 2010. p. 41–51.

 34. Ahmad F, Lee S, Thottethodi M, Vijaykumar T. Puma: Purdue MapReduce benchmarks suite 2012.
 35. Chen Y, Alspaugh S, Katz R. Interactive analytical processing in big data systems: a cross-industry study of mapre-

duce workloads. Proc VLDB Endow. 2012;5(12):1802–13.
 36. Costa E, Costa C, Santos MY. Evaluating partitioning and bucketing strategies for hive-based big data warehousing

systems. J Big Data. 2019;6(1):34.
 37. Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R. Hive: a warehousing solution

over a map-reduce framework. Proc VLDB Endow. 2009;2(2):1626–29.
 38. Poess M, Floyd C. New TPC benchmarks for decision support and web commerce. ACM Sigmod Rec. 2000;29:64–71.
 39. Bittorf M, Bobrovytsky T, Erickson C, Hecht MGD, Kuff M, Leblang DKA, Robinson N, Rus DRS, Wanderman JRDTS,

Yoder MM. Impala: a modern, open-source SQL engine for hadoop. In: Proceedings of the 7th biennial conference
on innovative data systems research; 2015.

 40. Costea A, Ionescu A, Răducanu B, Switakowski M, Bârca C, Sompolski J, Łuszczak A, Szafrański M, De Nijs G, Boncz P.
Vectorh: taking SQL-on-hadoop to the next level. In: SIGMOD/PODS. New York: ACM; 2016. p. 1105–17.

 41. Floratou A, Minhas UF, Özcan F. SQL-on-hadoop: full circle back to shared-nothing database architectures. Proc VLDB
Endow. 2014;7(12):1295–306.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://hortonworks.com/blog/how-to-plan-and-configure-yarn-in-hdp-2-0/
https://hadoop.apache.org/docs/r3.1.0/hadoop-yarn/hadoop-yarn-site/UsingGpus.html
https://www.cloudera.com/documentation/enterprise/5-3-x/topics/cdh_ig_yarn_tuning.html

	HaRD: a heterogeneity-aware replica deletion for HDFS
	Abstract
	Introduction
	Background
	Related work
	Improving performance of replica management system through heterogeneity-aware replica deletion
	Replica management
	Motivational example

	Formal definition
	Heterogeneity-aware replica deletion (HaRD)
	Implementation

	Methods
	Testing methodology
	Benchmarks
	TestDFSIO
	Grep
	Terasort
	Concurrency test on TPC-H

	Results and discussion
	Block distribution
	Average execution time
	Testing with concurrent users
	In-depth analysis
	Overhead analysis

	Conclusion
	Acknowledgements
	References

