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Introduction
Red imported fire-ants have been a cause for concern in Brisbane, Australia. They are 
an invasive species and their spread could have serious social, environmental and eco-
nomic impacts throughout Australia. They were first discovered in February 2001 in sur-
rounding areas of the Port of Brisbane but are believed to have been imported a couple 
of decades prior to 2001. Despite the eradication program, which was launched in Sep-
tember 2001, spread from the initial Brisbane infestation has led to infestations around 
the greater Brisbane area. Isolated incursions have been found even beyond the greater 
Brisbane area.

In order to prioritize the use of the surveillance budget and to promote better decision 
making, modelling is performed to estimate the risk of fire ant incursion in each area 
so that the eradication program focuses on high risk areas. As part of the eradication 
program the colony locations were recorded prior to their eradication. The analysis of 
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imagery data in combination with the location observations helps identify the preferred 
habitats of fire ants [1]. However, the field data are presence-only data [2]: information 
on unobserved fire-ant presence is missing from the data. Supervised learning models 
such as logistic regression to predict occurrence probability are too arbitrary for the 
presence-only data and are seldom justifiable [3].

The most appealing method for the presence-only data here is to divide the whole 
region into smaller clusters based on satellite imagery data and determine the possibility 
of fire-ant containment in each cluster. However, the clustering methods usually result in 
a small number of large clusters, some of which can be further partitioned. This requires 
a tree-like implementation of a clustering algorithm which in turn requires model selec-
tion (the pre-specification of the number of clusters, K) at each node of the tree.

The most appealing method for the presence-only data here is to divide the whole 
region into smaller clusters based on satellite imagery data and determine the possi-
bility of fire-ant containment in each cluster. However, the clustering methods usually 
result in a small number of large clusters, some of which can be further partitioned. This 
requires a tree-like implementation of a clustering algorithm. One could choose a com-
putationally faster method, such as k-means clustering [4], but a tree-like implementa-
tion of k-means clustering requires model selection (the pre-specification of the number 
of clusters, K) at each node of the tree. In addition, k-means clustering has been criti-
cised for its susceptibility to converge to a local optimum. The mean-shift algorithm [5] 
do not have the model selection problem, however, it is computationally expensive and 
may not be suitable for clustering very large datasets.

Dirichlet process Gaussian mixture models (DPGMMs) have been widely adopted as a 
data-driven cluster analysis technique. The main attraction of these models lies in side-
stepping model selection by assuming that data are generated from a distribution that 
has a potentially infinite number of components. However, for a limited amount of data, 
only a finite number of components is detected and an appropriate value for the number 
of components has to be determined directly from data in a Bayesian manner (hence 
the term, ‘data-driven’). These infinite, non-parametric representations allow the models 
to grow in size to accommodate the complexity of the data dynamically. However, they 
are computationally demanding and do not scale well to the satellite imagery data, each 
image of which is usually made up of millions of pixels. This is because they need to iter-
ate through the full dataset at each iteration of the MCMC algorithm (see, e.g., [6]). The 
computational time per iteration increases with the increasing sizes of the datasets.

How to scale Bayesian mixture models up to massive data comprises a significant pro-
portion of contemporary statistical research. One way to speed up computations is to use 
graphics processing units (see, e.g., [7]) and parallel programming approaches (see, e.g., 
[8–10]). Relatively less computationally demanding methods for fitting the mixture models 
include approximate Bayesian inference techniques such as variational inference [11–14] 
and approximate Bayesian computation [15, 16]. Huang and Gelman [17] partition the data 
at random and perform MCMC independently on each subset to draw samples from the 
posterior given the data subset. They suggested methods based on normal approximation 
and importance re-sampling to make consensus posteriors. Another strategy to speed up 
computations is to improve inference about the parameters of the component of interest 
in the mixture model. This is adopted by [18], where an initial sub-sample is analysed to 
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guide selection from targeted components in a sequential manner using Sequential Monte 
Carlo sampling. To make it work, an adequate representation of the component of interest 
is important in the initial random sample. However, in a massive dataset, a low probability 
component of interest is likely to escape the initial random sample, which will lead to unre-
liable inference.

Often, in massive datasets, most of the data provide similar information. Consider, for 
example, satellite imagery where observations from the parks (and playgrounds) in an 
urban area will look similar except for some noise (anything that makes a park different 
from other parks). Similarly, large water-bodies may contribute millions of repeated obser-
vations. The sampling based approaches tends to oversample large bodies with similar 
visual attributes (probably of less interest) and are likely to miss some smaller clusters of 
interest such as disturb earth in our application. This eventually will produce results that 
are biased towards a small number of larger clusters, which may in turn lead to lower qual-
ity clusters [19]. It is sensible to cluster similar observations and reduce them to a quantized 
value (average observations in each cluster) representative of all the values in a cluster.

In this article, we adopt the strategy of data filtering and smoothing through averaging 
similar observations. This, on the one hand substantially reduces the size of the data, while 
on the other hand it suppresses noise. We achieve this through k-means clustering by delib-
erately over-clustering (choose a very large number of clusters) in the first level; therefore, 
sidestep the main drawbacks of k-means clustering algorithm. The mixture models are then 
fitted to a reduced dataset in the second level. This two-step process is applied in a tree-
like structure to partition the clusters into smaller and smaller clusters in order to identify 
clusters of high, medium, and low interest. Importantly, we make use of the strengths of 
two clustering methods: the computationally less demanding method of k-means clustering 
and the more sophisticated DPGMMs, which not only accounts for correlations between 
variables, but also learns K in a data-driven fashion that makes it suitable for tree-based 
algorithms. Our method is explained in “Methods” section and applied to a case study in 
“Results and discussion” section, where it is also compared to an alternative SVM approach. 
Finally, the conclusions are presented in “Conclusions” section.

Methods
Dirichlet process Gaussian mixture models

Assume that we are interested in clustering real-valued observations contained in 
X = (x1, . . . , xn) , where xi is a p-dimensional sample realization made independently over 
n objects. Denote the p-dimensional Gaussian density by Np(·) then a mixture of K Gauss-
ian components takes the form

where θk = {µk ,�k} contains the unknown mean vector µk and the covariance matrix 
�k is associated with component k. The parameters π = {π1, . . . ,πK } are the unknown 
mixing proportion, which satisfies 0 ≤ πk ≤ 1 and 

∑K
k=1 πk = 1.

In Dirichlet process Gaussian mixture models [20], the number of components K is 
an unknown parameter without any upper bound and inference algorithms are used to 

(1)f (x|θ1, . . . , θK ) =

K
∑

k=1

πkNp(x|θk),
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facilitate learning K from the observed data. Therefore, with every new data observation, 
there is a chance for the emergence of an additional component.

Define a latent indicator zi , i = 1, . . . , n , such that the prior probability of assigning a 
particular observation xi to a cluster k is p(zi = k|π) = πk . Given the cluster assignment 
indicator zi and the prior distribution G on the component parameters, the model in (1) 
can be expressed as:

where G0 is the base distribution for the Dirichlet process prior such that E(G) = G0 and 
α is the concentration parameter. Integrating out the infinite dimensional G from the 
posterior allows the application of Gibbs sampling to DPGMM [21–23]. By integrating 
out G, the predictive distribution for a component parameter follows a Pólya urn scheme 
[24]

Specifying a Gamma prior over the Dirichlet concentration parameter α , α ∼ Ga(η1, η2) , 
allows the drawing of posterior inference about the number of components, K.

Simpler and more efficient methods have been developed to fit posterior of DPGMM. 
Consider two independent random variables Vk ∼ Beta(1,α) and θk ∼ G0 , for 
k = {1, 2, . . .} . The stick-breaking process formulation of G is such that

and

where δθi(·) is a discrete measure concentrated at θk [25]. In practice, however, the Dir-
ichlet process is truncated by fixing K to a large number such that the number of active 
clusters remains far less than K [26]. A truncated Dirichlet process is achieved by letting 
VK = 1 , which also ensures that 

∑K
k=1 πk = 1 . The base distribution G0 is specified as a 

bivariate normal-inverse Wishart

where µ0 is the prior mean, a0 is a scaling constant to control variability of µ around µ0 , 
s0 denotes the degrees of freedom and S0 represent our prior belief about the covariances 
among variables. The data generating process can be described as follows:

1. For k = 1, . . . ,K  : draw Vk |α ∼ Beta(1,α) and θk |G0 ∼ G0.
2. For the nth data point: draw zi|V1, . . . ,Vk ∼ Mult(π) and draw 

xi|zi = k , θk ∼ N (x|θk).

x|zi = k , θk ∼ N (x|θk),

θk |G ∼ G,

G|α,G0 ∼ DP(α,G0),

θk |θ1, . . . , θk−1 ∼
α

k − 1+ α
G0 +

1

k − 1+ α

k−1
∑

i=1

δθi(·).

πk =

{

Vk (k = 1)

Vk

∏k−1
i=1 (1− Vi) (k > 1)

,

G =

∞
∑

k=1

πkδθk (·),

G0(µk ,�k) = N (µk |µ0, a0�k)IW (�k |s0, S0),
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Blocked Gibbs sampling scheme to fit DPGMM

A blocked Gibbs sampler [26] avoids marginalization over the prior G, thus allowing 
G to be directly involved in the Gibbs sampling scheme. The algorithm is described as 
follows:

1. Update z by multinomial sampling with probabilities 

2. Update the stick breaking variable V by independently sampling from a beta distribu-
tion 

 where Vk = 1 and nk is the number of observations in component k. Obtain π by set-
ting π1 = V1 and πk = Vk

∏k−1
i=1 (1− Vi) for k > 1.

3. Update α by sampling independently from 

4. Update �k by sampling from 

 where 

 and 

5. Update µk by sampling from 

 where 

 and 

p(zi = k|x,π , θ) ∝ πkN (xi|µk ,�k)

p(V |x) ∼ Beta



1+ nk ,α +

K
�

i=k+1

ni



,

p(α|V ) ∼ Ga

(

η1 + K − 1, η2 −

K−1
∑

i=1

log(1− Vi)

)

,

p(�k |x, z) ∼ IW (�k |sk , Sk),

sk = s0 + nk ,

Sk = S0 +
∑

zi=k

(xi − x̄k)(xi − x̄k)
t +

nk

1+ nka0
(x̄k − µ0)(x̄k − µ0)

t

x̄k =
1

nk

∑

zi=k

xi.

p(µk |x, z,�k) ∼ N (µk |mk , ak�k),

mk =
a0µ0 + nk x̄k

a0 + nk

ak =
a0

1+ a0nk
.
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Data preprocessing: turning big into small

In massive datasets, when much of the data provides similar information, a sensible 
strategy would be to group similar observations together to get an adequate repre-
sentation from each group. This may, however, lead to substantial loss of information, 
which can be reduced by introducing a reasonably large number of clusters. The term 
‘reasonably large’ is used to emphasise the underlying trade-off between the number 
of clusters and the loss of information that may be incurred; a smaller number of clus-
ters leads to a larger amount of information loss. This first-level clustering is followed 
by a quantization step (rather than sampling) that involves mapping a larger set of 
values to a smaller set by suppressing the noise.

We achieve the above with k-means clustering, a popular clustering algorithm, 
because of its scalability and efficiency in large data sets. The algorithm employs a 
proximity matrix (Euclidean distance) whereby the sum of the squared distances from 
the observations in each cluster to their cluster centres is minimized [4]. Several algo-
rithms have been proposed to derive a solution to the k-means problem. However, the 
algorithm in [27] is known to perform well.

In order to maintain the quantized set as closely to the original dataset as possi-
ble, we use a large number of clusters. In this way, we sidestep the two well-known 
drawbacks (the model selection and convergence to a local optimum) of the k-means 
clustering. In Fig.  1a simulated dataset of 5000 observations from a 5 component 
Gaussian mixture is plotted overlaid by 500 quantized values obtained via k-means 
clustering. Note that we use k-means as a preliminary dimension reduction step to 
alleviate the computational burden for the more flexible and sophisticated mixture 
models, which allows incorporation of additional available information and also takes 
into account the correlation between variables.

Big data implementation of DPGMM

As mentioned above, the posterior inference of DPGMM does not scale well to Big 
data. Here we propose a multi-step process. The first step involves reducing the of 
size N0 , say, to a informative smaller dataset of size N1 , say, via a quantization method 
such as k-means. The second step is the usual DPGMM implemented with the quan-
tised values. This reduces the number of clusters from N1 to K1 ≪ N1 . The process 
can be stopped here if the resultant number of clusters meets a pre-specified criteria. 
Example criteria may be, if the clusters are adequately interpretable; if the number of 
observations in a cluster reaches a minimum size; the DPGMM fits only one cluster; 
or if a cluster of interest is identified. In the case study considered here this would 
entail a small number of clusters encapsulating fire ant presence. In practice, however, 
it is often preferable to further partition large clusters obtained at the first layer of 
DPGMM. To proceed, we track back to the original data for each cluster of interest 
(leaving out the components of non-interest) and repeat the above process (k-means 
clustering, quantization, and DPGMM) until no more partitioning is required.
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The method is summarized in the following steps:

1. Start with the observed data of size N0 and obtain N1 ≪ N0 clusters using k-means 
clustering, with k = N1.

2. Obtain the means of the N1 clusters as the quantized set of values.
3. Apply DPGMM to the N1 quantized values obtained in Step 2. This will reduce the 

number of clusters from N − 1 to a much smaller number, K1.
4. Identify the components of interest. Stop the process or go to Step 5 if further parti-

tioning is desirable.
5. Drop all the clusters of non-interest and repeat Steps 1–4 separately for each compo-

nent of interest or a pre-specified stopping rule is reached.

Results and discussion
Effect of quantization on posterior inference

Here we demonstrate the effect of quantization on the posterior estimates using a 
simulated dataset. We generate 5000 observations from a 2-dimensional Gaussian 
mixture model with 5 components. The dataset is plotted in Fig. 1 overlaid by 500 
quantized values obtained via k-means clustering.

The posterior estimates are obtained using DPGMM, described in “Methods” sec-
tion, first conditional on the full dataset (all 5000 observation) and then conditional 
on the 500 quantized values. The results are shown in Fig. 2. The estimates for the 
components means based on the quantized values are comparable in accuracy to the 
estimates based on the full dataset. However, as one can expect, the estimates based 
on the quantized values are less precise than the estimates based on the full data-
set. Although an increase in the number of quantized values usually improves the 
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Fig. 1 Quantization via k-means. A dataset of 5000 observations (plotted in solid gray points) is drawn from a 
Gaussian mixture of 5 components and reduced to 500 quantized values (plotted in blue circles)
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estimates so long as resources allow, a slight loss in accuracy and efficiency may be 
acceptable given the fact that one can explore very large datasets on, for example, a 
laptop.

The data

Since the launch of the fire-ant eradication program in September 2001, data have been 
collected on the location of each colony that has been found. The dataset used in this 
case study comprises 15,107 locations where nests of fire-ants were identified during the 
years 2001–2013. These locations are indicated on a Google image snap-shot provided 
in Fig. 3. The proportion of colonies identified for each year are provided in Fig. 4. A 
sudden rise in the number of identified nests during 2009–2010 and then a drop back 
to normal in the following years is surprising. There may be a number of factors respon-
sible for this phenomenon, but possible reasons for it still require further investigation.
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A Landsat image is also available for each year of the study period. These were 
acquired on days of low cloud coverage, generally in the period between May and 
September, most commonly in July. These images were chosen as being typical winter 
images, and sufficiently near to the date required to be included in the winter plan-
ning period for summer surveillance. Since a part of the image was required to cover 
the study area, the images were first cropped to limit them to the study region (the 
urban area). This resulted in a set of 13 well-aligned images. The cropped images were 
converted into workable data files using the ‘raster’ package [28] in R. Note that we 
use 6 Landsat spectral bands: visible blue, visible green, visible red, near infrared, 
middle infrared, and thermal infrared.

Fig. 3 Google image snapshot of the study area and the observed location of fire-ant colonies (indicated by 
red dots) over the study period 2001–2013
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Fig. 4 Proportions of fire ant colonies detected each year from 2000–2013
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The Landsat variables were centred at mean zero and scaled to a unit variance. Fig-
ure 5 shows the densities of all 6 variables from 2005 image, with black lines for pix-
els containing colonies and red lines for pixels where containment is not recorded. 
A clear shift in densities for the known colony sites can be seen for most of the vari-
ables. This indicates that the imagery data does provide some insight into the attrib-
utes of a preferred habitat for the establishment of fire-ant colonies.

We also used R for the substantive statistical analysis. To solve the k-means problem, 
we used the algorithm in [27], which is a default option in the R function kmeans(), 
available from the ‘stats’ package. Since it is recommended to make repeated runs with 
different random starting points and choose the run that gives the minimum within-
class variance, we used 8 random starting points in our analysis. Note that the func-
tion kmeans() also allows to specify multiple random starting points. Larger number 
of starting points, however, increases computation cost which is due to multiple runs 
of the algorithm. We avoided this by using parallel processing facility in R provided by 
foreach loop from the ‘foreach’ package. Since our use of k-means clustering is to reduce 
the dimension of the data to a set of quantised values (rather than final clustering), we 
did not find noticeable difference in terms of visual interpretation while using a single 
random starting point. Note also that very large number of N1 also increases compu-
tational time and memory requirement, especially when N0 is large. To fit DPGMM, 
we translated Matlab codes, available at http://ftp.stat.duke.edu/Worki ngPap ers/09-26.
html, into R codes (for details about Matlab codes, see, [18]). We used 30,000 iterations 
of blocked Gibbs sampler including 2000 burn-in iterations at each node of the tree. 
The overall computation time averaged over the 13 images considered in this study was 
10 h and 58 min when N1 = 3000 . This computation time reduced to 7 h and 33 min 
for N1 = 2000 and increased to 16 hours and 26 minutes when we set N1 = 4000 . Note 
that we used the high performance computing facility at the Queensland University of 
Technology for our computations which has 2.6 Ghz processors with 251 Gb memory. 
The computational time can be further reduced by using R package ‘Rcpp’ [29], which 
interfaces C and C++ code in R.

Analysis and results

To learn about the attributes of fire-ants’ preferred habitats, we classified satellite 
imagery data. Each of the 13 images was converted to a data matrix of 3,216,582 rows 
(pixels) and six columns (spectral bands). As a preprocessing step, we reduced the 
dimension of the data using k-means clustering from N0 = 3, 216, 582 to N1 = 3000 
quantized values. The DPGMM was then fitted iteratively in a tree-like structure (as 
described in “Methods” section) to the quantized values. This was done indepen-
dently for each image from the year 2001 to 2013. We tested a range of values of N1 and 
found that the number of components and their structures did not change (in terms of 
visual interpretation) as we increased the value of N1 beyond 3000. Therefore, we set 
N1 = 3000 for all the results shown here (even for the classification of sub-classes).

The classification based on the images from years 2002, 2007 and 2010 are shown, 
respectively, in Figs. 6, 7 and 8. The proportion of fire-ant identified in each cluster are 
presented in Tables 1, 2 and 3. Note that each of these tables is based on a single year 

http://ftp.stat.duke.edu/WorkingPapers/09-26.html
http://ftp.stat.duke.edu/WorkingPapers/09-26.html
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image, however, the proportions of the observed fire-ant for the rest of the study period 
that falls in a particular class are also provided for prediction purpose. The figures for 
other years and their respective tables are diverted to the Additional file 1 due to the 
compatibility of the results across different years.
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Fig. 6 Cluster analysis of satellite image of the Brisbane area taken in 2002. For clarity, some of the clusters 
are merged together in bright-green colour and the results are presented in two plots: (left penal) 1: 
mountains and forest, 2: water, 3: forest 4: mix of parks, playgrounds and grassland, 5: old residential areas 
including some roads, 6: old residential areas, 7: scrub-land, 8: Bright surfaces including seashore, 9: new 
residential areas, and 10: mountains and forest; (right penal) 11: parks and playgrounds, 12: mountains and 
forest, 13: commercial buildings, 14: disturbed earth (recent deforestation), 15: impervious surfaces
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Fig. 7 Cluster analysis of satellite image of the Brisbane area taken in 2007. For clarity, some of the clusters 
are merged together and the results are presented in two plots: (left penal) 1: old residential areas, 2: parks, 
playgrounds, and grasslands, 3: forest, 4: water, 5: scrub-land, 6: mountains, 7: mostly new residential areas, 
8: forest, 9: commercial buildings, and 10: forest; (right penal) 4: water, 11: mountains and forest, 12: bare 
ground, 13: forest, 14: disturbed earth (recent deforestation), 15: disturbed earth (recent deforestation)
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The final number of components per image varies across different years but remains 
at between 20 and 42. Some of these variations can be possibly attributed to the time of 
the day the image is acquired. For example, the mountainous and forest area, which is 
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Fig. 8 Cluster analysis of satellite image of the Brisbane area taken in 2010. For clarity, some of the clusters 
are merged together in bright-green clolour and the results are presented in two plots: (left penal) 1: 
scrub-land or bare ground, 2: forest, 3: roads and old residential areas, 4: mountain and forest mixed with 
playgrounds, 5: water, 6: residential areas, 7: bare ground and impervious surfaces, 8: commertial buildings, 
9: residential area (with bright steel roofing) mixed with commercial buildings, 10: seashore; (right penal) 5: 
water, 11: new residential areas, 12: water and seashore, 13: water, 14: disturbed earth, 15: water and seashore
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broken into three components in Figs. 6 and 7, makes two components in Fig. 8, possibly 
because of shadows. In some images roads are relatively well separated (Figs. 6 and 8) 
but this is not always the case (Fig. 7). Other variations are because of the changes in 
the landscape over time. However, the number of components that consist of more than 
1% of the pixels remains below 15 for most of the images. These large components are 
materially similar across different years and are visually interpretable into different land 
cover classes, namely, mountains, forest, water, residential areas, warehouses, roads, 
parks and play grounds, plain areas with natural non-forest vegetation (scrub-land) and 
some impervious surfaces, and new development sites or land with recent deforesta-
tion. Other smaller clusters (each consisting of less than 1% of the pixels and visually not 
interpretable) are found to be of less interest and are therefore merged together in the 
figures.

The water component in the image is always well separated from the rest of the com-
ponents. Although this component is not of interest to us, it helps in identifying and 
interpreting other components. The components that represent the mountains and for-
est are the largest by area and is found to be consistently at low risk of fire-ant incur-
sion (see components 1 and 3 in Table 1; components 3, 6, 8, 11, and 13 in Table 2; and 
components 2 and 4 in Table 3). The scrub-land is found to be at high risk of infestation 
(see components 7, 5 and 1, respectively, in Tables  1,  2 and  3) followed by parks and 
playgrounds (see components 4 and 11 in Table 1 and component 2 in Table 2). These 
two types of land cover classes are well separated in most of the images (see Figs.  6 
and 7). The old residential zones (see components 5 and 6 in Table 1, component 1 in 
Tables 2 and component 6 in 3) including the areas with commercial buildings (see com-
ponent 13 in Table 1, component 9 in Tables 2 and component 8 in 3) are found to be 
at high risk in the initial years when the eradication program started. However, the risk 
of incursion declined soon after the launch of eradication program in this class, which 
probably shows that the eradication program has been more effective in the residential 
areas. A potential reason could be swift reporting once the incursion has been observed. 
The new residential zones have seen occasional high incursions even in later years (see 
component 9 in Table 1, component 7 in Table 2). Roads, and new development zones 
(disturbed earth, recent deforestation) are also found to be at moderate risk consistently 
thorough the study period (see component 5 in Table 1 and component 3 in Table 3 for 
roads and component 14 in Tables 1, 2 and 3 for disturbed earth). The potential factors 
may include moving soil and other materials to and from the development sites.

As mentioned above the Tables  1,  2 and  3 also presents the proportions of fire-ant 
nests observed in the years other than the one in which the analysed image was acquired. 
In general, the classes with high proportions of fire-ant nests in the image year calibrate 
well with the proportions in the year that follows. For example, consider Table 1 in which 
component 5 (contained 16.4% of the observed nests) and component 9 (contained 
31.8% of the observed nests) were at high risk of fire-ant incursions in 2002 remained at 
high risk in 2003 (component 5 contained 15.9% of the observed nests and component 
9 contained 24.3% of the observed nests). Similarly, in Table 3, which is based on clas-
sification of image from 2010, component 1 and component 7 together contains 86.1% 
of the observed nests in 2010. The component 1 was at highest risk in 2010 (contained 
67.2% of the observed nests), which was also at highest risk in 2011 (contained 40.5% of 
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Fig. 9 Tree diagram for the image shown in Fig. 6. The number in each bubble indicates the percentage of 
pixels contained in the corresponding cluster

the observed nests). The component 5 contained 18.9% in 2010 and 34.7% in 2011. Some 
of the potential factor for anomalous changes could be attributed climatic events such as 
floods or drought.

The above results indicate that image classification provides useful information for 
operational projects. The classification can be produced routinely at a low cost, which 
when combined with the observed data helps in learning about the high risk areas. These 
high risk areas could be prioritized in order to satisfy budgetary constants. For example, 
the component 2 in Table 3, which covered 21.9% of the study area contained 67.2% of 
the fire-ant incursions and could be targeted in the fire-ant eradication program in the 
following year.

The trees generated in the classification of images from the years 2002, 2007, and 2010 
are diagrammed, respectively, in Figs. 9, 10 and 11. In all the three cases, the stopping 
criteria (the node is not of interest or cannot be clustered any more or too small to split 
it further) met at the second level where the tree stops growing any further. In most 
of the cases larger clusters are classified into visually interpretable smaller clusters. See, 
for example, Fig. 9 where a node that is made up of 30.9% of pixels is broken into five 
clusters containing 12.8%, 9.7%, 6.2%, 2.2 and 0% of the pixels: the first of these clus-
ters represents mix of parks, playgrounds and grassland (component-4 in Table 1); the 
second of these clusters represents old residential area including roads (component-5 
in Table 1); the third cluster represents scrubland; the forth cluster represents parks and 
playgrounds; and the fifth cluster is too small to be visually interpreted. In other cases 
a small cluster is further partitioned into a few clusters in which case some have dis-
tinct characteristics. For example, in Fig. 9, a component contains 1.6% of the pixels is 
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partitioned into eight clusters. Three clusters out of these six clusters consists of 0.9% 
(component 13 in Fig. 6 which represents steel roofs of the commercial buildings), 0.4% 
(component-14 in Fig. 6 which represents disturbed earth), and 0.2% (component-15 in 
Fig. 6 which represents some impervious surfaces) of the pixels and represent different 
bright surfaces. The rest of these eight clusters are too small for visual interpretation.

One‑class support vector machine (OCSVM)

Another technique that seems suitable for the presence-only data is the one-class sup-
port vector machine [30]. It has been used for anomaly and outlier detection. This tech-
nique first attempts to learn the decision boundary based on the training dataset while 
incorporating a soft margin classifier in order to account for outliers in the training data-
set. For each test data point it is then determined if it falls in an anomalous class that is 
outside the decision boundary. This technique is computationally faster and is available 
through the R function svm() from the ‘e1071’ package [31].

We use of OCSVM to determine if the pixels with fire-ant nests share some attributes, 
hence fall in the same class. We trained the OCSVM anomaly detector considering all 
the pixels that contained fire-ant nests as a training dataset. The rest of the pixels that 
do not contain fire-ant nests were used as a test dataset. The land-cover classification 
results based on the image from 2010 are shown in Fig. 12. Out of the 1108 observa-
tion in the training dataset (including those with multiple nests), 116 observations were 
found to be in outlying class. The results from test data suggest that the area that needs 
to be targeted in the fire-ant eradication program consists of 39.66% of the pixels. This 
exclude some of the clusters that were identified as at risk of infestation of fire-ants using 
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our multi-step method, for example, buildings with steel roof top such as area with com-
mercial buildings and disturbed earth. These are mainly the clusters whose representa-
tive pixels in the training dataset stood out as outliers. Moreover, the OCSVM provided 
less details as compared to our method; for example, it does not distinguish high and 
low risk classes and where the eradication program has been more successful. The two 
approaches are, however, in agreement for some of the high-risk clusters, for example, 
residential area and scrubland.

Fig. 12 Classification of image from 2010 using OCSVM. The preferred habitat of fire-ant is shown in gray
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Conclusions
DPGMM are computationally prohibitive for large datasets, their implementation in 
tree-based clustering algorithm dramatically increase the computational time even for 
intermediate size dataset. We used k-means clustering to reduce the size of dataset to 
a smaller set of quantized values. This led to one of the key achievements of this work, 
which is the scaling of DPGMM to large datasets and its tree-based implementation to 
identify the components of interest. The proposed method enables to classify a dataset 
with millions of observation in a matter of minutes.

We used the method to classify satellite imagery data in order to identify the land 
cover classes that are at high, medium, and low risk of infestation of fire-ants. The plain 
areas with non-forest natural vegetation (scrub-land) and parks and playgrounds are 
found to be at high risk of infestation. Roads and new development zones are also among 
the preferred habitats (although at a moderate risk through the study period). Residen-
tial areas are also found to be at a high risk of infestation in the initial years of the study 
period. However, the risk has declined soon after the start of eradication program, per-
haps showing the effectiveness of the program in residential zones.

Note that the main objective of this study was to scale Bayesian mixture models to Big 
data. We achieved this by using an algorithm that is parallelizable and reaches the final 
fine clusters in a tree-like structure. We used the algorithm to cluster satellite images and 
connected the presence-only observed data to the clusters thus obtained to describe the 
proportions of the observed presences in each cluster. We also calculated the propor-
tions of the observed presences for the years other than the year in which the image was 
acquired assuming no significant temporal changes in the land-cover over a period of 
few years. A more principled way, however, would be to embed the presence-only data 
in the fitted model. This would require a hierarchical model that in one level performs 
the clustering based on the spectral bands and in the other level uses the clusters as pre-
dictors in a model for the presence-only data. One need to account for spatial depend-
ence in such model too, which could potentially play an important role in the problem 
being tackled. A more sophisticated model that take into account both the spatial and 
temporal dependence would be required. We leave these extensions for future research.

Additional file

Additional file 1. Additional figures and tables presenting the results for the rest of the study period not shown in 
the main text.

Abbreviations
MCMC: Markov Chain Monte Carlo; DPGMM: Dirichlet process Gaussian mixture models; OCSVM: one-class support 
vector machine.

Authors’ contributions
Insha Ullah did the literature review, contributed to the methodology development, implemented and evaluated the 
method and drafted the manuscript. Kerrie Mengersen contributed to the the methodology development, refined the 
concepts and revision of the manuscript. Both authors read and approved the final manuscript.

Acknowledgements
We are thankful to Clair Alston-Knox for providing the data and R codes to read satellite imagery data.

Competing interests
The authors declare that they have no competing interests.

https://doi.org/10.1186/s40537-019-0188-1


Page 24 of 25Ullah and Mengersen  J Big Data            (2019) 6:29 

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable 
request.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This research was supported by an ARC Australian Laureate Fellowship for project, Bayesian Learning for Decision Making 
in the Big Data Era under Grant No. FL150100150. The authors also acknowledge the support of the Australian Research 
Council (ARC) Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 7 December 2018   Accepted: 25 February 2019

References
 1. Spring D, Cacho OJ. Estimating eradication probabilities and trade-offs for decision analysis in invasive species 

eradication programs. Biol Invasions. 2015;17(1):191–204.
 2. Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, Gordon A, Kujala H, Lentini PE, McCarthy MA, Tingley R, Wintle BA. Is 

my species distribution model fit for purpose? Matching data and models to applications. Glob Ecol Biogeogr. 
2015;24(3):276–92.

 3. Hastie T, Fithian W. Inference from presence-only data; the ongoing controversy. Ecography. 2013;36(8):864–7.
 4. MacQueen J, et al. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 

Fifth Berkeley Symposium on Mathematical Statistics and Probability. 1967; 1:281–297.
 5. Fukunaga K, Hostetler L. The estimation of the gradient of a density function, with applications in pattern recogni-

tion. IEEE Trans Inform Theory. 1975;21(1):32–40.
 6. Bardenet R, Doucet A, Holmes C. On markov chain monte carlo methods for tall data. 2015. arXiv preprint arXiv 

:1505.02827 .
 7. Lee A, Yau C, Giles MB, Doucet A, Holmes CC. On the utility of graphics cards to perform massively parallel simula-

tion of advanced monte carlo methods. J Comput Graph Stat. 2010;19(4):769–89.
 8. Guha S, Hafen R, Rounds J, Xia J, Li J, Xi B, Cleveland WS. Large complex data: divide and recombine (d&r) with rhipe. 

Statistics. 2012;1(1):53–67.
 9. Chang J, Fisher III JW. Parallel sampling of dp mixture models using sub-cluster splits. In: Advances in Neural Infor-

mation Processing Systems, 2013; 620–628.
 10. Williamson S, Dubey A, Xing EP. Parallel markov chain monte carlo for nonparametric mixture models. In: Proceed-

ings of the 30th international conference on machine learning (ICML-13). 2013. p. 98–106.
 11. McGrory CA, Titterington D. Variational approximations in Bayesian model selection for finite mixture distributions. 

Comput Stat Data Analy. 2007;51(11):5352–67.
 12. Ormerod JT, Wand MP. Explaining variational approximations. Am Stat. 2010;64(2):140–53.
 13. Hoffman MD, Blei DM, Wang C, Paisley J. Stochastic variational inference. J Mach Learn Res. 2013;14(1):1303–47.
 14. Blei DM, Kucukelbir A, McAuliffe JD. Variational inference: a review for statisticians. J Am Stat Assoc. 

2017;112(518):859–77.
 15. Marin J-M, Pudlo P, Robert CP, Ryder RJ. Approximate bayesian computational methods. Stat Comput. 

2012;22:1167–80.
 16. Moores MT, Drovandi CC, Mengersen K, Robert CP. Pre-processing for approximate Bayesian computation in image 

analysis. Stat Comput. 2015;25(1):23–33.
 17. Huang Z, Gelman A. Sampling for bayesian computation with large datasets. 2005.
 18. Manolopoulou I, Chan C, West M. Selection sampling from large data sets for targeted inference in mixture mod-

eling. Bayesian Anal. 2010;5(3):1.
 19. De Vries CM, De Vine L, Geva S, Nayak R. Parallel streaming signature em-tree: a clustering algorithm for web scale 

applications. In: Proceedings of the 24th international conference on World Wide Web. 2015; 216–226. International 
World Wide Web Conferences Steering Committee.

 20. Rasmussen CE. The infinite gaussian mixture model. In: Advances in neural information processing systems. 2000. p. 
554–560.

 21. Escobar MD. Estimating normal means with a dirichlet process prior. J Am Stat Assoc. 1994;89(425):268–77.
 22. MacEachern SN. Estimating normal means with a conjugate style dirichlet process prior. Commun Stat Simul Com-

put. 1994;23(3):727–41.
 23. Escobar MD, West M. Bayesian density estimation and inference using mixtures. J Am Stat Assoc. 

1995;90(430):577–88.
 24. Blackwell D, MacQueen JB. Ferguson distributions via polya urn schemes. Ann Stat. 1973;1:353–5.
 25. Sethuraman J. A constructive definition of dirichlet priors. Statistica Sinica. 1994;4:639–50.
 26. Ishwaran H, James LF. Approximate dirichlet process computing in finite normal mixtures: smoothing and prior 

information. J Comput Graph Stat. 2002;11(3):508–32.

http://arxiv.org/abs/1505.02827
http://arxiv.org/abs/1505.02827


Page 25 of 25Ullah and Mengersen  J Big Data            (2019) 6:29 

 27. Hartigan JA, Wong MA. Algorithm as 136: A k-means clustering algorithm. J R Stat Soc. 1979;28(1):100–8.
 28. Hijmans RJ, van Etten J, Cheng J, Mattiuzzi M, Sumner M, Greenberg JA, Lamigueiro OP, Bevan A, Racine EB, 

Shortridge A, et al. Package ‘raster’. R package. 2016. https ://cran.r-proje ct.org/web/packa ges/raste r/index .html 
(accessed 1 October 2016)

 29. Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J, Bates D. Rcpp: Seamless r and c++ 
integration. J Stat Softw. 2011;40(8):1–18.

 30. Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC. Estimating the support of a high-dimensional distri-
bution. Neural Comput. 2001;13(7):1443–71.

 31. Meyer D. Support vector machines: The interface to libsvm in package e1071. 2004.

https://cran.r-project.org/web/packages/raster/index.html

	Bayesian mixture models and their Big Data implementations with application to invasive species presence-only data
	Abstract 
	Introduction
	Methods
	Dirichlet process Gaussian mixture models
	Blocked Gibbs sampling scheme to fit DPGMM

	Data preprocessing: turning big into small
	Big data implementation of DPGMM

	Results and discussion
	Effect of quantization on posterior inference
	The data
	Analysis and results
	One-class support vector machine (OCSVM)

	Conclusions
	Authors’ contributions
	References




