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Abstract 

The United States healthcare system produces an enormous volume of data with a vast 
number of financial transactions generated by physicians administering healthcare ser-
vices. This makes healthcare fraud difficult to detect, especially when there are consid-
erably less fraudulent transactions (documented and readily available) than non-fraud-
ulent. The ability to successfully detect fraudulent activities in healthcare, given such 
discrepancies, can garner up to $350 billion in recovered monetary losses. In machine 
learning, when one class has a substantially larger number of instances (majority) 
compared to the other (minority), this is known as class imbalance. In this paper, we 
focus specifically on Medicare, utilizing three ‘Big Data’ Medicare claims datasets with 
real-world fraudulent physicians. We create a training and test dataset for all three 
Medicare parts, both separately and combined, to assess fraud detection performance. 
To emulate class rarity, which indicates particularly severe levels of class imbalance, we 
generate additional datasets, by removing fraud instances, to determine the effects of 
rarity on fraud detection performance. Before a machine learning model can be distrib-
uted for real-world use, a performance evaluation is necessary to determine the best 
configuration (e.g. learner, class sampling ratio) and whether the associated error rates 
are low, indicating good detection rates. With our research, we demonstrate the effects 
of severe class imbalance and rarity using a training and testing (Train_Test) evaluation 
method via a hold-out set, and provide our recommendations based on the supervised 
machine learning results. Additionally, we repeat the same experiments using Cross-
Validation, and determine it is a viable substitute for Medicare fraud detection. For 
machine learning with the severe class imbalance datasets, we found that, as expected, 
fraud detection performance decreased as the fraudulent instances became more 
rare. We apply Random Undersampling to both Train_Test and Cross-Validation, for all 
original and generated datasets, in order to assess potential improvements in fraud 
detection by reducing the adverse effects of class imbalance and rarity. Overall, our 
results indicate that the Train_Test method significantly outperforms Cross-Validation.

Keywords: Big Data, Medicare, LEIE, Fraud detection, Cross-Validation, Test set, Class 
imbalance, Rarity, Random Undersampling

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Herland et al. J Big Data            (2019) 6:21  
https://doi.org/10.1186/s40537-019-0181-8

*Correspondence:   
mherlan1@fau.edu 
Florida Atlantic University, 
777 Glades Road, Boca Raton, 
FL, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0181-8&domain=pdf


Page 2 of 33Herland et al. J Big Data            (2019) 6:21 

Introduction
The healthcare system in the United States (US) contains an extremely large number 
of physicians, who perform numerous services for an even larger number of patients. 
Every day, there are a massive number of financial transactions generated by physicians 
administering healthcare services, such as hospital visits, drug prescriptions, and other 
medical procedures. The vast majority of these financial transactions are conducted 
without any fraudulent intent, but there are a minority of physicians who maliciously 
defraud the system for personal gain. In machine learning, when a dataset portrays this 
discrepancy in class representation (i.e. a low number of actual fraud cases), it is known 
as class imbalance [1, 2]. The main issue attributed to class imbalance is the difficulty in 
discriminating useful information between classes due to the over-representation of the 
majority class (non-fraud) and the limited amount of information available in the minor-
ity class (fraud). In real-world medical practice, the number of fraudulent physicians 
is in the minority, where even fewer are confirmed, well-documented. To further con-
found the situation, we found that the number of these known fraudulent physicians are 
becoming less frequent each year, trending towards class rarity. Class rarity is when the 
Positive Class Count (PCC), or number of minority class instances, becomes extremely 
small. We argue that qualifying for severe class imbalance and rarity does not neces-
sarily rely on the proportion between classes, but on PCC. A common class imbalance 
percentage is 2% [3], but, for example, a dataset with 10,000,000 instances still has a PCC 
of 200,000. A machine learning model would most likely be able to effectively determine 
qualities and patterns in the minority class by using 200,000 instances, and would not be 
effected by issues normally attributed to class imbalance, especially with data sampling. 
However, these issues would be present if this dataset had an extremely small PCC, such 
as 100, where a machine learning model would have to contend with 9,999,900 nega-
tive instances during training. This latter example indicates the concerns presented with 
class rarity. These issues are further exacerbated when applied to Big Data, which can 
dramatically increase the number of majority instances while leaving the minority class 
representation relatively unchanged [4].

Throughout the literature, the task of defining Big Data has proven rather complicated, 
without a universally accepted definition [5]. Recently, Senthilkumar et al. [5] provided a 
definition specifically for healthcare, categorizing Big Data into six V’s: Volume, Variety, 
Velocity, Veracity, Variability, and Value. We employ three publicly available Medicare 
‘Big Data’ datasets released by The Centers for Medicare and Medicaid Services (CMS): 
1. Medicare Provider Utilization and Payment Data: Physician and Other Supplier (Part 
B), 2. Medicare Provider Utilization and Payment Data: Part D Prescriber (Part D), and 
3. Medicare Provider Utilization and Payment Data: Referring Durable Medical Equip-
ment, Prosthetics, Orthotics and Supplies (DMEPOS). The data begins in either 2012 or 
2013 and ends in 2016 (which was released June 2018). Note that neither 2017 or 2018 
is currently available for these Medicare datasets. These CMS datasets include payment 
information for claims submitted to Medicare, payments made by Medicare, and other 
data points related to procedures performed, drugs administered, or supplies issued. 
Both individually and combined, the Medicare datasets provide an extensive view into a 
physician’s annual claims, across three major parts of Medicare. Furthermore, we utilize 
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the the Office of Inspector General’s (OIG) List of Excluded Individuals and Entities 
(LEIE) [6] to generate fraud labels since CMS does not provide any fraud information. 
For further detail related to Medicare and Medicare fraud, we refer the reader to [7–11].

Even though there are far fewer fraudulent physicians, they still contribute to large 
financial losses. Many citizens depend on healthcare, especially the elderly population, 
which comprises the majority of Medicare beneficiaries. The Federal Bureau of Investi-
gation (FBI) concluded that fraud accounts for 3–10% of healthcare costs [12]. Through-
out the United States, in 2017, healthcare generated approximately $3.5 trillion in 
spending [13], with Medicare contributing around 20% [14], receiving roughly $592 mil-
lion in federal funding while spending up to $702 billion. This translates to around $105 
billion to $350 billion lost from fraud per year, with $21 billion to $70 billion from Medi-
care alone. In order to relate these monetary values to number of affected citizens, the 
average healthcare cost in the United States, per person, per year, is about $10,000 [15]. 
Therefore, if healthcare fraud was eliminated altogether, a potential 35 million ($350 bil-
lion/$10,000) more Americans could receive full medical assistance per year, with about 
6 million from Medicare alone. This demonstrates the potential impact of minimizing 
fraud. Note, healthcare spending is forecast to increase more than 4% per year through 
2026 [13].

A number of studies employed the CMS Medicare datasets to detect fraudulent physi-
cian behavior through data mining, machine learning and other analytical methods [16, 
17], with a large portion of these studies using only Part B data [18–22]. Even though the 
Part B dataset is comprehensive in its own right, employing only one Medicare part lim-
its the comprehensive assessment of fraud detection performance available to a machine 
learning model compared to multiple parts. There are a few studies that utilized multiple 
parts of Medicare including [23–25]. Branting et al. [23] used the Part B (2012–2014) 
and Part D (2013) datasets. They utilize the LEIE for determining fraud labels through 
their identity-matching algorithm centered around a physician’s National Provider Iden-
tifier (NPI) [26]. Through this algorithm, they matched over 12,000 fraudulent physi-
cians, but the authors were not as discriminatory in fraud label mapping as we are in 
this study, leading to the possible inclusion of physicians excluded for charges unrelated 
to fraud. The authors employed sampling, balancing their dataset to a 50:50 class ratio. 
The authors may have benefited from examining other class ratios, possibly without 
removing as many non-fraudulent instances. They developed a method for discriminat-
ing fraudulent behavior by determining the fraud risk using graph-based features in con-
junction with a decision tree learner resulting in good overall fraud detection. In [24], 
Sadiq et al. employ Part B, Part D, and DMEPOS datasets, but limit their study to Florida 
only. They venture to find anomalies that possibly indicate fraudulent or other interest-
ing behavior. The authors use an unsupervised method (Patient Rule Induction Method 
based bump hunting) to try to detect peak anomalies by spotting spaces of higher modes 
and masses within the dataset. They conclude that their method can accurately charac-
terize the attribute space of CMS datasets. In [25], we conducted an exploratory study 
to determine which part of Medicare and which learner allows for the better detection 
of fraudulent behavior. We used all available years from 2015 and before, while fraud 
labels were generated through LEIE mapping. However, in [25], our experiments were 
conducted to show the feasibility of Medicare fraud detection, without focusing on the 
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problem of class imbalance, rarity, or any methods to mitigate adverse effects on model 
performance. Unfortunately, even with these and the other research currently available, 
according to [27], current methods are not significantly decreasing monetary losses fac-
ing the US healthcare system. Therefore, we continue the efforts to detect Medicare 
fraud in order to decrease monetary loss due to real-world fraud.

In real-world practice, machine learning models are built on a full training dataset and 
evaluated on a separate test dataset consisting of new, unseen data points (i.e. hold-out 
set). We denote this evaluation method as Train_Test, and emulate this process by split-
ting the CMS datasets into training datasets (all years prior to 2016) and test datasets 
(the full 2016 year). In essence, the problem can be summarized as: can a model accu-
rately detect new, known fraudulent physicians (from 2016) based on historical patterns 
of fraud (prior to 2016)? The results from the Train_Test method will provide a clear 
evaluation of fraud detection performance with Medicare claims data using machine 
learning. Furthering this sentiment, Rao et al. [28] discuss that: “Any modeling decisions 
based upon experiments on the training set, even cross validation estimates, are suspect, 
until independently verified [by a completely new Test dataset].” Unfortunately, in prac-
tice, the means to generate both a separate training and test set is limited, such as when 
the number of positive cases are too few or when only prior data is available. Therefore, 
we also conduct all of our experiments using Cross-Validation (CV). CV emulates the 
Train_Test method by splitting a single dataset into smaller training and test datasets 
for building and evaluation. This allows practitioners to assess prediction performance 
without a separate test dataset. For our experiments, we apply CV to our training data-
sets, and through comparisons with Train_Test results, we determine if CV can be a 
useful substitute. There are different variants of CV including: k-fold, stratified k-fold, 
leave-p-out, and holdout [29]. In this study, our experiments employ stratified k-fold CV 
due to its usefulness and ubiquity in machine learning as well as the its focus on creating 
balanced class distribution across folds.

We present our novel procedure for data processing and fraud label mapping, to cre-
ate our Medicare datasets. These Medicare datasets, with the added LEIE fraud labels, 
have severely imbalanced class distributions. In order to assess the effects of severe class 
imbalance and rarity, in addition to these original datasets, we generate datasets with 
growing class imbalance and increasing degrees of rarity by randomly removing positive 
class instances (i.e. lowering PCC). We also perform data sampling, specifically random 
undersampling (RUS), to determine whether sampling can effectively mitigate the nega-
tive effects of severe class imbalance and class rarity. For each original and generated 
dataset, we created five additional datasets with varying class ratios, ranging from bal-
anced (50:50) to highly imbalanced (1:99). We evaluate our results over three different 
learners, across all Medicare parts and the combined dataset, using the area under the 
receiver operating characteristic (ROC) curve (AUC) and significance testing. Our study 
has several goals. Primarily, we are determining the effects severe class imbalance and 
rarity have on the Train_Test evaluation method in Medicare fraud detection, which to 
the best of our knowledge, we are the first to study. We also compare the Train_Test 
method to CV, across all experimental configurations. Lastly, we examine overall trends 
across Train_Test and CV to determine the optimal model configuration in terms of 
data sampling ratio and learner. From the Train_Test results, we determine that for 
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the severely imbalanced Medicare claims, machine learning was able to discriminate 
between real-world fraudulent and non-fraudulent physician behavior reasonably well, 
but as the PCC trended toward rarity, the results generally decreased over all experi-
ments. Overall, the results show that Train_Test significantly outperforms CV. Even so, 
we conclude that when necessary CV can be a viable substitute, but a practitioner should 
note that estimates may be conservative. Moreover, CV was similarly affected by severe 
class imbalance and rarity. Data sampling was demonstrated to mitigate the effects of 
having such a limited number of positive class instances, where the best class ratios were 
those with slightly larger negative class representation (i.e. less balanced).

The rest of the paper is organized as follows. The  "Related works" section presents 
related works, focusing on studies that employ datasets with class rarity. We discuss the 
Medicare and LEIE datasets in the "Data" section, and summarize our data processing 
and fraud label mapping. We discuss the concepts of severe class imbalance and rarity 
in  the "Severe class imbalance and rarity" section and explain the Train_Test and CV 
evaluation methods in "Train_Test and Cross-Validation" section. In "Methods/experi-
mental" section, we outline the learners, performance metrics, and significance testing. 
We then present our experimental results in "Discussion and results" section. Finally, we 
conclude our study and present future work.

Related works
Throughout the previous academic literature, class imbalance has been widely studied, 
and as in the real-world, there are many cases where there is a large disparity between 
classes, such as online shopping (making purchase/not making purchase) [30] and 
healthcare fraud (fraud/non-fraud). The majority of these studies employ smaller data-
sets [31–36]. Experiments using class imbalance with smaller data, could provide a basic 
understanding of the effects that class imbalance has on Big Data, but will be limited 
in understanding specific concerns when using Big Data. For instance, we determined 
throughout our research, when applying sampling in machine learning, a balanced ratio 
(50:50) is not as beneficial for Big Data as it is for smaller datasets, at least in the Medi-
care fraud detection domain. Studies that focus on class rarity are far less common [2, 
37]. With regards to the research presented in this paper, we limit our discussion to 
studies that employ Big Data for studying class imbalance in relation to rarity.

In [38], Hasanin et  al. use four real-world Big Data sources from the sentiment140 
text corpus and the UCI Machine Learning Repository in order to assess the impacts of 
severe class imbalance on Big Data. To supplement to the original datasets, the authors 
generate additional datasets ranging from imbalanced to severely imbalanced with the 
positive class percentages of 10%, 1%, 0.1%, 0.01%, and 0.001%. They use the Random 
Forest (RF) learner on both Apache Spark and H2O Big Data frameworks to assess 
classification performance, determining that that 0.1% and 1.0% can provide adequate 
results. They also experimented with data sampling, specifically RUS, and determined 
that balanced class ratios provided no benefit over the full datasets. Even though 0.001% 
is a very large disparity between classes, the authors do not generate any datasets that 
qualify as a rarity. Fernandez et al. [3] provide a literature survey and experimentation 
focused on Big Data and class imbalance. They employ Hadoop with MapReduce using 
the Spark Machine Learning Library (MLlib) [39] versions of undersampling (RUS) and 
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oversampling (ROS), and Synthetic Minority Over-sampling Technique (SMOTE). The 
authors compare RUS, ROS, and SMOTE over two Big Data frameworks using two 
imbalanced datasets, derived from the ECBDL14 dataset, which consist of 12 million 
and 600,000 instances, 90 features and class ratios of 98:2 (majority:minority). They 
compare these methods across two learners, RF and Decision Tree. They determine that 
as the number of partitions decreases, RUS has better performance, while ROS performs 
better with a larger number of partitions, while SMOTE performed inadequately across 
all experiments. They also recommend that newer, more advanced Big Data frame-
works, such as Apache Spark, should be used compared to more dated frameworks. The 
authors do not remove any positive class instances in order to study the effects of rar-
ity nor severe class imbalance. Another work by Rastogi et  al. [40], use the ECBDL14 
dataset, with 1.7% positive class representation (PCC = 48,637) and a total of 2.8 mil-
lion instances and 631 features. They split the data 80% for training and 20% for test-
ing. They compare Python SMOTE to their own version of SMOTE based on Locality 
Sensitive Hashing implemented in Apache Spark, demonstrating their model is superior. 
The authors do not test their method on a dataset with a rare number of positive class 
members.

Two studies that employ relatively Big Data with rarity are [41] and [42]. Dong et al. 
[41] develop a deep learning model for very imbalanced datasets, employing batch-
wise incremental minority class rectification along with a scalable hard mining prin-
ciple. They evaluate their method’s performance on a number of datasets, including a 
clothing attribute benchmark dataset (X-domain) with a PCC of 20 and 204,177 nega-
tive class instances (clothing attributes dataset). This dataset contains multiple classes, 
but they also test a binary dataset with 3713 positive instances and 159,057 negative. 
Through their experiments, they found their method was superior, with a minimum 
3–5% increase in accuracy, with the additional benefit of being up to seven times faster. 
In [42], Zhai et al. utilize seven different datasets from various data sources including 
one artificial dataset with 321,191 negative class instances and 150 positive. They devel-
oped an algorithm based on MapReduce and ensemble extreme learning machine (ELM) 
classifiers, and determine their method superior compared to three different versions 
of SMOTE. Through Zhai et al’s. research, it is hard to infer the effects of rarity of the 
aforementioned dataset because their datasets are gathered from multiple sources. In 
order to determine the effects of rarity and the ability of their model, it would have been 
beneficial if datasets from the same source were tested with varying PCC values.

In a study conducted by Tayal et al. [43], the authors perform experiments with real-
world datasets derived from the standard KDD Cup 1999 data, where the largest con-
tained 812,808 instances. The positive class made up 0.098%, with a PCC of around 800, 
qualifying this dataset as severely imbalanced, but not rarity. This latter point is because 
800 instances could still provide a reasonable level of discrimination for a machine learn-
ing model. They determined that their RankRC method was able to outperform several 
SVM methods and was more efficient with processing speed and space required. Maal-
ouf et al. [44] present a truncated Newton method in prior correction logistic regres-
sion (LR) including an additional regularization term to improve performance. They also 
employ the KDD Cup 1999 dataset, along with six others. The largest dataset they use 
has 304,814 instances with the positive representation at 0.34%, translating to a PCC of a 



Page 7 of 33Herland et al. J Big Data            (2019) 6:21 

little over 1000. In [45], Chai et al. generate a dataset from a manufacturer and user facil-
ity device experience database with the goal of automatically identifying health informa-
tion technology incidents. The subset consists of 570,272 instances with a PCC of 1534. 
They generate two additional subsets, one balanced (50:50) and another with 0.297% 
class representation. They employ statistical text classification through LR. These studies 
utilize data that can be described as relatively big, but do not assess the effects of rarity.

Zhang et al. [30] discuss the vast amounts of data created from online shopping web-
sites and the large imbalance between purchases made versus visits made without a 
purchase. The level of imbalance quickly escalates when considering high spending 
customers (i.e. over $100). They found that in a week, a retail website had 42 million 
visits with only 16,000 purchases resulting in a ratio of 1:2,500, while high spending cus-
tomers were 1:10,000. They developed an adaptive sampling scheme that samples from 
severely imbalanced data. Through this method, the authors ensure that when sampling 
data, they obtain a satisfactory number of positive class instances by searching through 
the original data. We would argue that when the effects of imbalance can be solved by 
searching for more available positive class instances, then the domain in question does 
not suffer from the traditional effects attributed to class imbalance even if that ratio is 
(1:10,000) or worse. The real effects of severe class imbalance and rarity are felt when, 
throughout all available data, the resultant PCC is so minimal, a machine learning algo-
rithm cannot discriminate useful patterns from the positive class. As mentioned, we 
note that the number of available real-world fraudulent physicians matching with the 
CMS Medicare datasets are decreasing, moving the Medicare fraud detection domain 
towards rarity. To the best of our knowledge, we are the first study to assess the effects of 
class rarity using the Train_Test evaluation method with Medicare Big Data using real-
world fraud labels.

Data
In this section, we summarize the Medicare datasets, LEIE, and our data preparation 
and feature engineering. In conjunction to our brief summary, we provide discussions in 
[25] to cover all data-related details not specifically covered in this work. Since this study 
aims to predict fraudulent behavior as it appears in real-world medical practice, we uti-
lize the LEIE, which currently contains the most comprehensive list of real-world fraud-
ulent physicians throughout the United States. To the best of our knowledge, there is no 
publicly available database containing both provider claims activity and fraud labels, and 
therefore, we use the LEIE to supplement the Medicare datasets, allowing for an accu-
rate assessment of fraud detection performance. Additionally, we detail our training and 
test datasets, outlining the differences, and discuss our processes.

We utilize three publicly available Medicare datasets maintained by the CMS: Part 
B, Part D, and DMEPOS [46–48]. CMS is the Federal agency within the US Depart-
ment of Health and Human Services that manages Medicare, Medicaid, and several 
other health related programs. These Medicare datasets are derived from administra-
tive claims data for Medicare beneficiaries enrolled in the Fee-For-Service program, 
where all claims information is recorded after payments are made [49–51], and thus we 
assume these datasets are already reasonably cleansed. We employ all years currently 
available for all three parts, where Part B is available for 2012 through 2016 and Part D 
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and DMEPOS are available for 2013 through 2016. The Part B dataset provides claims 
information for each procedure a physician performs. The Part D dataset provides infor-
mation pertaining to the prescription drugs they administer under the Medicare Part D 
Prescription Drug Program. The DMEPOS dataset provides claims information about 
medical equipment, prosthetics, orthotics, and supplies that physicians referred patients 
to either purchase or rent from a supplier. Physicians are identified using their unique 
NPI established by CMS [26]. Part B and DMEPOS have all procedures labeled by their 
Healthcare Common Procedure Coding System (HCPCS) code [52], whereas Part D has 
each drug labeled by its brand and generic name. We create a training and test dataset 
for each Medicare part. The training datasets encompass all available years of Medicare 
data prior to 2016, for each Medicare part, by appending each annual dataset, aggre-
gated over matching features. The test datasets were created using the same process, but 
only include the latest 2016 data. We also develop training and test combined datasets, 
which integrate features from all three Medicare parts, joined by NPI, provider type, and 
year (excluding the gender variable from DMEPOS). We develop the combined dataset 
because, in practice, a physician could submit claims to multiple Medicare parts with 
no dependable way of determining within which part a physician will target their fraud 
behavior. Through combining information relating to procedures, drugs and equipment, 
we are utilizing a more encompassing view of a physician’s behavior for machine learn-
ing. One limitation to combining Medicare datasets is that it is only applicable to phy-
sicians who submit claims to multiple Medicare parts. The combined training dataset 
consists of the years 2013 through 2015, while the test set is only 2016.

From these Medicare datasets, we select the features specifically related to claims 
information and a select physician-specific data points, as we believe they provide value 
and are readily usable by machine learning models. Table 1 demonstrates the features 
chosen for our study. Note the exclusion feature is generated through mapping to the 
LEIE, creating the fraud or non-fraud labels for classifying physicians. We excluded 
repetitious features including physician names, addresses, or code descriptions as they 
provide no extra value. We also did not include several features containing missing or 
constant values. NPI was used for identification purposes but not for building the mod-
els, and other features, such as Medicare participation, were used for data filtering. Also 
features, like standardized payments and standard deviation values, are removed since 
they are not present in all of the Medicare years. Details on all of the available Medicare 
features can be found in the “Public Use File: A Methodological Overview” documents, 
for each respective dataset, available at [49–51].

The LEIE was established and is maintained by the Office of Inspector General 
(OIG) [53] under the authority of Sections 1128 and 1156 of the Social Security Act 
[6]. The LEIE [54] contains information such as reason for exclusion, date of exclu-
sion, and reinstate/waiver date for all current physicians who violated established 
rules and were found unsuitable to practice medicine. The LEIE, unfortunately, con-
tains the NPI values for only a small percentage of physicians and entities within its 
database, contributing to the large class imbalance found after fraud labels are added 
to the Medicare datasets. We note that 38% of providers convicted of fraud continue 
practicing medicine and 21% of providers with fraud convictions were not suspended 
from practicing medicine, despite being convicted [55]. There are different categories 
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of exclusions, based on severity of offense. As shown in Table  2, we chose only the 
mandatory non-permissive exclusions. We use these excluded providers as fraud 
labels in all of our training and test datasets. Note, the LEIE does not provide within 
which program a physician perpetrated their offenses (i.e. Medicare), meaning these 
excluded physicians were not necessarily convicted for committing criminal activities 
within Medicare, but we assume that a physician who commits such acts would con-
tinue their fraudulent behavior when submitting claims to Medicare.

The LEIE is aggregated at the provider-level (i.e. a single recorded exclusion per 
provider by NPI) and does not contain information regarding procedures, drugs or 

Table 1 Description of features chosen from the Medicare datasets

* Not used in building models

** Not used in the combined dataset

Datasets Feature Description Type

Combined Part B npi* Unique provider identification number Categorical

provider_type Medical provider’s specialty (or 
practice)

Categorical

nppes_provider_gender Provider’s gender Categorical

line_srvc_cnt Number of procedures/services the 
provider performed

Numerical

bene_unique_cnt Number of distinct Medicare benefi-
ciaries receiving the service

Numerical

bene_day_srvc_cnt Number of distinct Medicare benefi-
ciary / per day services performed

Numerical

average_submitted_chrg_amt Average of the charges that the pro-
vider submitted for the service

Numerical

average_medicare_payment_amt Average payment made to a provider 
per claim for the service performed

Numerical

Part D npi* Unique provider identification number Categorical

specialty_description Medical provider’s specialty (or 
practice)

Categorical

bene_count Number of distinct Medicare benefi-
ciaries receiving the drug

Numerical

total_claim_count Number of drug the provider admin-
istered

Numerical

total_30_day_fill_count Number of standardized 30-day fills Numerical

total_day_supply Number of day’s supply Numerical

total_drug_cost Cost paid for all associated claims Numerical

DMEPOS referring_npi* Unique provider identification number Categorical

referring_provider_type Medical provider’s specialty (or 
practice)

Categorical

referring_provider_gender** Provider’s gender Categorical

number_of_suppliers Number of suppliers used by provider Numerical

number_of_supplier_beneficiaries Number of beneficiaries associated by 
the supplier

Numerical

number_of_supplier_claims Number of claims submitted by a sup-
plier due to an order by a referring 
order

Numerical

number_of_supplier_services Number of services/products rendered 
by a supplier

Numerical

avg_supplier_submitted_charge Average payment submitted by a 
supplier

Numerical

avg_supplier_medicare_pmt_amt Average payment awarded to suppliers Numerical

All Exclusion Fraud labels from the LEIE database Categorical
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equipment related to fraudulent activities. Therefore, we transform the Medicare data to 
the provider- (or NPI-) level, and then map LEIE exclusion labels (fraud and non-fraud) 
to each Medicare dataset by NPI and year. The transformation process consists of group-
ing the data by provider type (such as Cardiology), NPI, and gender (if available), and 
aggregating over each procedure/drug name and place of service/rental type. In order to 
minimize information loss from aggregation, we generate additional numeric features for 
each original numeric feature located in Table 1, including: mean, sum, median, stand-
ard deviation, minimum, and maximum. In preparing our categorical variables for data 
mining, we utilized one-hot-encoding, which creates new binary features for each option 
within a categorical variable, assigning a one or zero based on membership. Physicians 
are labeled as fraudulent for claims within their exclusion period and the period prior to 
their recorded exclusion start date. The reason we decided to include claims submitted 
during the exclusion period is that these are payments that should not have been fulfilled 
by Medicare, and could be considered fraudulent per the federal False Claims Act (FCA) 
[11]. We include claims prior to the exclusion start date due to these potentially consist-
ing of the fraudulent activities that resulted in the physician being placed on the LEIE, 
including criminal convictions, patient abuse or neglect, or revoked licenses.

Table  3 summarizes each dataset used in our study, detailing the number of features, 
number of fraudulent and non-fraudulent instances, and the percentage of fraudulent 
cases after aggregation, one-hot-encoding and fraud labeling. The main difference between 
the training and test datasets are in the provider type labels within the 2016 CMS data-
sets, as they were either entered incorrectly, slightly different, or completely changed. We 
adjusted as many of these these provider type labels as possible when processing the 2016 

Table 2 Selected LEIE rules

Rule number Description Exclusion period

1128(a)(1) Conviction of program-related crimes 5 years

1128(a)(2) Conviction due to patient abuse or neglect 5 years

1128(a)(3) Felony conviction due to healthcare fraud 5 years

1128(b)(4) License revocation or suspension 5 years

1128(b)(7) Fraud, kickbacks and other prohibited activities 5 years

1128(c)(3)(g)(i) Conviction of two mandatory exclusion offenses 10 years

1128(c)(3)(g)(ii) Conviction of 3 mandatory exclusion offenses Indefinite

Table 3 Summary of final datasets: train and test

Dataset Features Non-fraud Fraud % Fraud

Train Part B 126 3,691,146 1409 0.038

Part D 126 2,098,715 1018 0.048

DMEPOS 145 862,792 635 0.074

Combined 173 759,267 473 0.062

Test Part B 126 999,815 99 0.010

Part D 123 744,918 135 0.018

DMEPOS 119 290,548 75 0.026

Combined 171 256,529 55 0.021
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datasets (test datasets) to match them to the training dataset labels. A few examples are: 
Obstetrics and Gynecology to Obstetrics/Gynecology, Radiation Therapy Center to Radia-
tion Therapy, and Oral Surgery (Dentists only) to Oral Surgery (dentists only). In addition, 
there were other provider types that were added or removed, which we were unable to 
match between the training and test datasets. To the best of our knowledge, there is no 
documentation discussing differences in provider types between years. For the Train_Test 
evaluation method, we removed any non-matching physician type from both the training 
and test datasets (after one-hot encoding), such as Hospitalist which was added in 2016 
and Physical Therapist which was removed starting in 2016. The removal of these non-
matching physicians does present some information loss in the Train_Test results, but we 
believe there is no significant impact on the results as this is a minimal modification. We 
document these non-matching provider types in Table 7 in Appendix A.

Severe class imbalance and rarity
Having a large difference between the number of majority and minority class instances 
can create bias towards the majority class when building machine learning models. This 
is known as class imbalance [56], which presents issues for machine learning algorithms 
when attempting to discriminate, often complex, patterns between classes, particularly 
when applied to Big Data. Rarity is an exceptionally severe form of class imbalance. In 
real-world situations, when severe class imbalance and rarity are present, the minority 
class is generally the class of interest [2]. When employing Big Data in machine learn-
ing, severe class imbalance and rarity exhibit a large volume of majority class instances, 
increased variability, and disjuncts. Small disjuncts are associated with issues, such 
as between- and within-class imbalance [1] and [57]. Generally, a learner will provide 
more accurate results for large disjuncts, which are created based on a large volume of 
instances. Large disjuncts can overshadow small disjuncts, leading to overfitting and mis-
classification of the minority class due to the under-representation of subconcepts [58].

Table 4a demonstrates the level of class imbalance present in each Medicare data-
set, split by year. We observe that the number and percentage of fraudulent instances 
matching between the LEIE and the Medicare datasets decreases every year, across 
each dataset. There are a few possibilities explaining this decrease, including the con-
tinued efforts to remove fraudulent physicians from practice, fraudulent physicians 
more efficiently avoiding detection, law enforcement shifting focus from physician 
fraud, or the deterrent effect of technological advances in fraud detection. We also 
note from the labeled Medicare datasets that each year, the non-fraudulent instances 
generally increase at a faster rate than the fraudulent cases are decreasing. These 
two observances are pushing the imbalance in fraud instances from severe to rarity. 
Therefore, rarity is an important topic to study in Medicare fraud detection, and in 
order to study rarity, we generate additional training datasets as shown in Table 4b. 
All non-fraudulent instances are kept, while we remove a number of fraudulent 
instances, achieving further levels of severe class imbalance and rarity. The PCCs in 
these new generated datasets range from 1000 to 100, based on original number of 
fraudulent instances. These PCCs were further chosen, based on preliminary results, 
which demonstrate that these adequately represent class rarity in Big Data. In order 
to get a thorough representation of fraudulent instances, we generate ten different 
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datasets by re-sampling for each dataset/PCC pair. For example, with regard to the 
200 PCC for the Part D, we randomly select 200 instances from the original 1018, 
with this process repeated ten times. The final result for each dataset/PCC pair is the 
average score across all ten generated rarity subsets.

Data sampling is used to minimize the effects caused by severe class imbalance and 
rarity, from which there are two main branches: oversampling and undersampling. 
Oversampling generates new minority instances while undersampling removes major-
ity instances. The goal of data sampling is adjusting the datasets to a given ratio of 
majority and minority representation. Oversampling has a few disadvantages, includ-
ing decreased model generalization due to its process of duplicating existing minor-
ity class instances [59] and the increased processing time due to these additional 
instances. For these reasons and based on our prior research where oversampling has 
been shown to decrease fraud detection [60], we select RUS. The main drawback of 
RUS is the potential removal of useful information, but it is beneficial when applied 
to Big Data as removing instances decreases both required computing resources and 
build time, as well as being supported by [38] and [56]. As we employ RUS, our goal 
is to incur minimal information loss while simultaneously removing the maximum 
number of majority instances (i.e. determine which ratio delivers the best fraud detec-
tion). Therefore, we chose the following class ratios: 1:99, 10:90, 25:75, 35:65, and 50:50 
(minority:majority), including the full, non-sampled datasets as the baseline (labeled 
as Full). In applying these ratios, we generate ten datasets for each original and gener-
ated training dataset, to reduce bias due to poor random draws. These ratios were cho-
sen because they provide a good distribution, ranging from balanced 50:50 to highly 
imbalanced 1:99 [61]. Note, for Train_Test, when applying RUS or creating the severe 
class imbalance and rare subsets, only the training datasets are sampled, as they build 
the model, while test datasets are kept unaltered for model evaluation.

Table 4 Summary of Medicare datasets

Year Part B Part D DMEPOS Combined

Fraud %Fraud Fraud %Fraud Fraud %Fraud Fraud %Fraud

(a) By year

2012 546 0.062 – – – – – –

2013 403 0.044 465 0.069 323 0.110 229 0.090

2014 285 0.030 329 0.047 193 0.068 154 0.061

2015 175 0.018 224 0.031 119 0.041 90 0.035

2016 99 0.010 135 0.018 75 0.026 55 0.021

PCC Part B Part D DMEPOS Combined

Fraud %Fraud Fraud %Fraud Fraud %Fraud Fraud %Fraud

(b) Class imbalance and rarity

All 1409 0.038 1018 0.048 635 0.074 437 0.062

1000 1000 0.027 – – – – – –

400 400 0.011 400 0.019 400 0.046 – –

200 200 0.005 200 0.010 200 0.023 200 0.026

100 – – 100 0.005 100 0.012 100 0.013
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Train_Test and Cross‑Validation
In this study, we employ the Train_Test evaluation method, which uses a training dataset 
for building the model, and evaluate this model using a separate, distinct test dataset, as 
demonstrated in Fig. 1a. Instances from the test dataset are completely new, and never 
used for model building. Examining the Train_Test method’s performance is necessary 
for assessing whether, based on past occurrences, a model can accurately predict new 
occurrences. Through our experimentation, Train_Test will determine, based on prior 
Medicare data (years < 2016), whether a physician can be accurately classified as fraudu-
lent or non-fraudulent given Medicare data from the most recently released 2016 data-
sets. We are also assessing how rarity effects the Train_Test method’s results, which is 
especially important since known fraudulent instances are decreasing year-over-year.

Additionally, we also use CV in order to compare results and determine whether 
employing CV estimates are similar to results from the Train_Test evaluation method. 
For CV, we use training datasets that were not altered to match the test datasets, as 
CV does not employ the test dataset. CV is very popular among the Data Mining and 
Machine Learning community [62] as an evaluation method for prediction performance 
in almost every application domain, and can be useful when a researcher only has access 
to prior data. We are performing this comparison with CV due to its popularity and 
potential drawbacks versus the Train_Test method. Rao et al. [28] recommend validating 
CV results with a separate test dataset. They also mention that when a model is tuned 
by a test dataset, this is no longer an accurate simulation of the real-world event. A few 
other drawbacks of CV, as found in the literature, are CV can result in large errors using 
small sample sizes [63], the error introduced by bias or variance [29, 64], and CV being 
vulnerable to high levels of variability. Therefore, by employing the 2016 test datasets 
with Train_Test, we are evaluating the viability of CV for providing estimates that lead to 
model selection in Medicare fraud detection.

Fig. 1 Flowcharts: model evaluation methods
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As mentioned, there are a number of different versions of CV and for this study, we 
chose stratified k-fold CV with k =  5. k-fold CV evenly splits a dataset into k-folds, 
allowing a learner to evaluate a single dataset (training datasets). The model is then built 
on (k − 1)fold and evaluated on the remaining fold. This is repeated until each fold has 
been used for evaluation. The results from each repeat are averaged together to give 
the final result. The process for k-fold CV is demonstrated in Fig. 1b. This allows that 
every instance located in the training dataset will be used for both model building and 
evaluation. The process of stratification is important when applying CV to highly imbal-
anced data, and even more so with rare data, which could result in a fold without a single 
fraudulent instance. Stratification ensures that all k-fold have approximately the same 
ratio of class representation as the original data. To avoid any bias caused by bad random 
draws when creating folds, we repeat the CV process 10 times for each learner/dataset 
pair. The final detection performance score is the average of all 10 CV repeats.

Methods/experimental
In this section, we discuss the learners (machine learning models), as well as the per-
formance metric and significance testing which will be used to evaluate the influence 
of severe class imbalance and rarity on Medicare fraud detection. Since our Medicare 
datasets have such a large volume of data, we required a machine learning network that 
can handle Big Data. Therefore, we employ Apache Spark [65] on top of a Hadoop [66] 
YARN cluster for running and validating our models using their implemented MLlib. 
Apache Spark is a unified analytics engine capable of handling Big Data, offering dra-
matically quicker data processing over traditional methods or other approaches using 
MapReduce. The MLlib provided by Apache is a scalable machine learning library built 
on top of Spark.

Learners

From Apache Spark 2.3.0 [67] MLlib [68], we chose LR [69], and two tree-based mod-
els: RF and Gradient Tree Boosting (GTB) [70]. As of this study, Spark’s MLib has eight 
available classifiers. We chose these three based on preliminary research where other 
learners provided relatively worse fraud detection, such as Multilayer Perceptron or 
Naive Bayes. We used default configurations for each learner, unless noted otherwise. 
In Appendix B, we provide detailed descriptions for each learner, as well as indicate any 
configuration modifications.

Performance metric

In order to evaluate the fraud detection performance of each learner, we use the Area 
Under the Receiving Operator Curve (ROC) Curve (AUC) [71, 72]. AUC has dem-
onstrated itself quite capable as a metric for quantifying results for machine learning 
studies employing datasets with class imbalance [73]. AUC shows performance over 
all decision thresholds, representing the ROC curve as a single value ranging from 
0 to 1. An AUC of 1 denotes a classifier with perfect prediction for both the positive 
and negative classes, 0.5 represents random guessing, and any score under 0.5 means 
a learner demonstrated predictions worse than random guessing. The ROC curve is a 
plot comparing false positive rate (1 − specificity) against true positive rate (sensitivity), 
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and is commonly used to visually represent binary classification results. The false posi-
tive rate is calculated by FP

FP+TN
 and measures the number of negative instances (non-

fraud) incorrectly classified as positive (fraudulent) in proportion to the total number of 
instances labeled as negative, also known as a false alarm rate. True positive rate is cal-
culated by TP

TP+FN
 and measures the number of positive instances correctly classified as 

positive in proportion to the total number of instances labeled as positive. This relation-
ship between (1 − specificity) and sensitivity, as portrayed in the ROC curve, illustrates 
a learner’s capability to discriminate between both classes.

Significance testing

We perform hypothesis testing to demonstrate the statistical significance around our 
AUC results through ANalysis Of VAriance (ANOVA) [74] and Tukey’s HSD tests [75]. 
ANOVA is a statistical test determining whether the means of several groups (or factors) 
are equal. Tukey’s HSD test determines factor means that are significantly different from 
each other. This test compares all possible pairs of means using a method similar to a 
t-test, where statistically significant differences are grouped by assigning different let-
ter combinations (e.g. group ‘a’ is significantly better than group ‘b’ in correlation to the 
issue). Both ANOVA and the Tukey’s tests explore the differences between the following 
factors: datasets, learners, PCCs, and class ratios.

Discussion and results
In this section, we discuss our experimental results, assessing the impacts of rarity on 
Medicare fraud detection, as well as provide recommendations for practitioners based 
on these results. Table 5 presents the average AUC scores for Train_Test across PCC, 
consisting of original class distribution (All) and the selected severe class imbalance and 
rarity values, split by dataset (sub-tables), learner, and class ratio. The boldfaced values 
indicate the learner/ratio pair producing the best fraud detection performance per PCC. 
The effects of class rarity are demonstrated across each dataset, where the boldfaced val-
ues decrease as the PCCs decrease, and persist across nearly every learner/ratio pair. 
We notice that across all datasets, LR frequently presents the best scores, where the 
only outlier is DMEPOS, with GBT having better results for higher PCCs. Even though 
DMEPOS demonstrates better results with tree-based learners, we observe that as PCC 
decreases, LR begins to have better results. We believe that LR’s results are due to a more 
successful strategy for handling class imbalance and rarity through regularization, which 
penalizes large coefficients (Ridge Regression) minimizing the adversities of noise and 
overfitting, leading to increased model generalization. Both GBT and RF also employ 
mechanisms to curtail the effects of noise and overfitting, but appear less robust to class 
imbalance and especially rarity, for Medicare fraud detection. Among the boldfaced val-
ues, we notice the less balanced ratios have the highest scores. Upon closer inspection, 
the 10:90 ratio most frequently scores higher across PCC/ratio pairs followed closely 
by 1:99 and Full, especially for the combined dataset. Note that the Full (non-sampled) 
results indicate good detection performance, again, showing that a good representation 
of the majority class is beneficial. We believe the diminishing results when approaching 
a balanced configuration are due to the removal of too many negative class instances, 
deterring the learner’s ability to discriminate the details of the non-fraudulent class. The 
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Table 5 AUC results for Train_Test

Learner Ratio 200 400 1000 All

(a) Part B

GBT [Full] 0.77604 0.78207 0.79080 0.78636

[1:99] 0.78453 0.79440 0.80158 0.79523

[10:90] 0.78575 0.79954 0.81324 0.81566

[25:75] 0.75562 0.78570 0.80824 0.81476

[35:65] 0.74548 0.78412 0.80523 0.81057

[50:50] 0.72767 0.76659 0.79002 0.80626

LR [Full] 0.80406 0.81686 0.82063 0.82133

[1:99] 0.80803 0.82062 0.82441 0.82542

[10:90] 0.80501 0.81933 0.82601 0.82901

[25:75] 0.79251 0.82101 0.82347 0.82675

[35:65] 0.77845 0.81197 0.82049 0.82768

[50:50] 0.76491 0.80030 0.81863 0.82109

RF [Full] 0.70754 0.73765 0.75130 0.75725

[1:99] 0.73952 0.75813 0.76869 0.77081

[10:90] 0.76287 0.77653 0.78856 0.78527

[25:75] 0.75999 0.77324 0.78079 0.78683

[35:65] 0.75139 0.76720 0.77863 0.78505

[50:50] 0.74320 0.76689 0.77646 0.78136

 Learner Ratio 100 200 400 All

(b) Part D

GBT [Full] 0.69437 0.70885 0.74099 0.74969

[1:99] 0.69356 0.71879 0.74821 0.76157

[10:90] 0.68142 0.70006 0.75261 0.78212

[25:75] 0.65184 0.69628 0.73418 0.77174

[35:65] 0.64126 0.67560 0.71313 0.77054

[50:50] 0.62193 0.65445 0.70517 0.74277

LR [Full] 0.74339 0.76832 0.78592 0.79566

[1:99] 0.73766 0.76943 0.78623 0.79714

[10:90] 0.72541 0.76436 0.78491 0.79858

[25:75] 0.71602 0.75240 0.77726 0.79431

[35:65] 0.69825 0.74023 0.77341 0.79031

[50:50] 0.68920 0.72922 0.75804 0.78866

RF [Full] 0.60202 0.62445 0.64317 0.69302

[1:99] 0.66243 0.68387 0.69370 0.73303

[10:90] 0.70282 0.72050 0.73803 0.77433

[25:75] 0.69181 0.71398 0.74121 0.76349

[35:65] 0.68118 0.70447 0.73372 0.75418

[50:50] 0.66406 0.68312 0.71714 0.75602

(c) DMEPOS

GBT [Full] 0.72688 0.75808 0.78221 0.78281

[1:99] 0.73083 0.75805 0.78426 0.79202

[10:90] 0.71749 0.74800 0.77617 0.79683

[25:75] 0.67911 0.73027 0.76314 0.78660

[35:65] 0.66527 0.69776 0.75773 0.77678

[50:50] 0.65155 0.66424 0.74161 0.75944
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combined dataset has higher scores compared to the individual datasets, as indicated by 
the boldfaced values. Possible contributing factors are that the combined dataset con-
tains a larger selection of attributes, which facilitates a broader view of physician behav-
ior over the individual parts, and that it only concentrates on providers who submitted 
claims to all three parts of Medicare.

Additionally, we perform this same experiment for Train_CV, and provide the results 
in Table 8 in Appendix C. Figure 2 presents multiple bar graphs, comparing the differ-
ences in average AUC scores between Train_Test and Train_CV across each learner, 
dataset, PCC, and ratio configuration, where each bar represents the average AUC score 
for Train_Test minus the average AUC score for Train_CV. These bar graphs demon-
strate that Train_Test outperforms Train_CV in almost all cases, the only notable 
contradiction being for the Part B dataset when employing the tree-based learners, in 
particular RF. We note that Train_Test had superior results for every configuration when 

Table 5 (continued)

 Learner Ratio 100 200 400 All

LR [Full] 0.75220 0.76024 0.77622 0.78088

[1:99] 0.74545 0.75646 0.77403 0.77819

[10:90] 0.73002 0.75079 0.76687 0.77482

[25:75] 0.70978 0.73345 0.75993 0.76963

[35:65] 0.68578 0.72187 0.75741 0.76715

[50:50] 0.67933 0.70508 0.74394 0.75723

RF [Full] 0.65576 0.71649 0.75220 0.77105

[1:99] 0.67756 0.72877 0.76250 0.78803

[10:90] 0.70214 0.73717 0.77153 0.78861

[25:75] 0.71244 0.74737 0.76301 0.78914

[35:65] 0.70956 0.72159 0.76735 0.78076

[50:50] 0.69299 0.73423 0.75302 0.77333

Learner Ratio 100 200 All

(d) Combined

GBT [Full] 0.76056 0.78431 0.83654

[1:99] 0.75698 0.79823 0.84513

[10:90] 0.74038 0.79609 0.84929

[25:75] 0.73296 0.78145 0.83126

[35:65] 0.69390 0.77744 0.82757

[50:50] 0.70015 0.75962 0.81149

LR [Full] 0.81514 0.85430 0.86888

[1:99] 0.80496 0.84899 0.86829

[10:90] 0.76965 0.82737 0.86157

[25:75] 0.73072 0.80287 0.84583

[35:65] 0.71753 0.77810 0.83743

[50:50] 0.69273 0.74712 0.81778

RF [Full] 0.62150 0.72501 0.80122

[1:99] 0.71805 0.78308 0.82193

[10:90] 0.74251 0.78836 0.82896

[25:75] 0.74442 0.77432 0.81791

[35:65] 0.73639 0.77206 0.81273

[50:50] 0.72878 0.76666 0.81375
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employing LR. This signifies that the models built using previous years (training dataset) 
and evaluated on a separate, new year (test dataset) provide better fraud detection over 
applying CV on the training dataset alone. As mentioned above, CV is susceptible to bias 
and variance, which could contribute to the moderate results compared to Train_Test. 
We observe that as PCC decreases, becoming more rare, the delta between Train_Test 
and Train_CV generally increases. We surmise that Train_Test handles imbalanced data 
and class rarity better due to the models being trained with all available positive class 
(fraudulent) instances. Thus, with Train_Test, there is a decreased chance of overfitting, 
compared to CV, where models are built using a sub-sample of instances in each fold, 
bringing the already small PCC even lower for each training dataset.

Additionally, we performed hypothesis testing to demonstrate the significance of 
our results. We used a one-factor ANOVA test for Evaluation Method (Train_Test and 
Train_CV), and assess significance over learners, datasets, ratios and PCC as shown in 
Table 9c in Appendix C. Evaluation method was significant at a 95% confidence interval, 
and therefore, we further conducted a Tukey’s HSD test, presented in Table 6, to deter-
mine the significance between fraud detection results garnered from Train_Test and 
Train_CV. The Tukey’s HSD test placed Train_Test in group ‘a’ and Train_CV in group 
‘b’ signifying that evaluating a model on a segregated test set provides significantly better 
results over building and evaluating a model through CV.

Even though the Tukey’s HSD test determined the evaluation methods are one 
group apart, we can argue that CV provides comparable results to Train_Test, albeit 

Fig. 2 Average AUC: comparing Train_Test–Train_CV
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conservative. Therefore, we present the following results for both Train_Test and Train_
CV in order to provide a thorough claim as to which learner and ratio yield the best 
results for class imbalance and rarity, as well as provide further insight into comparing 
these evaluation methods. We perform a 4-factor ANOVA test for both Train_Test and 
Train_CV, in Table 9a and b (in Appendix C), and evaluate the differences between data-
sets, learners, class ratios and PCCs. All factors and their interactions are shown as sig-
nificant, at a 5% significance level. We perform further Tukey’s HSD tests for each PCC, 
and assess any significant differences for learners (across ratios and datasets) and ratios 
(across learners and datasets), shown in Fig. 3a and b, respectively. We concentrate only 
on the results for the best scoring group (group ‘a’). For these graphs, there can be mul-
tiple combinations within a group designation, such as in Fig. 3a, for the Part D dataset 
with 200 and 400 PCC, Train_Test and Train_CV with a class ratio of 10:90, are each in 
group ‘a’, respectively. The results in Fig. 3a, show that LR contains the vast majority of 
group ‘a’ members, while Train_Test and Train_CV both have almost an identical dis-
tribution with the same number of group ‘a’ members. Therefore, regardless of model 
configuration across all PCCs, LR is able to provide the highest levels of discernment 
between fraudulent and non-fraudulent behavior patterns within each of our Medicare 
datasets. Figure 3b shows that the less balanced ratios contain the majority of group ‘a’ 
membership, with 10:90 having more representation than all other ratios combined. The 
more balanced ratios have significantly less group ‘a’ representation, where 50:50 has 
zero members. As seen with the learner results, Train_Test and Train_CV have similar 
distributions. However, Train_Test handles the more balanced datasets better, which is 
potentially due to the fact that Train_Test employs the entire training datasets whereas 
Train_CV splits the data, minimizing the already small fraud and non-fraud instances. 
Overall, from these results, we observe that for PCC, although the rarity experiments 
have similar group ‘a’ representation compared to the original class distribution, the 
overall AUC scores diminish as the level of rarity is increased. The main difference 
between evaluation methods from the learner and ratio Tukey’s test is that the Train_
Test generally has higher average AUC scores over comparable configurations. The com-
plete Tukey’s HSD results for all configurations for both learners and ratios are listed in 
Tables 10 and 11 in Appendix C.

In summary, we assessed the effects that class imbalance and rarity have on Medicare 
claims data, and compared how various machine learning techniques handle detecting 
fraudulent behavior when being subjected to these effects. Machine learning was able 
to improve results, with RUS, for the majority of the class imbalance and rarity exper-
iments presented in this work. However, we found that the rarer fraudulent instances 

Table 6 Tukey’s HSD test results for evaluation methods

Factor Level AUC Std r Min Max Group

Evaluation method Train_Test 0.74604 0.05212 1980 0.56483 0.87266 a

Evaluation method Train_CV 0.72954 0.06841 10,620 0.40944 0.88532 b
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become, the less machine learning can effectively discern fraudulent behavior from non-
fraudulent behavior. Therefore, if the PCC qualifies a Medicare claims dataset as rare, we 
recommend that a practitioner gather additional, quality data until there is a sufficient 
PCC. The Train_Test and Train_CV method, in general, had similar results, but the lat-
ter’s results were somewhat conservative in comparison. We recommend practitioners 

Fig. 3 Tukey’s HSD test results for group ‘a’
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employ the Train_Test evaluation method with LR, after applying RUS with a 10:90 class 
distribution.

Conclusion
Two significant challenges facing healthcare fraud detection are the large amounts of 
data generated (Big Data) and the significant imbalance in fraudulent versus non-fraud-
ulent behavior (class imbalance). The combination of these two issues leads to datasets 
that contain an extremely large volume of negative class instances (non-fraudulent) and 
very small numbers of positive class instance (fraudulent). In the case of fraud detection, 
the data is severely imbalanced. We focus our study on three ‘Big Data’ datasets released 
by CMS, specifically Part B, Part D, and DMEPOS (individually and combined), as well 
as the LEIE from the OIG in order to map our real-world fraud labels. We notice that the 
fraudulent physicians from the LEIE had less matching physicians between the Medi-
care datasets, each year, since CMS started releasing these datasets. Because of this, we 
experimented with further severe class imbalance leading into class rarity. We do this 
by generating additional datasets and randomly remove fraudulent instances in order 
to determine the effects of increasing rarity on real-world fraud detection performance 
(Train_Test). In order to minimize the effects of severe class imbalance and rarity, we 
also employ data sampling, with various class ratios. In applying RUS, we created a new 
dataset for each original, severe class imbalanced and rare dataset. Detecting fraudulent 
behavior is the first step towards eliminating, or at least minimizing, fraud in healthcare, 
which would allow programs such as Medicare the ability to provide medical funding to 
a larger number of beneficiaries in the United States.

Throughout our study, we employ three learners and assess model performance 
using AUC and significance testing. When utilizing the Train_Test evaluation method 
for severely imbalanced and rare datasets, we recommend building the model with LR 
and applying RUS with a 10:90 ratio. We noticed that as ratios approached balance (i.e. 
50:50), performance decreased, and as such, determine that larger non-fraudulent rep-
resentation is beneficial, with 10:90 being optimal. In practice though, a separate test 
dataset to evaluate a machine learning model may not be available due to a shortage 
of positive cases or lack of new data, and thus requires the use of other methods. To 
address this, we re-ran all experiments with CV, using the training datasets. CV emu-
lates the Train_Test method, providing model generalization and error estimates on a 
single dataset by sub-setting the dataset into smaller training and test datasets, allowing 
all instances to both build and evaluate performance. We found that Train_Test results 
were significantly better than CV, but we determine that CV can be a reliable substi-
tute, when necessary, but a practitioner should keep in mind that results will be con-
servative. CV also showed similar patterns to Train_Test in terms of observed effects 
due to severe class imbalance and rarity, as well as the improvement garnered upon 
applying RUS. Overall, we noticed that prediction performance decreased as the num-
ber of fraudulent instances trended towards rarity, and therefore, we recommend that 
when PCC becomes too small (rare), then a practitioner should search for more quality 
data in order to appropriately allow for proper discrimination between fraudulent and 
non-fraudulent instances when applying machine learning. Future work will consist of 
employing other Big Data sources from other branches of Medicare or other healthcare 
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programs, including misclassification costs, and determining methods for obtaining 
more quality real-world fraudulent physicians.
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Table 7 Provider type labels removed from train and test datasets

Dataset Not in Train Not in Test

Part B Hospitalist Psychologist (billing independently)

Dentist Pharmacy

Part D Dentist Medical supply company, other

Hospitalist All other suppliers

Individual certified prosthetist-
orthotist

Ambulance service supplier

Pharmacy

Voluntary Health or Charitable Agencies

Centralized flu

DMEPOS Hospitalist All other suppliers

Ambulatory Surgical Center

Anesthesiologist assistants

Audiologist (billing independently)

Centralized flu

Clinical laboratory

HHA (Dmercs only)

Independent diagnostic testing facility

Individual certified orthotist

Individual certified prosthetist

Mass immunization roster biller

Medical supply company, other

Medical supply with certified orthotist

Medical supply with certified prosthetist-orthotist

Medical supply with prosthetist

Medical supply with resp. therapist (Dmercs only)

Occupational therapist

Ocularist

Optician

Pharmacy (Dmercs only)

Physical therapist

Public Health Welfare Agency

Slide preparation facility

SNF (Dmercs Only)

Speech language pathologist

Supplier of oxygen and/or oxygen related equip.

Voluntary Health or Charitable Agency

Combined Hospitalist Clinical Psychologist

Occupational therapist

Physical therapist
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Appendix B
Logistic Regression predicts probabilities for which class a categorical dependent varia-
ble belongs to by using a set of independent variables employing a logistic function. This 
learner employs a sigmoidal (logistic) function to generate values between [0,1] repre-
senting class probabilities. LR is similar to linear regression but uses a different hypoth-
esis class to predict class membership [76–79]. The bound matrix was set to match the 
shape of the data (number of classes and features) allowing the algorithm to know the 
number of classes and features the dataset contains and the bound vector size was set to 
1 signifying binomial regression and no thresholds set for binary classification.

Random Forest employs sampling with replacement, creating a number of randomized 
datasets to build each tree, where features are selected automatically, at each node, 
through entropy and information gain. Each tree within the forest is dependent upon 
the values dictated by a random vector that is independently sampled and where each 
tree is equally distributed among the forest [78, 80]. The generation of random data-
sets minimizes overfitting. We build each RF learner with 100 trees. The parameter that 
caches node IDs for each instance, was set to true and the maximum memory parameter 
was set to 1024 MB in order to minimize training time. The setting that manipulates the 
number of features to consider for splits at each tree node was set to one-third, since this 
setting provided better results upon initial investigation. The maximum bins parameter 
determines the max number of bins to be used for discretizing continuous features, and 
is set to 2 since we converted our categorical features through one-hot encoding.

Gradient Boosted Trees is an ensemble of decision trees which trains each decision 
tree individually in order to minimize loss determined by the algorithm’s loss function. 
During each iteration, the current ensemble is used to predict the class for each instance 
in the training data. The predicted values are compared with the actual values allowing 
the algorithm to detect and improve upon previously mislabeled instances. The param-
eter that caches node IDs for each instance, was set to true and the maximum memory 
parameter was set to 1024 MB to minimize training time.

Appendix C
See Tables 8, 9, 10, 11.
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Table 8 AUC Results for Train_CV

Learner Ratio 200 400 1000 All

(a) Part B

GBT [Full] 0.75982 0.78328 0.79120 0.79569

[1:99] 0.76740 0.79520 0.80378 0.80373

[10:90] 0.76032 0.79377 0.81847 0.82064

[25:75] 0.74964 0.78624 0.81464 0.81948

[35:65] 0.73271 0.77326 0.80600 0.81434

[50:50] 0.71530 0.75244 0.79563 0.80499

LR [Full] 0.77162 0.78921 0.80019 0.80516

[1:99] 0.78282 0.79295 0.81119 0.81238

[10:90] 0.77752 0.79680 0.81465 0.81881

[25:75] 0.76797 0.79746 0.81507 0.81686

[35:65] 0.75771 0.79061 0.81336 0.81806

[50:50] 0.73414 0.78012 0.80964 0.81415

RF [Full] 0.71510 0.73806 0.78110 0.79604

[1:99] 0.74846 0.77197 0.80579 0.81586

[10:90] 0.76661 0.79117 0.81933 0.83012

[25:75] 0.76031 0.79187 0.81641 0.82703

[35:65] 0.75699 0.78061 0.81299 0.82156

[50:50] 0.74994 0.77298 0.80448 0.81496

Learner Ratio 100 200 400 All

(b) Part D

GBT [Full] 0.68101 0.71044 0.73932 0.74851

[1:99] 0.68871 0.70412 0.74731 0.75727

[10:90] 0.66033 0.69299 0.74381 0.76756

[25:75] 0.65692 0.67700 0.73008 0.76538

[35:65] 0.63219 0.66694 0.71228 0.75996

[50:50] 0.62040 0.65461 0.70773 0.74506

LR [Full] 0.72516 0.75436 0.77369 0.78164

[1:99] 0.71200 0.75396 0.77575 0.78486

[10:90] 0.71031 0.75129 0.77481 0.78657

[25:75] 0.70331 0.73115 0.77009 0.78540

[35:65] 0.67880 0.72835 0.76340 0.78216

[50:50] 0.67158 0.70696 0.74834 0.77557

RF [Full] 0.62721 0.63364 0.66818 0.70888

[1:99] 0.67627 0.68215 0.70816 0.73706

[10:90] 0.67777 0.69735 0.73538 0.75857

[25:75] 0.67634 0.69916 0.72832 0.75838

[35:65] 0.65126 0.68992 0.72510 0.74904

[50:50] 0.64951 0.68343 0.70771 0.74088

Learner Ratio 100 200 400 All

(c) DMEPOS

GBT [Full] 0.67203 0.68827 0.72125 0.73129

[1:99] 0.66654 0.68611 0.72516 0.73591

[10:90] 0.65411 0.68073 0.72241 0.73777

[25:75] 0.64571 0.66342 0.71327 0.73389

[35:65] 0.61468 0.64740 0.70118 0.72090

[50:50] 0.60699 0.63259 0.68728 0.70598
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Table 8 (continued)

Learner Ratio 100 200 400 All

LR [Full] 0.68783 0.70311 0.73615 0.74063

[1:99] 0.68960 0.69565 0.73853 0.74085

[10:90] 0.67423 0.69604 0.73498 0.74421

[25:75] 0.66667 0.68769 0.72912 0.73715

[35:65] 0.65088 0.68259 0.72463 0.73488

[50:50] 0.64590 0.66432 0.71445 0.72225

RF [Full] 0.61229 0.64745 0.69381 0.70756

[1:99] 0.64896 0.66998 0.70598 0.72245

[10:90] 0.65829 0.67671 0.72066 0.73767

[25:75] 0.65636 0.67337 0.71790 0.72889

[35:65] 0.64239 0.67054 0.71756 0.72390

[50:50] 0.63938 0.66152 0.70306 0.72379

 Learner Ratio 100 200 All

(d) Combined

GBT [Full] 0.73906 0.76623 0.79047

[1:99] 0.73626 0.78562 0.80373

[10:90] 0.72482 0.76730 0.81675

[25:75] 0.68806 0.75833 0.80405

[35:65] 0.68275 0.74855 0.79127

[50:50] 0.65960 0.72675 0.77587

LR [Full] 0.74260 0.80043 0.81554

[1:99] 0.73814 0.80060 0.82011

[10:90] 0.72508 0.78653 0.81868

[25:75] 0.69117 0.77479 0.81553

[35:65] 0.67940 0.76854 0.80998

[50:50] 0.67567 0.74588 0.79415

RF [Full] 0.64769 0.71098 0.79383

[1:99] 0.71813 0.76663 0.81515

[10:90] 0.73110 0.79011 0.82793

[25:75] 0.74162 0.77822 0.81503

[35:65] 0.72834 0.76699 0.80619

[50:50] 0.71446 0.76228 0.79546
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Table 9 ANOVA tests

Term Df Sum Sq Mean Sq F value Pr(>F)

(a) Four factor: Train_Test

Datasets 3 1.96516 0.65505 1600.558663 0

Learner 2 0.66409 0.33205 811.3215437 1.29E−270

Pos count 4 2.33669 0.58417 1427.367028 0

Ratio 5 0.30092 0.06018 147.0525251 1.17E−136

Dataset:learner 6 0.22145 0.03691 90.18221558 2.05E−102

Dataset:pos count 7 0.05788 0.00827 20.2044874 1.61E−26

Learner:pos count 8 0.03291 0.00411 10.0523189 7.04E−14

Dataset:ratio 15 0.08724 0.00582 14.21108373 2.17E−35

Learner:ratio 10 0.46537 0.04654 113.7087576 2.69E−194

Pos count:ratio 20 0.05443 0.00272 6.649302133 3.98E−18

Dataset:learner:pos count 14 0.02401 0.00171 4.189763574 2.52E−07

Dataset:learner:ratio 30 0.11577 0.00386 9.428942232 2.99E−40

Dataset:pos count:ratio 35 0.01306 0.00037 0.911606914 0.61790442

Learner:pos count:ratio 40 0.10682 0.00267 6.52539348 3.70E−32

Dataset:learner:pos count:ratio 70 0.04795 0.00068 1.673573178 4.56E−04

Residuals 2430 0.99452 0.00041 – –

(b) Four factor: Train_CV

Datasets 7 26.98719 3.85531 2641.872038 0

Learner 2 1.34356 0.67178 460.3389767 5.33E−194

Pos count 3 6.30292 2.10097 1439.702651 0

Ratio 5 1.25714 0.25143 172.2919289 3.65E−178

Dataset:learner 14 0.79698 0.05693 39.00963177 2.86E−105

Dataset:pos count 4 0.34344 0.08586 58.83679308 2.58E−49

Learner:pos count 6 0.07181 0.01197 8.201310311 7.04E−09

Dataset:ratio 35 0.32743 0.00936 6.410645904 3.43E−29

Learner:ratio 10 1.36440 0.13644 93.49620948 1.03E−187

Pos count:ratio 15 0.13786 0.00919 6.298014086 1.64E−13

Dataset:learner:pos count 8 0.04741 0.00593 4.061371638 7.71E−05

Dataset:learner:ratio 70 0.42329 0.00605 4.143770726 3.52E−28

Dataset:pos count:ratio 20 0.01735 0.00087 0.594299086 0.919852682

Learner:pos count:ratio 30 0.08452 0.00282 1.9304991 0.001663456

Dataset:learner:pos count:ratio 40 0.07660 0.00192 1.312296909 0.089594623

Residuals 13230 19.30669 0.00146 – –

(c) Two factor: Train_Test and Train_CV

Evaluation method 1 0.45439 0.45439 103.9411081 2.59E−24

Residuals 12598 55.07319 0.00437 – –
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