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Introduction
High-dimensionality is one of the attributes of big data in many fields. As stated by 
Dutheil and Hobolth [7], the shift from genetics to genomics brings to new challenges 
in data analysis. For example, when tests are performed, the global false discovery rate 
(FDR) has to be properly controlled for (p. 310). According to Kim and Halabi [12], a 
vital step in model building is dimension reduction. For example, in clinical studies, it 
is assumed that there are several variables that are associated with the outcome in the 
large dimensional data. The main purpose of the variable selection is to identify only 
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those variables which are related to the response. They have identified two steps in vari-
able selection: screening and model building. The screening step is to reduce the number 
of variables while maintaining most of the variables relevant to the response, and the 
model building step is to develop a best model (p. 1).

Fan et al. [8] argue that the complexity of big data often makes dimension reduction 
techniques necessary before conducting statistical inference. Principal component anal-
ysis (PCA), the goal of which is to find a lower dimensional subspace that captures most 
of the variation in the dataset, has become an essential tool for multivariate data analy-
sis and unsupervised dimension reduction (p. 1). But Kim et al. [13] have argued that 
although PCA and partial least squares (PLS) methods have been widely used for feature 
selection in nuclear magnetic resonance (NMR) spectra, extracting meaningful features 
from the reduced dimensions obtained through PCA or PLS is complicated because, in 
both PCA and PLS, reduced dimensions are linear combinations of a large number of 
the original features. The authors show that successful implementation of feature selec-
tion, based on their proposed multiple testing procedure of controlling FDR, is an effi-
cient method for feature selection in NMR spectra that improves classification ability 
and simplifies the entire modeling process; thus, reduces computational and analytical 
efforts (p. 1).

Miao and Niu [14] define feature selection, as a dimensionality reduction technique 
which aims to “choosing a small subset of the relevant features from the original features 
by removing irrelevant, redundant or noisy features.” They also point out that, consider-
ing the increase in both number of samples and dimensionality of data used in many 
machine learning applications such as text mining, computer vision and biomedical, fea-
ture selection can lead to better learning performance, higher learning accuracy, lower 
computational cost, and better model interpretability (p. 919). According to Bolón-
Canedo et al. [6], due to the appearance of datasets containing hundreds of thousands 
of variables, feature selection has been one of the high activity research areas (p. ix). For 
example, contemporary biological technologies produce extremely high-dimensional 
data sets with limited samples which demands feature selection in classifier design [10]. 
Fiori et al. [9] consider feature selection as one of the popular and recent data mining 
techniques applied to microarray data (p. 29).

Shmueli et al. [20] define a predictor is a variable, used as an input into a predictive 
model, also called a feature, input variable, independent variable, or from a database per-
spective, a field (p. 10). The general research question is how many predictors, should be 
included in the model being constructed.

In high-dimensional data analysis, multiple simultaneous hypothesis testing arises 
because we need to identify which null hypotheses, among many, should be reasonably 
rejected [15]. A significant finding (discovery) is a hypothesis that is rejected based on 
statistical evidence. Rejecting a null hypothesis, about the relevance of a predictor to an 
outcome, is in fact selecting the predictor as a feature that will be included in the model.

As explained by Ochoa et al. [17], each test “yields a score s and a p-value, defined as 
the probability of obtaining a score equal to or larger than s if the null hypothesis holds.” 
While a p-value threshold like 0.05 is acceptable to declare a single test significant, this is 
inappropriate for a large number of tests. Some studies are based on the E-value defined 
as: E = pN, where N is the number of tests, and yields the expected number of false 
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positives at this p-value threshold. E-values are not very meaningful when millions of 
positives are obtained, and a relatively larger number of false positives might be toler-
ated. FDR, however, is an appealing alternative approach (p. 2–3).

When performing multiple hypothesis testing, as the number of hypotheses being 
tested (m) gets bigger and bigger, using a p-value threshold (alpha), such as 0.05, for 
rejecting hypothesis based on p-values becomes problematic. p-value is a measure of the 
probability of a rejected hypothesis to be a false positive. When number of hypothesis 
being tested is big, for example 1000, the expected number of false positives is (m*alpha). 
If alpha is 0.05 this means that the expected number of false-positives among significant 
findings is less than or equal to 50.

It is anticipated that, when there are no expected true discoveries, the frequency dis-
tribution of p-values to be uniform. Which means that the proportion of tests resulting a 
p-value in any class should be the same.

Iterson et  al. [11] argue that thresholds for significance yielded by multiple testing 
methods decrease as the number of hypotheses tested increases (p. 2). The hypoth-
eses with very low p-values are the hypotheses that we might be inclined to declare as 
rejected null hypotheses, selected features, or significant discoveries; however, if we sim-
ply choose hypotheses with (for example) p-value < 0.05, the expected number of false 
positives in this subset can be very high. In other words, many of rejected hypothesis 
may be true nulls. Therefore, we reduce our p-value threshold for rejection so fewer, but 
more significant, hypotheses are rejected. Reduction of alpha, decreases the chance of 
false positives in our discovery set and thus leads to a smaller chance of false discoveries. 
Unfortunately, this may increase the false negatives. By decreasing significance threshold 
(alpha), we are accepting to have more false negatives or in other words more hypoth-
eses which should be rejected but are not.

By choosing a rejection threshold much lower than alpha, that is less than or equal 
to alpha/N, the probability of making one or more false discoveries will be less than or 
equal to alpha [22].

Dealing with N p-values, applying Bonferroni correction limits the false positive rate 
to less than or equal to alpha

If
Bonferroni corrected threshold ≤ ∝

N  is used
Then

Bonferroni correction guaranties a family-wise error rate (FWER) less than or equal 
to alpha; but this conservative measure can result in many false negatives. When the 
number of significant hypotheses is few, this measure is appropriate; because even 
expectation of one false positive in the result set is damaging. In many studies, where 
number of significant findings are many, the researcher may be able to afford a few 
more false-positives, if that will prevent many false negatives. Not detecting many 
important associations may be more harmful than probability of a few false-negative 
among many significant findings.

Expected number of false positives with Bonferroni corrected threshold ≤
∝

N
N ≤∝
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Benjamini and Hochberg [5] suggested that, instead of classical approach of using 
the FWER in the strong sense, we can control the FDR. FDR is defined as expected 
number of false discoveries (false positives among rejected hypotheses) divided by 
total number of rejected hypotheses [15]. They proved that their way of determining 
p-value threshold controls the FDR at a certain level when the p-values correspond-
ing to true null hypotheses are independent and identically distributed with a uni-
form distribution [23]. As emphasised by Storey and Tibshirani [22], the false positive 
rate and FDR are different. “Given a rule for calling features significant, the false posi-
tive rate is the rate that truly null features are called significant. The FDR is the rate 
that significant features are truly null.”

In many situations, a p-value of 0.05 may lead to a big FDR. Several algorithms have 
been proposed to consider FDR in the process of selecting significant findings. Holms 
has proposed a sequential step-down algorithm which is shown to be “uniformly 
more powerful than Bonferroni’s simple procedure.” Also, Hochberg has suggested a 
step-up procedure which is very similar to Holm’s proposed method [1].

Iterson et al. [11] explain that statistical analysis of high dimensional data, occurs 
when the number of parameters is much larger than the number of samples. It 
often involves testing of multiple hypotheses in which p-values must be corrected. 
The larger the number of hypotheses tested, the stronger the correction for multi-
ple testing must be in order to keep the error rate acceptably low. To decrease this 
penalty, and improve power, some studies select some features prior to the data anal-
ysis. But this selecting procedure, called “filtering process” can leave some features 
out of the analysis. Also, inevitably some non-features may be selected by these fil-
ters. In absence of proper filtering out of the entire range of p-values the result will 
be a biased multiple testing correction (p. 1). They conclude that: to avoid filtering-
induced FDR-bias, Alternatives, for any generic filter and test, should adapt the mul-
tiple testing correction methods that relax the assumption of uniform distribution for 
the null features in a way that filtering-induced bias is avoided (p. 10).

Many adaptive hypothesis testing procedures rely on estimates of the proportion of 
true null hypotheses in the initial pool using plugins, a single step, in multiple steps, 
or asymptotically [4]. Plug-in procedures use an estimate of the proportion of true 
null hypotheses [15]. Thresholding-based multiple testing procedures, reject hypoth-
eses with p-values less than a threshold [15]. Storey and Tibshirani [22] have pro-
posed a strategy that assigns each hypothesis an individual measure of significance 
in terms of expected FDR called q-value. Most q-value based strategies rely on some 
estimate of the proportion of true null hypotheses.

Storey [21] has argued that two steps that are involved in any multiple-testing pro-
cedure. In the first step one must rank the tests from most significant to least signifi-
cant. In the second step one must choose an appropriate significance cut-off. Storey 
focuses on performing the first step optimally, given a certain significance framework 
for the second step. Story cites Shaffer [19] identifying the goal to be estimating the 
reasonable cut-off resulting a particular error rate. Storey proposes an optimal discov-
ery procedure based on maximizing expected true positives (ETP) for each expected 
false positive (EFP) among all single thresholding procedures (STP).
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Norris and Kahn [16] have proposed balanced probability analysis (BPA) based on 
three variables: (i) the total number of true positives (TTP); (ii) the aggregate chance 
that any gene listed is truly not changing and is, thus, on the list by statistical accident 
(iii) the number of hypothesis that should truly be rejected but are missing from the sig-
nificance list divided by the total number of hypothesis that should truly be rejected. 
They believe other definitions of type 2 error rates, such as the false non-discovery rate 
(the ratio of hypotheses that should truly be rejected but are not discovered to the num-
ber of un-rejected hypothesis) are difficult to understand for those who are not expert 
statisticians. They calculate the FNR, by using resampling to estimate the null and alter-
nate distributions, directly from the data. Their procedure a model-dependent step to 
optimize a single parameter.

As Norris and Kahn [16] have argued, the true FDR can be accurately determined only 
when the TTP is known. They used an adaptation of the algorithm by Storey and Tib-
shirani [22] they estimate the TTPs. They estimated FDR and then they estimated FNR 
based on their estimates of FDR and TTP. In his dissertation, Benditkis [2] has shown 
that for some classes of step-down procedures the expected number of false rejections 
is controlled under martingale dependence. Benditkis et al. [3] have presented a rapid 
approach to the step up and step-down tests.

According to Park and Mori [18] the FDR method is perhaps the most popularly used 
multiple comparison procedures (MCP) in microarrays. Kim and Halabi [12] have pro-
posed the use of FDR as a screening method to reduce the high dimension to a lower 
dimension as well as controlling the FDR with other variable selection methods such as 
least absolute shrinkage and selection operator (LASSO), and smoothly clipped absolute 
deviation (SCAD) (p. 1). In our example, which is in the context of high dimensional 
ordinal analysis of survey data, we will compare the results of our proposed method with 
FDR results.

One of the difficulties with targeting an FDR such as 0.05 is that when predictors, or 
features, are dependent to each other and to the outcome, the p-values of null hypoth-
eses tested about their association with outcome will be similarly small. These p-values 
will inflate the FDR while their selection does not contribute to the number of differen-
tiable constructs in the model. The method that will be proposed is insensitive to the 
number of highly correlated features that are selected. Thus, it can improve the feature 
selection power.

Methods
A non‑parametric maximum for reasonable number of rejected hypotheses or number 

of selected features

This article, is concerned about choosing an appropriate significance threshold after we 
have ordered the hypotheses based on their p-values without knowing or estimating the 
total number of true positives or total number of true negatives.

There are research questions where possibility of even one false discovery (existence of 
one false positive among all the rejected hypothesis) is not desirable. For such research 
a Bonferroni corrected threshold is necessary. But, when identification of contributing 
variables is the goal, and having some falsely rejected hypothesis or falsely chosen fea-
tures is not prohibitive, the researcher may choose the p-value threshold based on an 
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expected FDR. Although setting a subjective threshold for FDR (such as 0.05) can relax 
the extremely conservative suggestion by Bonferroni, it can be a limitation which may 
unnecessarily limit the number of reasonable findings a researcher should report. For 
some researchers, who accept an FDR of 5%; it might be also reasonable to accept and 
report a model that includes features in which the FDR is 6%, specially if this increase 
will add a group of items to selected features, or rejected nulls, that are mostly true 
discoveries.

In many situations, “it is reasonable to assume that larger p-values are more likely to 
correspond to true null hypotheses than smaller ones” [15], which means smaller p-val-
ues are less likely to correspond to true null hypotheses (if rejected, they are more likely 
to be true discoveries). With no objective reason to accept 5% FDR and not 6% FDR, in 
some situations, grounded on observed data we can identify an objective upper bound 
for “level of significance and FDR” that is reasonable for the researcher to report, beyond 
which the resulting model is not parsimonious. To find such maximum, we tabulate the 
p-values resulted from hypotheses testing into sorted classes (from smallest to largest 
p-value). Then, we choose the smallest p-value; we count the number of hypotheses 
that have the same p-value and we put them in set 1. Then we choose the next small-
est p-value; we count the number of hypotheses that have the same p-value and we put 
them in set 2. We continue to the biggest p-value. We will have the frequency of each 
observed p-value. But, we have a special interest in the set of smallest p-values; thus, the 
first class is the most valuable class for us. All the p-values with a value closest to zero 
(or zero if such hypotheses exist) are in set  S1 in which will have  f1 members  (f1 ≥ 1).

The next smallest p-value will be p2. Set 2, will contain all the hypotheses with a value 
of p2.  S2 will have f2 members (f2 ≥ 1). For each one of k observed p-values there will be 
corresponding frequency and a set of hypotheses.

In the equation above, fi is the frequency of hypotheses in set Si.
If we set the alpha (rejection threshold) at p1. We will have fa rejected hypotheses, of 

which p1 × N  are expected to be false discoveries  (EFD1).

Therefore, from the first set we expect to have:

ETD1 is expected true discoveries if we reject hypotheses with p-value less than or 
equal to  p1. We may be interested in including the set of  f2 hypothesis  S2 in our dis-
coveries, but the p-value of these hypotheses is  p2 and the expected false discoveries in 
rejected set  S1 and  S2 will be  p2*N.  R2 is the set total discoveries including all the features 
selected so far.

Total number of hypotheses tested = N =

k
∑

i=1

(

fi
)

EFD1 = p1 ∗N

ETD1 = f1 −
(

p1 ∗N
)

R2 = S1U S2
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p2 ∗N is always bigger than p1 ∗N. p2 ∗N will be the cumulative expected false discov-
eries (CEFD) in  R2:

Therefore, from the first two sets we expect to have cumulative expected false discov-
eries (CETD) in  R2 as:

Therefore, cumulative expected true discoveries  CETD2 from  S1 and  S2, will be big-
ger than  ETD1. The series of cumulative expected false discoveries:  CEFD1,  CEFD2, 
 CEFD3, … is usually increasing because the p-values are getting bigger. And the series of 
cumulative expected true discoveries is each set:  CETD1,  CETD2,  CETD3, …. is usually 
increasing in the first sets. But because p-values are increasing and by adding each set to 
rejected set we are in fact increasing our alpha, the proportion of false discoveries added 
by set  Sj (j > i) to  Rj is more than the contribution of false discoveries in set Si to Ri and 
contribution of true discoveries in from  Sj to  Rj is more than the contribution of true dis-
coveries by  Si to  Ri. When i goes toward N (which means selecting all possible features), 
 pi goes toward 1 (which means selecting features that have no significance).

If we define delta:

The δ1 is always positive, and δN is always negative. At some point δi must start to 
decrease and must have a maximum. The maximum number of rejected hypotheses hap-
pens at set  Smax after which adding the hypotheses in the next set  Smax+1 (setting alpha at 
 pmax+1) will contribute more to false discoveries than to true discoveries.

Rmax is the largest set of rejected hypothesis that is reasonable to be reported. The larg-
est alpha that is reasonable to be the threshold for rejecting hypotheses is  Pmax.  FDRmax 
is the biggest reasonable FDR to be reported.

That is the point at which we have no incentive to add the set Smax+1 to our discover-
ies. If we add set Smax+1 to our set of rejected hypotheses, the difference between CETD 
and CEFD (δ) will start to decline. δmax is an objective upper bound for the number of 

CEFD2 = p2 ∗N

CETD2 = (f1 + f2)− (p2 ∗N)

lim
i→N

pi = 1

lim
i→N

CEFDi = lim
i→N

N ∗ pi = N

lim
i→N

CETDi = lim
i→N

(Ri − CEFDi) = 0

δi = CETDi − CEFDi

Rmax = S1 ∪ S2 ∪ S3 ∪ . . . ∪ Smax

FDRmax =
CEFDmax
∑m

1 fi
=

pmax × N
∑m

1 fi
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hypothesis we reject. If maximum δmax happens when we add  Smax to set of rejected 
hypotheses, we have decided that the threshold alpha for rejecting null hypotheses is 
pmax, we will reject hypothesis with p-value ≤ pmax.

With k observed p-values {p1 ≤ p2 ≤ p3 ≤ · · · ≤ pk} related to sets of tested hypoth-
eses {S1,  S2,  S3, …,  Sk}, δmax happens when we add set  Smax to our rejected hypotheses.

The number of rejected hypotheses, at significance level pmax , and the biggest reason-
able set of rejected hypotheses Rmax will be:

Maximum ECTD can be calculated based on the following formula:

Table 1, summarizes what we discussed above. Notice that the upper limit for num-
ber of rejected hypotheses is determined based on maximization of difference between 
cumulative expected true hypotheses and cumulative expected false hypotheses. The 
significance threshold is reported (not assumed) and is not subjectively selected. The sig-
nificance threshold and resulting FDR are dictated by data. If the researcher decides to 
add more sets to discoveries, he/she is accepting the cost of adding more false discover-
ies than true discoveries to the set of rejected hypotheses.

Objective optima for false discovery rate and significance threshold

Making the set of rejected hypotheses beyond Rmax may increase CETD, but it will 
increase the CEFD even more; it will decrease the quality of discovery measured as δ. 
At Rmax however, we may have a smooth decrease of δ. The value of “CETDi − CEFDi” 
sometimes changes relatives slowly around Rmax . Then, we have a peak and a slow rever-
sal in trend for δ. Thus, the researcher can use different ways of piecewise regression 
to identify an optimum number of rejected hypotheses much less than Rmax but much 
more than RFDR=0.05.

For example, piecewise regression of the p-values of hypotheses in sets S1 to  Smax, and 
number of observations in  R1 to  Rmax, with one breakpoint can model the observations 
with two line-segments. The breakpoint, where the slope of the two lines changes, is 
were the efficiency of adding more hypotheses to R changes. It is an objective thresh-
old at which rejected hypotheses are less than  Rmax, while number of CETD is close to 
true discoveries at  Rmax, resulting in a better FDR with little loss of CETD. Therefore, the 
number of rejected hypotheses at the break point,  Rbp, is an optimal number of hypoth-
eses. It does not decrease the quality of our discovery, measured by δ, very much.

A more computationally intensive piecewise regression of the p-values of hypotheses 
in sets S1 to  Smax+ε can be conducted such that the second segment is a horizontal line 
close to the point ( Rmax , pmax) . The horizontal line can also be the one that passes the 

Rmax =

m
∑

1

fi

δmax = Max (CETDi − CEFDi)

δmax = Max

(

k
∑

i=1

(

fi − CEFDi

)

−

k
∑

i=1

CEFDi

)
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point ( Rmax , pmax). In some situations, the resulting set of discoveries is not very sensi-
tive to the selection of piecewise regression method.

Results and discussion
As an example, we will use the dataset resulted from multiple hypotheses testing that 
was performed analyzing a survey regarding variables that influence citizen engagement 
in mediated democracies. The example included 1045 ordinal Likert scale questions. 
The answers to a question were cross tabulated with all the other 1044 questions. The 
null hypothesis was that the observed association in each pairwise cross tabulation is 
accidental. To choose the significant associations, Fisher’s exact test was performed and 
the p-values for each test was recorded. Sommer’s D was used to measure the extent of 
association.

Table 2 shows the sorted p-values and associated δs. The first column is the set num-
ber. The second column is an ascending sorted list of all p-vales observed. The third col-
umn is the frequency of hypotheses with the p-value. The forth column is the cumulative 
frequency. The fifth column is the cumulative expected number of false discoveries. 
If we decide that the set in a row is the last set of rejected hypotheses, the cumulative 
expected number of false discoveries is the resulting expected number of false positives. 
In other words, if the p-value of the set in a row is considered as the rejection thresh-
old, the cumulative expected number of false discoveries in the fifth column of that row 
is the resulting expected number of false discoveries. For example, we observe that if 
we reject 111 hypotheses, sets  S1 to  S105, the expected number of false positives will be 
11.4485 leading to an FDR of 0.10314. Chosen p-value threshold is 0.010966 and FDR 
will provide a measure of statistical accuracy for the choice we make for our rejection 
threshold.

The sixth column is the difference between rows in the fifth column, in other words it 
is the contribution of each row to expected number of false discoveries. Column seven 
is the FDR if we consider the p-value of the row as rejection threshold. Column eight is 
the expected cumulative number of true discoveries if this set is rejected; it is calculated 
by subtracting expected number of false discoveries from cumulative number of rejected 
hypotheses. Column nine is the difference between rows in column nine. The last col-
umn is δ.

If we rely on 0.05 rule of thumb for rejection threshold, too many hypotheses will be 
falsely rejected. If we rely on 0.05 rule of thumb for FDR, many potentially significant 
findings, may falsely remain un-rejected. We have seven hypotheses with p-value of 0 in 
set  S1 which will be obviously rejected. If we decide to reject the hypothesis in the second 
set, at p-value = 0.000001, we will add 1 hypothesis to the set of rejected hypotheses. The 
single hypothesis that can be rejected contributes 0.998956 to the total expected true 
discoveries. Cumulative expected false discoveries will be 1044*0.000001 = 0.001044. 
Rejecting the hypotheses in sets  S1 and  S2, we are in fact declaring the rejection thresh-
old is 0.000001, cumulative expected false discoveries will be 0.001044, FDR will be 
0.000131 (0.001044/8).

Bonferroni’s correction for p-value = 0.05 would suggest a threshold of rejection 
of < 0.0000485 which means we can conservatively reject merely 16 null hypotheses. If 
we reject all the hypotheses in sets  S1 to  S36, we will have 42 hypotheses in our set of 
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rejected hypotheses  R36 and FDR will be 0.048322. Like many researchers who will not 
reject set  S37, we can define our p-values threshold of rejection to be 0.001944. This is 
more powerful than Bonferroni’s correction. But we expect 2.029536 of 42 discoveries 
to be false. Our set  S177 has the 184th p-value at 0.0393. The resulting set of rejected 
hypotheses from  S1 to  S177 is expected to have 41.0292 to be false discoveries and 
142.9708 true discoveries. The expected FDR as the result of increasing alpha to 0.0393 
will be 0.222985.

The p-value of each set can be observed in second column of Fig.  1. Since we have 
sorted our hypotheses based on their p-values, as we include more sets of hypotheses 
to our rejected set, the reasonable alpha (threshold p-value) increases. Depicted in red, 
we see that at FDR of 0.05 we can select 42 features, or we can reject 42 null hypotheses.

Figure 2, focuses on the first 400 lowest p-value hypotheses. The blue line is depicting 
the cumulative expected number of false discoveries among rejected hypotheses (false 
positives). Since CEFD is alpha*N, and alpha is the monotonic p-value of the last class 
rejected chosen as threshold, CEFD is an increasing entity. The purple curve, FDR in 
percentage form, is also generally increasing even though one may find local fluctuations 
in its values.

lim
i→N

CEFDi = lim
i→N

N × pi = N

lim
i→N

FDRi = lim
pi→1

FDRpi = 1

Fig. 1 All p-values for 1031 hypotheses tested
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The green line depicts the CETD. The p-value of first sets is usually very low, and these 
hypotheses are most likely to be true rejections, when we reject the first sets of hypoth-
eses, CETD is growing very fast. Even when we pass the threshold of FDR = 0.05 the 
p-values of next sets are very low which keep FDRs close to 0.05. For example, in the 
study presented above, the hypothesis in set 37 has a p-values of 0.0001 and  FDR37 is 
0.050525. If we add  S37 to our rejected set R, our CETD will grow and CEFD will also 
grow, but the growth of CETD is much faster. This trend however does not last forever. 
As p-values get bigger, CEFD will grow faster and CETD will grow slower. If we continue 
rejecting hypotheses with big p-values CEFD will accelerate and will surpass CETD. 
CETD will start to decline when p-values included in rejection set get closer to 1. If we 
look at the difference CETD − CEFD shown in the last column of Table 2, we see that 
it has a maximum at set 177 above which rejecting a set of hypotheses will contribute 
more to CEFD than CETD and the difference will start to decline.

In Fig. 3, δ, the difference between the expected true discoveries and expected false 
discoveries among rejected hypotheses, is depicted as a black line. As expected, it 
has several local minima and maxima; but, it has a global maximum. Let us name the 
rejected number of hypotheses at this point as Rmax . FDR is always growing. By every 

Fig. 2 CETD, CEFD and FDR for different number rejected hypotheses
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new rejected hypothesis, we are increasing the proportion of false discoveries in the 
rejected set of hypotheses. Rejecting more hypotheses after we have reached  Rmax, will 
weaken the quality of our model with more contribution to expected false discover-
ies than expected true discoveries. Table 2 shows that the p-values of set  S177 is 0.0393. 
Rejecting hypothesis beyond Rmax , for example rejecting set  S178 which contains hypoth-
esis 185, may increase the quantity CETD but it will increase the quantity of CEFD even 
more; it will decrease the quality of discovery because delta will go from 101.9416 to 
97.42928.
Rmax is the maximum number of rejected hypotheses (features included in the 

model) which our data can justify. It will dictate a maximum for acceptable signifi-
cance level alpha considering the data we have. In this example, Rmax does not appear 
at a sharp peak at which we have a turn, it is a peak around which the trend has an 
slow reversal; therefore, we can use many methods that suggest a reasonable number 
of rejected hypotheses much lower than Rmax leading to more parsimonious models

If we use piecewise regression to identify two regression line-segments, that 
will mimic the data up to  Rmax, the breakpoint is found at set S105 . If we reject set 
 S105, or reject 111 hypotheses with lowest p-value, we will have a δ105 = 88.10299 
vs δmax=101.9416 at Rmax . Our FDR will be  FDRS105 = 0.10314; about half of 
FDRmax = 0.222985 . As shown in Table  2, the p-value of set  S105 is  p105 = 0.010966, 
about three times less than the p-value for  pmax = 0.0393. At breakpoint, we select 
69 (111–42) more features of which 9.418964 (11.4485–2.029536) are expected to be 
false discoveries. The selection process based on p-value threshold of 0.010966 with 
111 selected features is more powerful than the model with 42 features based on 
FDR = 0.05. At the same time, it is more parsimonious than a model with 184 features 

Fig. 3 Maximum δ and the breakpoint of piecewise regression
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suggested by maximum delta, with 72 (184–111) more variables including 29.5807 
(41.0292–11.4485) more false discoveries.

Figure 4 shows a slightly different strategy. If we use iterative piecewise regression to 
identify two line-segments, one of which being a horizontal line that ends a few p-val-
ues after  pmax. The breakpoint is at p118 . If we reject set  S112, or reject 118 hypotheses, 
we will have a δ112 = 92.4742 close to δmax=101.9416 at Rmax , with an  FDR112 = 0.10816 
about half of FDRmax = 0.222985 . As shown in Table  2, the p-value of set  S112 is 
 p112 = 0.012225, about three times less than the p-value for  pmax = 0.0393.

Using segmented regression is just one of many ways the researcher can include the 
information about  Rmax. The researcher can devise a more objective strategy to select the 
set of rejected hypothesis without relying on 0.05 or any other presumed thresholds for 
alpha or FDR; and, should report the resulting alpha and FDR instead of assuming them.

In the example shown above, the optimum (breakpoint of piecewise regression) is not 
very sensitive to the method of conducting regression or identification of breakpoint. 
Either way, it suggests a threshold that corresponds to an FDR between 10 and 11%. At 
this neighborhood of FDR, 111 or 118 hypotheses could be rejected (111, or 118 features 
could be selected); while based on FDR = 0.05 criterion, 42 hypotheses could be rejected 
(42 features could be selected); nevertheless, the proposed method increases the power 
of selection process. Resulting model is much more parsimonious than selecting 184 fea-
tures suggested by  Rmax (absolute maximum reasonable number of rejected hypotheses).

It important to notice that if a number of predictors, or features, which are depend-
ent to each other and associated with the outcome exist, the p-values of null hypoth-
eses tested about their association with outcome will be similarly small. These p-values 
will inflate the FDR and may exclude some eligible features from the model, but their 

Fig. 4 Maximum δ and the breakpoint of piecewise regression with horizontal piece
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contribution to ECTD and ECFD will be similar and will not affect the delta; therefore, 
maximum delta and the delta at breakpoint are not affected by the number of features in 
each set with similar p-values and the proposed method of selecting p-value threshold is 
insensitive to the number highly correlated features that my be selected.

In many exploratory researches the goal is to identify a set of significant associa-
tions. Many times, the extent of association (like slopes in linear regression) are more 
important for understanding the phenomena, or modeling the system, than the differ-
ences of FDRs associated with each p-value among significantly accepted alternatives. 
To test the quality of resulting set of rejected hypotheses, the non-parametric Som-
mer’s D statistics for the extent of association for each comparison was calculated. 
It was observed that near all the rejected hypothesis (selected features) had a level of 
association whose confidence intervals for the extent of association were on one side 
of zero.

Conclusion
In exploratory research, or when a few more possible false positives among many 
truly rejected hypotheses or selected features is not a sensitive issue, relying on pre-
determined threshold of 0.05 for FDR may be too limiting. But accepting larger and 
larger FDRs is not also a reasonable approach. The presented method is a proposal 
for an objective threshold for level of significance, largest p-value and consequently 
number of selected features or rejected null hypothesis for parsimonious yet powerful 
model grounded on data.

The following steps present the algorithm to identify the biggest reasonable set of 
features, that data can afford:

 1. Choose the test method for example t-test or Fisher’s exact test depending on the 
data;

 2. Obtain p-values by performing the chosen test on all hypotheses;
 3. Sort p-values from smallest to largest;
 4. Find the smallest p-value;
 5. Count the number of hypotheses with the p-value found in step 4 and put them in a 

set;
 6. Continue steps 4 and 5 until the hypotheses with biggest p-values are in the last set;
 7. Tabulate the hypotheses to classes of observed p-values;
 8. Reject the set of hypotheses with the least p-value (the first set is called  S1);
 9. Calculate cumulative expected false discoveries for all the rejected hypotheses 

 (Pi × N);
 10. Calculate 1 − CEFD for all the rejected hypotheses;
 11. Calculate δ = CETD − CEFD;
 12. Record the results;
 13. Repeat steps 2–7 for all the sets.
 14. Find the set with maximum recorded δ (called δmax) resulting from rejecting set 

 Smax;
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 15. The biggest reasonable set of rejected hypotheses  Rmax will be 

 16. The p-value for set  Sm is  pm which is the alpha that should be reported;
 17. The FDR that should be reported for  Rmax is: 

 18. When there is a slow reversal in trend for δ. The researcher can use different meth-
ods of piecewise regression on δ vs number selected features to identify an optimum 
number of rejected hypotheses, or selected features, which may be much less than 
Rmax but much more than what would be dictated by a 0.05 FDR;

 19. The break point of piecewise regression on δ vs number of selected features identi-
fies the optimum number of selected features.

The process explained in this paper neither requires predetermined thresholds for 
level of significance, nor uses presumed thresholds for FDR. We observed a naturally 
occurring metric (for the quality of the set of rejected hypothesis), which has an upper 
bound. The researcher can rely on this maximum and devise methods to find an opti-
mum that remains acceptable in terms of quality of model. Once the set of rejected 
hypotheses is determined a related significance level and FDR should be reported.

The paper presented methods that could identify an objective optimum reasonable 
number of rejected hypotheses. The found optimum is in the range between most 
conservative selection criteria, such as what has been used in Bonferroni’s procedure, 
and this identified upper bound. The criterion and methods can be used in many 
fields of inquiry dealing with high-dimensional data, including genomics and survey 
analysis. The results of using the criterion in the pairwise cross tabulation analysis of 
an ordinal outcome variable with 1044 potential ordinal predictors in a large survey, 
regarding variables that influence citizen engagement, was used as a novel example of 
application of the method in social sciences.
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