Rathee and Kashyap JBig Data (2018) 5:8
https://doi.org/10.1186/540537-018-0114-y

® Journal of Big Data

METHODOLOGY Open Access

StreamAligner: a streaming based

@ CrossMark

sequence aligner on Apache Spark

Sanjay Rathee' "® and Arti Kashyap '

*Correspondence:
sanjaysinghrathi@gmail.com
*Sanjay Rathee and Arti
Kashyap contributed equally
to this work.

' School of Computing

and Electrical Engineering,
IIT Mandi, Kamand Campus,
Mandi, India

Full list of author information
is available at the end of the
article

@ Springer Open

Abstract

Next-Generation Sequencing technologies are generating a huge amount of genetic
data that need to be mapped and analyzed. Single machine sequence alignment tools
are becoming incapable or inefficient in keeping track of the same. Therefore, distrib-
uted computing platforms based on MapReduce paradigm, which uses thousands of
commaodity machines to process and analyze huge datasets, are emerging as the best
solution for growing genomics data. A lot of MapReduce-based sequence alignment
tools like CloudBurst, CloudAligner, Halvade, and SparkBWA are proposed by various
researchers in recent few years. These sequence aligners are very fast and efficient.
These sequence aligners are capable of aligning billions of reads (stored as fasta or
fastq files) on reference genome in few minutes. In the current era of fastly growing
technology, analyzing huge genome data fast is not enough. We need to analyze data
in real time to automate alignment process. Therefore, we propose a MapReduce-
based sequence alignment tool StreamAligner which is implemented on Spark stream-
ing engine. StreamAligner can align stream of reads on reference genome in real time.
Therefore, it can be used to automate sequencing and alignment process. It uses suffix
array index for read alignment which is generated using distributed index generation
algorithm. Due to distributed index generation algorithm, index generation time is very
less. It needs to upload index only once when StreamAligner is launched. After that
index stays in Spark memory and can be used for an unlimited times without reload-
ing. Whereas, current state-of-the-art sequence aligner either generate (hash index
based) or load (sorted index based) index for every task. Hence, StreamAligner reduces
time to generate or load index for every task. A working and tested implementation

of streamAligner is available on GitHub for download and use. We tested the effective-
ness, efficiency, and scalability of our aligner for various standard and real-life datasets.

Keywords: Sequence alignment, Apache Spark, Hadoop, Distributed computing
frameworks

Introduction

The trend of using latest computer technology to manage biological information is on
the rapid rise during last decade. Currently, computers are used to collect, store, manage,
analyze and integrate genetic and biological information. Therefore, bioinformatics has
emerged as a very popular research area in last decade. Sequence alignment is like the
heart of bioinformatics field and has attracted huge attention by researchers. Sequence
alignment is a way to identify regions of similarity between two sequences of genome
data. Sequence alignment has various applications like identifying homologous proteins,

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://orcid.org/0000-0002-2853-0842
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-018-0114-y&domain=pdf

Rathee and Kashyap J Big Data (2018) 5:8 Page 2 of 18

analyzing gene expressions and mapping variations between individuals. Sequence
alignment helps bioinformaticians to understand genome and find the answers related
to similarity and dissimilarity between two genomes. Recently, Riccardo Sabatini [1] in
his TEDx talk, showed how they are able to read the genome and build a human from
this information. They find out the sequences which are responsible for dissimilarity
between humans and used this information to make a human face from his/her DNA.

A large number of sequence aligners have been proposed by researchers during last
decade. Most of these sequence aligners were either hash based or sorted index based.

Hashing based aligners use hash trees or hash tables to store hash values of either
the query genome or the reference genome and then use the un-hashed genome as a
single probe against the hash table. Techniques like MAQ [2], Eland [3], SeqMap [4],
ZOOM [5] and RMAP [6] use hashing techniques to hash the read sequence and scan
through the reference genome. These techniques have the drawback of having to scan
the entire genome even when very few reads need alignment, which results in longer
computation times. Tools like NovoAlign [7], SOAPv1 [8], PASS [9], MOM [10],
BFAST [11] and ProbeMatch [12] also employ hashing techniques to hash the genome.
While these methods can easily be parallelized, they require a lot of memory to store the
index built for the reference genome.

To bypass the large memory requirement, slider [13] proposes a sequence alignment
by merge-sorting the reference genome subsequences and read sequences. Recently,
string matching algorithms based on the Burrow-Wheeler Transformation (BWT) [14],
which is a string compression technique, has drawn the attention of many research
groups. Techniques like Bowtie [15], BWA [16] and BWA-SW [17] which are based on
BWT [14], have also become very popular due to their vastly improved memory effi-
ciency and their support for flexible seed lengths. These BW T-based sequence alignment
tools provide fast mapping of short reads of DNA sequences against a reference genome
sequence with small memory footprint using a data structure like FM-Index [18] built
atop the BWT. These studies use sorting algorithms for matching. Therefore, they are
highly accurate with accuracies as high as 99.9%.

Most of these sequence alignment tools were very efficient and accurate until the
introduction of Next-Generation Sequencing (NGS). NGS has led to a huge amount of
sequencing data which has rendered many existing sequence alignment tools obsolete.
For example, NGS technologies like lllumina HiSeqX can easily generate nearly 6 billion
sequence reads per run. After sequencing, mapping these read sequences onto a refer-
ence genome is the most important task in a sequence analysis work-flow. Alignment
of such large volumes of read data onto a reference genome is a very time consuming
task. Many state-of-the-art sequence aligners are developed to handle this huge amount
of data efficiently but NGS platforms are evolving so rapidly that they push sequencing
capacity to unprecedented levels. Therefore, sequence alignment still remains a bottle-
neck for bioinformaticians.

To combat this deluge of NGS data, some sequence aligners based on big data technol-
ogies have been proposed in the last few years. Big data technologies like Hadoop [19]
and Spark [20] based on the MapReduce paradigm use distributed computing to han-
dle massive volumes of data very effectively and efficiently. Early initiatives towards the
trend of using MapReduce [21] based platforms like Hadoop and Spark for sequence

Rathee and Kashyap J Big Data (2018) 5:8 Page 3 of 18

alignment have already been taken, such as CloudBurst [22], CloudAligner [23], BlastRe-
duce [24], BigBWA [25] and SparkBWA [26] to name a few. The results are very effective
and promising.

Sequence alignment tools with distributed computing capabilities like CloudBurst and
CloudAligner are faster and more efficient with short reads but they have lower accu-
racy and are unable to handle long reads. Sequence alignment tools like BigBWA [25],
Halvade [27] and SparkBWA [26] are very accurate but they suffer from high time/space
complexity for index generation.

Current state-of-the-art sequence aligners are very accurate and efficient. They are
capable to handle large genomes very efficiently. They can align billions of reads in few
minutes. But, future technologies are converging towards automated and real-time pro-
cessing tools. Nearly all state-of-the-art sequence aligners start alignment process when
whole read data is available. They can not process stream of reads. Therefore, we pro-
pose a new sequence aligner which can align stream of reads on reference genome in
real time. It will help in making DNA matching process automated where a read can
be aligned as soon as it is produced by NGS machines. It uses a partitioned suffix array
index to align reads on reference genome.

StreamAligner has two main advantages over state-of-the-art sequence aligners.
Firstly, it is the only sequence alignment tool which can align stream of reads on refer-
ence genome to give real time results. Secondly, it needs to upload sorted suffix index
only once for unlimited tasks whereas all state-of-the-art sequence aligners either need
to generate (hash based aligners) or upload (sorted index based aligners) index for every
task.

In this paper, we discuss capabilities of Spark Streaming engine and some important
related works. Then, we give a detailed description of our MapReduce based tool Strea-
mAligner and its APIL. Thereafter, we focus on the evaluation of StreamAligner for dif-
ferent datasets on the available cluster. At last, we talk about conclusions and future
directions.

Mapreduce and Spark streaming

With the availability of cloud computing technologies like Amazon EC2 cloud and
Microsoft Azure, as evolutions to accommodate computing and storage service as a util-
ity at very affordable prices, users can use these cloud services via Internet from home or
workplace by paying for resources consumed without worrying about availability, main-
tenance and flexibility issues. Cost is based on the type of service and time of service.
Therefore, cloud computing has emerged as a very promising solution for demands of
storage and computation in bioinformatics eliminating the need of powerful and high
computing capacity server. But to achieve efficiency, performance, and scalability for
processing huge data, a highly parallel distributed computing model is required. There-
fore, a parallel computing framework called MapReduce [21] was designed by Google
which allows using thousands of commodity machines in parallel. MapReduce frame-
work works on a basic idea of the flow of (key, value) pairs through map and reduce
phases. Input is split into fixed size chunks and distributed over available mappers. Every
mapper processes its chunk of data and generates (key, value) pairs. These (key, value)
pairs are shuffled or sorted to group values based on keys to generate intermediate

Rathee and Kashyap J Big Data (2018) 5:8 Page 4 of 18

(key, value) pairs where all values with same key are grouped together. Reducers take
intermediate (key, value) pairs and combine all values for a key to generate final results.
MapReduce framework can handle huge datasets because all map and reduce opera-
tions are executed concurrently on many machines. All map tasks need to finish to start
reduce tasks. Many MapReduce framework based tools like Hadoop, Spark, and Flink
are available to analyze huge datasets with ease for different applications [28]. Hadoop
is widely used MapReduce based model in bioinformatics in recent few years [29].
Sequence alignment tools like CloudBurst [22], CloudAligner [23] and BlastReduce [24]
used Hadoop for heavy analysis. Though Hadoop provides a highly parallel computing
environment but has a limitation of high I/O time during various iterations. Apache
Spark [20] overcomes this limitation of Hadoop by using its in-memory computing tech-
nique with help of RDD storage. I/O operations on Spark RDD [20] are very efficient and
fast due to which sometimes it outperforms Hadoop by 100 times [30]. These advantages
of Apache Spark ignited an interest in us to use Apache Spark for sequence alignment
tool StreamAligner. In recent few years, technologies which can process data in real-
time has gained a lot of attention [31, 32]. Therefore, we implemented StreamAligner in
such a way so that it can process real-time stream data. Spark streaming API strengths
our aligner because it enables scalable, high-throughput, fault-tolerant stream process-
ing of live data streams. It can take stream of data from many sources like HDFS, Kafka,
Flume, Kinesis, or TCP sockets. It uses distributed computing to process this stream
data and can store results on filesystem, databases or dashboard.

Related work

A large number of sequence alignment tools can be found in literature which are very
efficient and powerful in mapping reads to the reference genome. With the evolution
of NGS machines, the size of reads data has increased so fast that single machine based
sequence aligners were unable to keep track with same. Therefore, sequence align-
ment tools based on parallel and distributed computing architecture evolved as the best
option for bioinformaticians. MapReduce [21] based platforms like Apache Hadoop [19]
and Spark [20] has gained a lot of attention in recent few years as distributed computing
based platforms. Many sequence aligners which use big data technologies like Apache
Hadoop and Spark were implemented in last few years. CloudBurst [22], CloudA-
ligner [23], Halvade [27], SEAL [33], BigBWA [25] and SparkBWA [26] are mostly used
sequence aligners which use big data technologies.

CloudBurst is a read-mapping algorithm modeled after RMAP [6] and imple-
mented on Hadoop. It uses MapReduce [21] framework to run a task on many
machines parallelly. Tools like CloudBurst, SeqMapReduce [34] and Crossbow [35]
which use seed-and-extend approach and implemented on Hadoop were very prom-
ising but they have many limitations. CloudBurst does not support the fastq for-
mat which is most common output file format for current NGS machines. It also
uses only command line interface which is not user-friendly. Website and code for
sequence aligners like SeqMapReduce are inaccessible. Crossbow has a very user-
friendly interface and uses Bowtie [15] and Soap-snp tools with perl and shell scripts
on Amazon EC2 cloud [36]. But it inherits limitation like only three mismatches
allowed in bowtie and map only short reads. All these limitations were tackled by a

Rathee and Kashyap J Big Data (2018) 5:8 Page 5 of 18

new sequence alignment tool CloudAligner. It has better performance, user-friendly
interface, and support for long reads. CloudAligner is very promising sequence
aligner still it is not so efficient and accurate as Burrow-Wheeler based sequence
aligners which use distributed computing based architectures to enhance BWA [16]
performance.

SEAL is one of the best MapReduce based sequence aligners which is implemented
in Python and runs on Hadoop platform. It uses Python to write program and wrap-
per to call BWA. It has some limitations like it works with only a few modified ver-
sion of BWA and doesnot support BWA-MEM [17] algorithm for long reads.

Francesco Versaci came with a tool which takes raw data (BCL files) as input and
produces aligned DNA sequences [37]. It uses a Flink based tool to convert BCL
format into fastq format. Then, SEAL API align reads to the reference genome. It
suffers from the limitation that it still uses Hadoop based sequence aligner whereas
many faster aligners based on more promising and faster distributed computing
platform like Spark exist.

Halvade also works on top of Hadoop platform. It has some limitations like
mappers needs to call BWA as an external process which can cause timeout dur-
ing execution of Hadoop. Therefore, task timeout parameters need to be config-
ured adequately which need a priori knowledge about application execution time.
Later, many parallel programming based aligners like pPBWA [38] which uses MPI
to parallelize BWA, were designed. Lack of fault tolerance and no support for BWA-
MEM [17] were the main drawback of pBWA.

Many sequence aligners used the power of GPUs to enhance the performance of
BWA. BarraCUDA [39], as suggest by name works on CUDA programming model. It
supports BWA version 0.5.x. and still, have the limitation that it supports only BWA-
backtrack algorithms for short reads.

Most of these tools used Hadoop for distributed computing which has the lim-
itation of high I/O time during iteration. Therefore, a highly distributed comput-
ing based platform Apache Spark which outperformed Hadoop by a huge margin
for various machine learning problems has got a lot of attention these days. Already
many Spark based sequence aligners are proposed by researchers. MetaSpark is one
of these sequence aligners which is implemented on Spark [40]. It aligns metagen-
omic reads on reference genome quite fastly. It constructs k-mers for reference
genome and reads and save it in Spark RDD. Seeding, filtering and banded alignment
process on reference seeds and read k-mers produce final alignment results. It has
a limitation that it will become inefficient for large datasets because Spark need to
store k-mers in memory (RAM) and memory usage for storing k-mers is too high.

Recently, a Spark based sequence aligner called SparkBWA has evolved as most
efficient and promising sequence aligner. SparkBWA has shown great performance
and outperformed nearly all existing sequence alignment algorithms. SparkBWA
calls BWA [16] algorithms using Java Native Interface (JNI)and supports all versions
of BWA. SparkBWA still has some limitation like no-support for stream process-
ing and high index generation time. Our sequence alignment tool StreamAligner
resolved these limitations very efficiently.

Rathee and Kashyap J Big Data (2018) 5:8 Page 6 of 18

Methods

StreamAligner is a MapReduce based sequence alignment tool implemented on Apache
Spark. It uses a suffix array index to map reads onto a reference genome. It uses three
iterations to build an index and map a read onto a reference genome.

Reference preprocessing

In the first iteration, we clean and transform the reference genome so that it can be pro-
cessed using distributed computing. Most of the state-of-the-art index based sequence
aligners like SparkBWA, BigBWA, and Halvade use a BWA tool to generate their index
using a sequential approach. Therefore, index generation time for BWA is higher on a
large cluster too. To combat this aforementioned issue, StreamAligner uses a distributed
algorithm to generate a suffix array index. Therefore, StreamAligner must get data which

can be processed independently.

Index generation

In the second iteration, we generate a suffix array index for cleaned and transformed
reference genome. StreamAligner uses a distributed algorithm to generate a suffix array
index. Therefore, StreamAligner outperforms nearly all existing state-of-the-art index-
ing tools like BWA in terms of index build time. Additionally, the StreamAligner index
generation time decreases linearly with increase in the size of the cluster. Suffix array
indexes generated in our first iteration are stored in different partitions depending on
the prefix of our suffixes, i.e., indexes for suffixes starting with a, ¢, g, n and ¢ will be

mapped to different partitions.

Read mapping

In the third iteration, we map streams onto the reference genome. SparkBWA, BigBWA,
and Halvade use the entire genome BWT index to map reads onto the reference genome.
In contrast, StreamAligner uses only a single partition of the index based on the first
character of the read to map reads onto the reference genome. With a higher number of
partitions, the mapping computations become much fewer in number which results in

quicker mapping.

Phase I-Reference preprocessing

Initially, the reference genome which is stored on HDFS' [19], is given as input to the
mappers. The reference genome file is chunked and distributed across the mappers,
where each mapper receives a set of lines. The detailed process of generating a suffix-
array for the reference genome is outlined in Algorithm 1.

! Hadoop Distributed File System.

Rathee and Kashyap J Big Data (2018) 5:8 Page 7 of 18

Algorithm 1 Phase |: Step |- Transformation and cleaning of reference genome

Input: Reference Genome R,

Output: Transformed and cleaned Reference Genome Ry
1: procedure TRANS-REFERENCE-GEN

2 for each line l; € R; do

3 flatMap(lineof fset, 1;).zipWithIndex
4 Yield(indez, lineof fset + ;)

5 end flatMap

6: storeAtRDD1
7
8
9

for each line l; € Ry do
flatMap(lineof fset, 1;).zipWithIndex
Yield(index — 1, 1)
10: end flatMap
11: storeAtRDD2
12: RDD3=RDD1. joinByKey(RDD2).values
13: R+=RDD3.saveAsTextFile

We use the Hadoop configuration function so that every line in the file has an index
associated with it, where this index represents the location of the first character of the
line in the reference genome (lines 2). Subsequently, a sortByKey function on refer-
ence genome JavaRDD generates (key, value) pairs where value denotes concatenation
string of location of first character of line and line itself and key is the number for
line in reference genome starting from 1 for first line (lines 3-5). Output (key, value)
pairs stored at JavaRDD; (line 6). Parallely, a sortByKey function on reference genome
JavaRDD generates (key, value) pairs where value denotes the line and key is the num-
ber for line in reference genome starting from 0 for first line (lines 8—11). Output
(key, value) pairs stored at JavaRDD, (line 12). At last, a joinByKey function joins
JavaRDD; and JavaRDD, to produce (key, value) pairs where key denotes line number
and value is the concatenation string of values from JavaRDD; and JavaRDD; (line
14). All the values from (key, value) pairs will be stored on HDEFS as a text file (line 15).
The lineage graph in Fig. 1 shows the functional flow of Algorithm 1.

Figure 2 shows an example of the reference preprocessing step. A reference genome
stored on HDFS is treated as the input. The mappers in the first round receive a set of
lines (e.g. mapper MAP-1 receives lines L1-L3) and apply zip Withindex function on
each line and generate corresponding (key, value) pairs. For example, Line L1 (ACG
TTCA) is mapped to (1,1 + ACGTTCA). Output (key, value) pairs stored at JavaRDD;.
The mappers in the second round receive a set of lines (e.g. mapper MAP-1 receives
lines L1-L3) and apply zip Withindex function on each line and generate correspond-
ing (key, value) pairs. For example, Line L1 (ACGTTCA) is mapped to (0, ACGTTCA).
Output (key, value) pairs stored at JavaRDD;. Subsequently, a joinByKey func-
tion joins JavaRDD; and JavaRDD; to produce corresponding (key, value) pairs. For

flatMap(_.split(*\n”)) flatMap(_.zipWithindex) map()

|Reference Genome H Offset, lines |—'| Index, offset, line H Index, offset+line

join().values

flatMap(_.split(*“\n”)) flatMap(_.zipWithindex) map() Index, offset+line

| Reference Genome H Offset, lines |—-| Index, offset, line H Index, offset+line

Fig. 1 Lineage graph for Phase | (reference preprocessing)

Rathee and Kashyap J Big Data (2018) 5:8 Page 8 of 18

Reference Genome de&newAPIHadOOPFile.zipWithIndex| |E\D/Dshufﬂe| B’EoinByKeﬂ @.values| Reference Index
ACGTTCA L—
GTCTATA | 3 I+ACGTTCAGTCT
ATCGTCT REDUCE-1 =25 ATA
GCTGATG) gelaL3 8+GTCTATAATCG

"
REDUCE-2 : TCT
RCfng-T-?éiomc | 3, 15+L3L4 15+ATCGTCTGCT
ATG
GTCTATA G
ATCGTCT REDUCE-3 22+GCTGATGATC
GCTGATG 4,22+1L4L5 GAGT
Fig. 2 Mapreduce architecture for Phase | (reference preprocessing)

example, tuple (1,1 + ACGTTCA) from JavaRDD; will join with tuple (1, GTCTATA)
in JavaRDD?2. Output will be stored on HDES as text file.

Now, to estimate the time complexity, let us take, # as the total number of base pairs in
reference genome and p as the number of base pairs in every line of reference genome.
Then algorithm takes total #n/p cycles to generate RDD1. For a cluster with m number
of mappers (cores), mapper; will take n/mp cycles. The time complexity for mapper,
will also be same as mapper;. For a cluster with r number of reducers, join func-
tion will take # / rp cycles. Hence, total complexity for reference preprocessing will be
(2nr + mn) /(mrp).

Phase ll-Index generation

Preprocessed reference genome will be chunked and distributed across mappers, where
each mapper receives a set of lines. The detailed process of generating a suffix-array for
the reference genome is outlined in Algorithm 2.

Algorithm 2 Phase |- Suffix Array Index Generation

Input: Transformed and cleaned Reference Genome R:, Keylength w
Output: Index of Suffix (a), Suffix Array for A S,, Suffix Array for C Sc, Suffix Array for G Sg, Suffix
Array for T St
procedure SUFFIX—GEN
for each linet € R; do
flatMap(lineof fset + 1; + ;)
for each charce [; do
a=lineof fset+location of ¢ in I;
s = substring(c, a + keylength)
Yield(s,)
end flatMap
storeAtRDD1
10: So=RDD1 filter("a").sortByKey.values()
11: Sc.=RDD1 filter("c").sortByKey.values()
12: Sy=RDDL filter("g").sortByKey.values()
13: S¢=RDD1 filter("t").sortByKey.values()

O NOORWNR

We use simple readTextFile for loading preprocessed reference genome on JavaRDD
of Spark. A flatMap task on this JavaRDD will yield (key,, value,) pairs where key, is a
string of characters of length k starting from the position in the reference genome given
by the value, field (lines 2-9). Now, these keys are sorted in the shuffle task (sortByKey)
and reducers combine all the outputs of the shuffle task and partition the final sorted
results according to the prefix of the suffixes (lines 12-15). The lineage graph in Fig. 3
shows the functional flow of Algorithm 2.

Rathee and Kashyap J Big Data (2018) 5:8 Page 9 of 18

flatMap(_.split(“+”)) flatMap(_.generateSuffix()) flatMap(_.sortByKey.value)

Offset + Line*Next-Line |—'| Offset , Line*Next-Line |—'| Suffix, Offset H Offset

Fig. 3 Lineage graph for Phase Il (suffix index generation)

Figure 4 shows an example of the index generation step. A preprocessed reference
genome stored on HDFS is treated as the input. The mappers in the first round receive a set
of lines (e.g. mapper MAP-2 receives lines L2—-L3) and apply flatMap task on each line and
generate corresponding (key, value) pairs like (ACG, 1) for every line where ACG denotes a
suffix of fixed size and 1 is the starting location of that suffix in the reference genome. Thus,
for line L1 (ACGTTCA), the mapper produces (ACG, 1), (CGT,?2), (GTT,3), (TTC,4),
(TCA,5),(CAG, 6), and (AGT, 7). These keys are then sorted in the shuffle task (sortByKey)
and the reducers combine all the outputs of the shuffle task and partition the final sorted
results according to the prefix (g, ¢, g, #, t) of the suffixes. For line L1, the reducer outputs
(ACG,1),{AGT,7).

In this phase, mappers will take preprocessed reference having n/p lines as input. For
every line of preprocessed reference genome, map task will take 3p cycles to generate suf-
fixes. With a cluster of m mappers, it will take 3n/m (3p * (n/p) * (1/m)) cycles to generate
all suffixes. Now, a filter and sortByKey function will add (n + np)/m cycles to make total
time complexity to be (4n + np) /m.

Phase llI-Read mapping

The second iteration of AVLR-Mapper finds the location of reads in the reference genome
by using the suffix array index of that reference genome. Algorithm 3 describes the pro-
cess of mapping stream of reads on the reference genome. Initially, a stream of reads from
sources like Kafka, HDFS or flume are distributed across mappers and each read is parti-
tioned into seeds (Algorithm 3, lines 2—6). Let r and s denote a read and a seed, respectively.
Additionally, let £ : Z — Z represent a length function. Then, £(s) = L(r)/(e + 1), where
e is the number of allowed errors.

Reference Index E(?fs/.rcachxtFilc‘ RDD,ﬂatMap(i.sp]it)‘ RDD filter(A).sortByKey ‘ B\[i)values‘ Reference Index
1+ACGTTCAGTCT ACG,1 AAA 40 40
ATA 1+L1L2 REDUCE-1 AAC,1 41
8+GTCTATAATCG 38
TCT 8+L.2L3 AAG,58 68
51
1s+aTCGTCTGCT| 1STLM4 .
GATG 0
22+GCTGATGATC _ ~ 22??}; 46
GAGT 22+LA4LS R A)

Fig. 4 Mapreduce architecture for Phase Il (suffix index generation)

Rathee and Kashyap JBig Data (2018) 5:8 Page 10 of 18

Algorithm 3 Phase Il- Read Mapping

Input: Reads data (Rg;), Number of errors allowed (v), Suffix array (Sa, Sc, Sg, St)
Output: Read location in Rg(u)
1: procedure READ—MAP

2 for each read r € Ry do

3 flatMap(line offset, r)

4: O= r.size()

5: rs(i)=seed ¢ of read r

6: rs(i)=r.substring((i — 1)*0/(v + 1))
7 for each seed r5(i) € r do

8 pu= Find(rs(i), Rg, f. 1)

9: if (1> 0) then

10: extend rgs(i) to r

11: p = mismatch(r, Rg(u))

12: if (o <= v) then

13: r found at p

14: else

15: de = edit-distance(r, Rg (1))
16: if (de < v) then

17: r found at p

18: Yield(r, u)

19: end flatMap

For every seed s, the mapper finds its corresponding match in the reference genome by
using the suffix array index (Algorithm 4) and generates a (key, value) pair, where key is
the seed s and value is the location of the seed s in the reference genome (Algorithm 3,
lines 7-8). If an exact match of a seed s exists, then we extend it to the whole read and
find mismatches for the whole read (Algorithm 3, lines 9-11). If mismatches are less
than e then a read with its location in the reference genome is yielded (Algorithm 3, lines
12-13). If the mismatches are more than e then the edit distance for the whole read is
calculated and if this computed edit distance is less than e, then a read with its loca-
tion in the reference genome is outputted (Algorithm 3, lines 14—17). Finally, reducers
combine all intermediate results and output every read with its location in the reference
genome. Lineage graph (Fig. 5) for phase III shows the flow of reads during Phase III.

flatMap(_.newAPIHadoopFile) flatMap(_.split()) map(_.getTotalErrors)
| Read DataStream l—'| Offset, Read —'| Seed, Index ExtendedRead H Read, Location in RG, Errors

map(_.findExactMatch)

| Suffix Index

Fig. 5 Lineage graph for Phase Ill (stream mapping)

Rathee and Kashyap JBig Data (2018) 5:8 Page 11 of 18

Algorithm 4 Find (rs, Ry, Sa, f. 1)
Input: Seed (rs), Reference Genome (Ry), Suffix array (Sq), first of suffix array (f), last of suffix array

)
Output: Location of 75 in Ry
1: procedure FIND-SEED

f=f

2

3 1=l

4: A= length of r;

5: m= (f+)/2

6: 7= Sq(m)

7 = Ry(7, 7+A)
8 if (rs==7%®) then
9

: return 7
10: else if (rs <= @) then
11: Find(rs, Rg, Sa, f, m)
12: else if (rs >= @) then
13: Find(rs, Rg, Sa, m, |)

Figure 6 shows a MapReduce architecture for an exemplary read data alignment on the
reference genome using a partitioned suffix-array index. Initially, a stream of reads from
data sources like Kafka, HDFS or flume are taken as input and stored as JavaRDD

A flatMap function on this JavaRDD distributes reads to different mappers. For
example, mapper MAP-1 takes as input reads R1-R3. Reads are split into many seeds
depending on the number of errors allowed. For example, read R1 (ACGTCC) is split
into two seeds (ACG and TCC), if the number of permitted errors is 1. Exact matches
for each seed is then sought in a suffix array partition depending on the start character
of the seed. For example, if a seed begins with token ¢, then the exact match for this
seed is searched only in Index;. The search for exact matches for Seed; (ACG) and Seed,
(TCC) is now restricted to only indices index, and index;, respectively. If an exact match
exists for the seed, then the seed is extended to the entire read. Continuing with our
example, seed; (ACG) has an exact match at location 1-3 in the reference genome and
hence it gets extended to the entire read, i.e., ACGTCC. Now, the edit distance between
the extended read and reference location 1-6 is computed. A match is successful and
is emitted when it is less than our allowed error threshold. For example, read; yields
(readh, 1,7). Results for all reads are collected and stored in a text file on HDFS.

Finding the exact location of a seed in a reference genome is the most time-consuming
task. But due to the indexed genome (suffix array), a maximum of 32 searches
(log, (3 x 10%)) are required to search a seed in a reference genome, like a human
genome, that contains 3 billion characters. We further reduce the cost of finding exact

matches for seeds by partitioning our index. Our partitioning scheme requires that

Read Data ||collectStream E\fs.nﬁAPlHadoopFile ‘ B\Iﬁ.ﬂatMap ‘ B\eﬂ,split(seeds) ‘ E\eﬁiextend‘ B\D/D.collect‘ Read Result

N
ACGTCC}&'[MAP-I [rG |[mpEX,|[mNDEx, | [NDEX,|[INDEX, INDEX‘”MD Readl, 1,6
AGTCTA 21,R3 s Read3, 64,69 | Read2, 7,12
GGCCAA Read3, 64,69
CGTCAA 31, R4 Readd, 47,52 |Read4, 47,52
COTOTG SReT A2 [rG |[mpEx,|[npEX, | [NpEX,|[INDEX, |[INDEX, Read6. 42377 Reads, 1722
ACGTAC Read6, 42,47
CTGCTC) ey |1 7 Read?. 2025 | Rea47:2025
GATGAT s "’[MAP-S [re |[mpEx,|[NpEX, | [INDEX,|[INDEX, INDEX‘}L—'PRRC‘& 25,30
CGAGTA|| 83__J781,R9 = Read9, 31.36 | Reado, 31,36

Fig. 6 Mapreduce architecture for Phase lll (stream mapping)

Rathee and Kashyap JBig Data (2018) 5:8

suffixes starting with similar characters are placed in the same sorted partition. For
example, if we have 5 partitions, then every read will be searched in nearly 1 / 5-th of the
index, which reduces the number of searches for every read from 32 to nearly 30 or
fewer. If the length of a read is 1000 bp then partitioning the suffix array saves nearly
2000 computations for every read. As the volume of reads is also massive (i.e., billions of
reads), the time savings in computation are also quite significant. Let us assume that R is
the size of a reference genome, g is the number of reads in a query sequence, # is length
of a read, and the number of partitions p of our index is set to 5 (with prefix a, ¢, g, t, n).
Then, the number of searches required to find a read in the whole genome is log, R.

Therefore, the number of searches required to find a read in a single partition is log, 157

and the number of searches reduced in a single partition is log, p. As the total number of
comparisons to search a read is n, the reduction in a total number of computations
amounts to ng log, p.

StreamAligner Api

One of the main targets of StreamAligner is to provide bioinformaticians an easy, simple
and powerful way to perform sequence alignments using distributed computing based
big data technology like Apache Spark. To achieve this goal, a basic API for StreamA-
ligner is provided. StreamAligner can be started from Spark console. In Spark console,
a Spark-submit command with necessary arguments is used to run StreamAligner. An
example of a Spark-submit command with necessary arguments is shown in Fig. 7. All
required commands to use StreamAligner are available in commands.txt file on GitHub
directory. StreamAligner takes input as a stream of reads. These streams of reads can
come from many sources like Kafka, HDFS/S3, and kinesis. The current version of Strea-
mAligner is taking input from HDEFS and storing results back to HDEFS after processing.
In the example given in readme.txt file on GitHub directory for StreamAligner, a sample
query genome dataset is taken from HDFS as input. Results after processing are stored
in a particular HDFS directory. Source code for StreamAligner is publicly available for
users on GitHub directory so that users can edit the code to take streams from different
sources according to their needs. We are flexible to get a request from users to add sup-

port from other stream sources in future.

/path/spark-submit

1. --class StreamAligner

2. --master spark://master:7077 # Connect to master of cluster

3. target/StreamAligner.jar # StreamAligner Tool

4. hdfs://localhost:54310/chrl.fastq # Reference genome

5. hdfs://localhost:54310/c-ref.txt # Cleaned and transformed reference genome
6. 50 # Number of base pair in single line of reference
7. 20 # Keylength- size of keys to sort suffixes

8. hdfs://localhost:54310/refchr-index # Chromosome with start location in reference
9. hdfs://localhost:54310/suffix-a # Suffix array for suffixes starting with A

10. hdfs://localhost:54310/suffix-c # Suffix array for suffixes starting with C

11. hdfs://localhost:54310/suffix-g # Suffix array for suffixes starting with G

12. hdfs://localhost:54310/suffix-t # Suffix array for suffixes starting with T

13. 249250627 # Total size of reference genome

14. hdfs://localhost:54310/query # Query data stream source

15. “@HWI” # Query data delimiter

16. 2 # Number of error allowed

17. hdfs://localhost:54310/result.fastq # Location to save results on Hadoop
Fig. 7 Example running StreamAligner on Apache Spark from console

Page 12 0f 18

Rathee and Kashyap J Big Data (2018) 5:8 Page 13 of 18

Results and discussion
We evaluated performance of StreamAligner for index generation and read mapping
with different number of computing nodes and using several datasets of different sizes.

Cluster and dataset

We evaluated performance of StreamAligner on a cluster having five nodes where each
node have 32 cores and 64 GB RAM. All computing nodes are running on Ubuntu
16.04.3 LTS operating system. Oracle Java 8 is used to build project. Spark 2.2.0 and
Hadoop 2.7 are used to run StreamAligner.

Mainly two types of datasets are required in sequence alignment applications. First one
is reference genome and other one is query genome. Reference genome is a continuous
string of millions of characters. Query genome contains reads of various length. We have
used human chromosome 1, chromosome 2, chromosome 3, chromosome 5, chromosome
21, a full human genome (4g19), elephant genome (loxAfr3), rabbit genome (oryKun2)
and cat genome (felCat8) as reference genomes for our experiments. All these refer-
ence genomes are sourced from the NCBI project [41]. Different subsets of AML.fastg,
BRL.fastq, GCAT, ERR000589, SRR015390, SRR062634, SRR642648 and 100k.fa have
been used as a query sequence. 100k.fa was downloaded from the Cloudburst website,
while AML.fastq, ANL.fastq and BRL.fastq are real-world datasets from Agilent Tech-
nologies [42]. The ERR000589, SRR062634 and SRR642648 dataset is from 1000genomes
project website [43]. Detailed description of various datasets is given in Table 1.

Index generation
We evaluated StreamAligner’s index generation tool in terms of scalability and efficiency.

The scalability of the index generation phase is evaluated by increasing the number of
compute cores for Spark. Fig. 8 clearly shows that the index generation time decreases
linearly with increasing compute cores.

Currently, BWA is one of the best index generation tools. Most of the recent sequence
aligners like BigBWA, SparkBWA, and Halvade use BWA for index generation. We also
compared the index generation times for StreamAligner and BWA for a fixed number of
compute cores (64 cores) and different datasets. Figures 9 clearly shows that the index
generation time of StreamAligner is nearly three times less than BWA.

Table 1 Query datasets description

Query genome Number of reads Bp per read Size (MB)
100k fa 100,000 36 4.18
BRLfastq 3,958,076 100 1100

AML fastq 304,745 150 112

ANL fastq 2,986,312 400 2600
NA12750/ERR000589 12 % 10° 51 3400
HG00096/SRRO15390 159 % 10° 51 5100
HG00096/SRR062634 24.1 % 10° 100 11,800

150140/SRR642648 98.8 % 100 100 48,300

Rathee and Kashyap JBig Data (2018) 5:8 Page 14 of 18

Execution Time in Seconds

Execution Time in Seconds

16 32 48 64 80 96 112 128 16 32 48 64 80 96 112 128
Number of Cores Number of Cores

a
Fig. 8 Index generation time of (a) hg19 and (b) OryKun2 genome for StreamAligner

3276
2737

2681

181

®

® StreamAligner M SparkBWA u StreamAligner M SparkBWA
3

g
&
%
S 2
3 ® 3
I F g I

CHR 1 CHR 2 CHR 3 CHR 'S HG19 LOXAFR3 ORYKUN2 FELCAT8
REFERENCE GENOME REFERENCE GENOME

a b
Fig. 9 Index generation time for StreamAligner and SparkBWA. a Performance for different chromosomes. b
Performance for different genomes

708
671

EXECUTION TIME IN SECONDS
EXECUTION TIME IN SECONDS

Read mapping

StreamAligner is the only sequence aligner which can align stream of reads. Therefore,
we can not show any comparative results for StreamAligner with any other sequence
aligner for data streams. Still, we evaluated StreamAligner performance for static data
(by feeding static read data as stream) and compared it with state-of-the-art sequence
aligners. We evaluated StreamAligner in terms of performance, scalability and accuracy.

Execution time for mapping different read datasets on different reference genome is
shown in Table 2. StreamAligner is capable to map millions of reads on large reference
genome like human genome in few minutes. StreamAligner will perform better than
SparkBWA when read length is high as we can see that speedup is high for ANL data-
set. Results also show that performance of StreamAligner gets better in comparison to
SparkBWA as the size of query dataset increases.

We evaluated scalability of read mapping phase by increasing number of comput-
ing nodes for Spark from 1 to 5. Figure 10 clearly shows that mapping time decreases
as number of computing nodes increases. Therefore, we can say that StreamAligner is
highly scalable and can align reads more efficiently as cluster size increases.

StreamAligner finds exact matches for non-overlapping seeds using binary search on
sorted suffix array index. Therefore, it provides 100% accuracy for mapping reads with
fixed number of allowed errors. Figures 11 and 12 show number of read matches found
by StreamAligner, CloudBurst and SparkBWA for different datasets. We find all read
mathces for different datasets with a fixed number of allowed errors. All query datasets
of length below 100 bp are allowed to have one error (mismatch or indel) while others
are allowed to have two errors. Read matches shown for CloudBurst are both forward

Rathee and Kashyap J Big Data (2018) 5:8 Page 15 of 18

Table 2 StreamAligner performance (times reported in seconds)

Reference genome Query genome StreamAligner SparkBWA Speedup
S_suis 100 k 18 81 45x%x
chr1 AML 140 54 0.38x
chr21 AML 147 44 0.3x
hg19 AML 87 40 0.46x
chr1 BRL 247 259 1.04x
chr21 BRL 315 322 1.02x
hg19 BRL 121 191 157x%
chri ANL 228 3189 13.98x
chr21 ANL 1222 2403 1.96x
hg19 ANL 337 3369 9.97x
chr1 ERR000589 532 1201 2.25x%
chr21 ERR000589 178 407 2.28x
hg19 ERR000589 909 2202 242x
chri SRRO15390 267 1093 4.09x
chr21 SRR0O15390 191 522 2.73%
hg19 SRRO15390 568 2119 373x%
chr1 SRR062634 779 1819 2.33x
chr21 SRR062634 624 1485 2.37x%
hg19 SRR062634 1031 2321 2.25%
chr1 SRR642648 1449 2939 2.02x
chr21 SRR642648 1332 2500 1.87x
hg19 SRR642648 1892 3563 1.88x
600 1400

: £ w

é N - 233 é o0

2 Ry

0 . - ” - o - - " -
Number of Cores Number of Cores
a
Fig. 10 Execution time for StreamAligner to map (a) ANL and (b) ERR000589 datasets on Chr1

® CloudBurst ® SparkBWA StreamAligner ® CloudBurst ™ SparkBWA StreamAligner

3 s e 5 2 P

) 2. R & R) 5 G g 3 g g

I z g2 33

e o 2 3 3 = 2

g E g ;A

= ER- s =

a s & 3 2

g 5 g

= g = P e

5 9 § L B2 S o o R O3

g & gE R £ . 5 g .

@ b 2 a 5 3 = LI

= I s 5 S

= =] =

i [=1 i

ERR000589 SRR015390 SRR062634 SRR642648 ERR000589 SRR015390 SRR062634 SRR642648

QUERY DATASET QUERY DATASET

Fig. 11 StreamAligner accuracy evaluation to map different query datasets on (a) Chr1 and (b) Chr21

Rathee and Kashyap JBig Data (2018) 5:8 Page 16 of 18

® CloudBurst ® SparkBWA StreamAligner M CloudBurst ® SparkBWA StreamAligner

273
2991
3002
3534
4412
4479
51117

NUMBER OF READ MATCHES
NUMBER OF READ MATCHES

I 51012

2
8 @ B
2 g
s 8 LB E
s 2 2 2
3 8 © =L
= " ~ 8 8
& -
I g2 3 2 I
= 0
100K 200K 300K 100K 200K 500K 1000K
NUMBER OF READS NUMBER OF READS

Fig. 12 StreamAligner accuracy evaluation to map (a) AML and (b) BRL query datasets on Chr1

and backward search matches. SparkBWA is using BWA-SW to find matches with given
number of allowed errors.

Figure 11 shows number of read matches found by CloudBurst, SparkBWA and Strea-
mAligner during mapping of different datasets (taken from 1000 genome project) on
Chrl and Chr21 genome respectively.

Figure 12 shows number of read matches found by CloudBurst, SparkBWA and Strea-
mAligner during mapping of AML and BRL datasets on Chrl.

Conclusions and future work
We have presented a MapReduce based sequence alignment tool called StreamAligner.
It has three main features which makes it attractive in comparison to all existing state-
of-the-art sequence aligners. Firstly, it aligns stream of reads on reference genome in
real-time, hence can be used to automate sequencing and alignment process. The output
of sequencing (reads) is given as input to StreamAligner as a stream of reads. StreamA-
ligner aligned stream of reads on reference genome in real-time and store results, there-
fore avoiding the need to store huge sequencing data. Secondly, it uses suffix array index
for read alignment which is generated using distributed index generation algorithm. Due
to distributed index generation algorithm, index generation time is very less. Results
show that index generation algorithm is highly scalable. Hence, it will generate index in
few seconds on large clusters. Third, it needs to upload index only once when StreamA-
ligner is launched. After that index stays in Spark memory and can be used for an infi-
nite time without reloading. Whereas, current state-of-the-art sequence aligner either
generate (hash index based) or load (sorted index based) index for every task. Hence,
StreamAligner reduces time to generate or load index for every task. A tested version
of StreamAligner is available on GitHub with streaming support. StreamAligner is com-
pared to best existing sequence aligners in terms of speed and accuracy and it outper-
forms all existing sequence aligners. StreamAligner is publicly available to use at GitHub
repository: (https://github.com/sanjaysinghrathi/StreamAligner).

In future, the API can be extended to add support for input from different sources like
Flume and S3. Further, implementation of StreamAligner on Apache Flink [44], another
big data platform will be useful to test the performance comparison.

Authors’ contributions
SR performed the literature review, implemented the proposed algorithm and conducted the experiments. AK advised
SR all aspects of the paper development. Both authors read and approved the final manuscript.

Rathee and Kashyap JBig Data (2018) 5:8 Page 17 of 18

Authors’information

Sanjay Rathee received the B.Tech degree in computer engineering from Maharshi Dayanand University,
Rohtak,Harayana, India, in 2011, and the M.Tech degree in computer engineering from Kurukshetra University,
Haryana,India, in 2013. He is currently working toward the Ph.D. degree in computer engineering from Indian Institute
ofTechnology, Mandi, India. He has developed several distributed algorithms related to business strategies andbioin-
formatics sector. His research interests include distributed computing algorithms and platforms, association rulemining
and sequence alignment. Arti Kashyap received the B.Sc degree from Himachal Pradesh University, Shimla,H.P, India, in
1989, the M.Sc and Ph.D. degree from Indian Institute of Technology, Roorkee, India, in 1991 and1996 respectively. She
is currently working as associate professor at Indian Institute of Technology Mandi, India. Herresearch interests include
distributed algorithms, big data analytics, sequence alignment and magnetic materials.

Author details
! School of Computing and Electrical Engineering, IIT Mandi, Kamand Campus, Mandi, India. 2 School of Basic Sciences,
IIT Mandi, Kamand Campus, Mandi 175005, India.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Not applicable.

Consent for publication
I allow journal to publish it.

Ethics approval and consent to participate
Not applicable.

Funding
Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 November 2017 Accepted: 16 January 2018
Published online: 27 February 2018

References

1. Sabatini R. Ted Talk. (2017). https://www.ted.com/talks/
riccardo_sabatini_how_to_read_the_genome_and_build_a_human_being

2. LiH, Ruan J, Durbin R. Mapping short dna sequencing reads and calling variants using mapping quality scores.

Genome Res. 2008;18(11):1851-8. https://doi.org/10.1101/gr.078212.108.

Cox A. ELAND: Efficient local slignment of nucleotide data (unpublished).

4. Jiang H, Wong WH. Segmap: mapping massive amount of oligonucleotides to the genome. Bioinformatics.
2008;24(20):2395. https://doi.org/10.1093/bioinformatics/btn429.

5. LinH, Zhang Z, Zhang MQ, Ma B, Li M. ZOOM! Zillions of oligos mapped. Bioinformatics. 2008;24(21):2431-7. https://
doi.org/10.1093/bioinformatics/btn416.

6. Smith AD, Chung WY, Hodges E, Kendall J, Hannon G, Hicks J, Xuan Z, Zhang MQ. Updates to the rmap short-read
mapping software. Bioinformatics. 2009;25(21):2841. https://doi.org/10.1093/bioinformatics/btp533.

7. Novocraft Technologies Sdn Bhd: NovoAlign. Novocraft Technologies Sdn Bhd. 2008. http://www.novocraft.com.

8. LiR, LiY,Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics. 2008;24(5):713-4.
https://doi.org/10.1093/bioinformatics/btn025.

9. Campagna D, Albiero A, Bilardi A, Caniato E, Forcato C, Manavski S, Vitulo N, Valle G. PASS: a program to align short
sequences. Bioinformatics. 2009;25(7):967-8. https://doi.org/10.1093/bioinformatics/btp087.

10. Eaves HL, Gao Y. Mom: maximum oligonucleotide mapping. Bioinformatics. 2009;25(7):969-70. https://doi.
org/10.1093/bioinformatics/btp092.

11. Homer N, Merriman B, Nelson SF. Bfast: an alignment tool for large scale genome resequencing. PLoS ONE.
2009;4(11):1-12. https://doi.org/10.1371/journal.pone.0007767.

12. KimYJ, Teletia N, Ruotti V, Maher CA, Chinnaiyan AM, Stewart R, Thomson JA, Patel JM. Probematch: rapid alignment
of oligonucleotides to genome allowing both gaps and mismatches. Bioinformatics. 2009;25(11):1424-5. https://
doi.org/10.1093/bioinformatics/btp178.

13. Malhis N, Butterfield YSN, Ester M, Jones SIM. Slider—maximum use of probability information for alignment of
short sequence reads and snp detection. Bioinformatics. 2009;25(1):6-13. https://doi.org/10.1093/bioinformatics/
btn565.

14. Burrows M, Wheeler DJ. A block-sorting lossless data compression algorithm. 1994. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.121.6177. Accessed 15 Mar 2016.

15. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short dna sequences to
the human genome. Genome Biol. 2009;10(3):25. https://doi.org/10.1186/gb-2009-10-3-r25.

w

https://doi.org/10.1101/gr.078212.108
https://doi.org/10.1093/bioinformatics/btn429
https://doi.org/10.1093/bioinformatics/btn416
https://doi.org/10.1093/bioinformatics/btn416
https://doi.org/10.1093/bioinformatics/btp533
https://doi.org/10.1093/bioinformatics/btn025
https://doi.org/10.1093/bioinformatics/btp087
https://doi.org/10.1093/bioinformatics/btp092
https://doi.org/10.1093/bioinformatics/btp092
https://doi.org/10.1371/journal.pone.0007767
https://doi.org/10.1093/bioinformatics/btp178
https://doi.org/10.1093/bioinformatics/btp178
https://doi.org/10.1093/bioinformatics/btn565
https://doi.org/10.1093/bioinformatics/btn565
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.6177
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.6177
https://doi.org/10.1186/gb-2009-10-3-r25

Rathee and Kashyap JBig Data (2018) 5:8

19.
20.

21.

22.

23.

24,
25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44,

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics.
2009;25(14):1754-60. https://doi.org/10.1093/bioinformatics/btp324.

Li H, Durbiin R. Fast and accurate long-read alignment with Burrows—Wheeler transform. Bioinformatics.
2010;26(5):589. https://doi.org/10.1093/bioinformatics/btp698.

Ferragina P, Manzini G. Opportunistic data structures with applications. In: Proceedings of the 41st annual sympo-
sium on foundations of computer science. FOCS ‘00, IEEE computer society, Washington, DC; 2000. p. 390. http://
dl.acm.org/citation.cfm?id=795666.796543

Apache Hadoop. http://hadoop.apache.org/.

Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster computing with working sets. In: Proceed-
ings of the 2nd USENIX conference on hot topics in cloud computing. HotCloud'10. USENIX Association, Berkeley;
2010. p. 10-10. http://dlacm.org/citation.cfm?id=1863103.1863113.

Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. In: Proceedings of the 6th conference
on symposium on operating systems design & implementation, Vol 6. OSDI'04. USENIX Association, Berkeley, CA,
USA; 2004. p. 10-10. http://dl.acm.org/citation.cfm?id=1251254.1251264.

Schatz MC. Cloudburst: highly sensitive read mapping with mapreduce. Bioinformatics. 2009;25(11):1363-9. https://
doi.org/10.1093/bioinformatics/btp236.

Nguyen T, Shi W, Ruden D. Cloudaligner: a fast and full-featured mapreduce based tool for sequence mapping. BMC
Res Notes. 2011;4:171. https://doi.org/10.1186/1756-0500-4-171.

Schatz MC. BlastReduce: high performance short read mapping with MapReduce.

Abuin JM, Pichel JC, Pena TF, Amigo J. BigBWA: approaching the Burrows-Wheeler aligner to Big Data technologies.
Bioinformatics. 2015;31(24):4003-5. https://doi.org/10.1093/bioinformatics/btv506.

Abuin JM, Pichel JC, Pena T, Amigo J. Sparkbwa: speeding up the alignment of high-throughput dna sequencing
data. PLoS ONE. 2016;11(5):1-21. https://doi.org/10.1371/journal.pone.0155461.

Decap D, Reumers J, Herzeel C, Costanza P, Fostier J. Halvade: scalable sequence analysis with mapreduce. Bioinfor-
matics. 2015;31(15):2482-8. https://doi.org/10.1093/bioinformatics/btv179.

Congosto M, Basanta-Val P, Fernandez LS. T-hoarder: a framework to process twitter data streams. J Netw Comput
Appl. 2017;83:28-39.

Lv Z, Song H, Basanta-Val P, Steed A, Jo M. Next-generation big data analytics: state of the art, challenges, and future
research topics. [EEE Trans Ind Inf. 2017;13(4):1891-9. https://doi.org/10.1109/T11.2017.2650204.

Rathee S, Kaul M, Kashyap A. R-apriori: an efficient apriori based algorithm on spark. In: Proceedings of the 8th work-
shop on Ph.D. workshop in information and knowledge management. PIKM. ACM, Melbourne, Australia. 2015;15:
27-34. https://doi.org/10.1145/2809890.2809893

Basanta-Val P, Fernandez-Garcia N, Basanta-Val P, Ferndndez-Garcia N, Sdnchez-Fernd ndez L, Arias-Fisteus J. Pat-
terns for distributed real-time stream processing. IEEE Trans Parallel Distrib Syst. 2017;28(11):3243-57. https://doi.
org/10.1109/TPDS.2017.2716929.

Basanta-Val P, Ferndndez-Garcia N, Wellings AJ, Audsley NC. Improving the predictability of distributed stream
processors. Future Gener Comput Syst. 2015;52(C):22-36. https://doi.org/10.1016/j.future.2015.03.023.

Pireddu L, Leo S, Zanetti G. Seal: a distributed short read mapping and duplicate removal tool. Bioinformatics.
2011;27(15):2159-60. https://doi.org/10.1093/bioinformatics/btr325.

LiY, Zhong S. Segmapreduce: software and web service for accelerating sequence mapping. Critical assessment of
massive data analysis (CAMDA). 2009.

Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL. Searching for snps with cloud computing. Genome Biol.
2009;10(11):134. https://doi.org/10.1186/gb-2009-10-11-r134.

Amazon EC2 Cloud: Amazon Web Services Genomics. Amazon EC2 Cloud. 2017. https://aws.amazon.com/health/
genomics/.

Versaci F, Pireddu L, Zanetti G. Scalable genomics: from raw data to aligned reads on apache yarn. EEE Int Conf Big
Data. 2016;12:1232-41. https://doi.org/10.1109/BigData.2016.7840727.

Peters D, Qiu K, Liang P. Faster short dna sequence alignment with parallel bwa. AIP Conf Proc. 2011;1368(1):131-4.
https://doi.org/10.1063/1.3663477.

Klus P, Lam S, Lyberg D, Cheung MS, Pullan G, McFarlane I, Yeo GS, Lam BY. Barracuda—a fast short read sequence
aligner using graphics processing units. BMC Res Notes. 2012;5(1):27. https://doi.org/10.1186/1756-0500-5-27.
ZhouW, Li R, Yuan S, Liu C, Yao S, Luo J, Niu B. Metaspark: a spark-based distributed processing tool to recruit
metagenomic reads to reference genomes. Bioinformatics. 2017;33(7):1090. https://doi.org/10.1093/bioinformatics/
btw750.

National Center for Biotechnology Information. Reference Genomes. National Center for Biotechnology Information.
2017. http//www.ncbi.nim.nih.gov.

Agilent Inc. USA. Query Datasets. Agilent Inc. USA. 2017. https://cloud.iitmandi.ac.in/d/2ba909564a/.

1000genomes Project: Genome Dataset Project. 1000genomes Project. 2017. ftp://ftp-trace.ncbi.nih.gov/1000g
enomes/ftp/.

Apache: Flink. Apache. 2017. https://flink.apache.org/.

Page 18 of 18

https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp698
http://dl.acm.org/citation.cfm?id=795666.796543
http://dl.acm.org/citation.cfm?id=795666.796543
http://hadoop.apache.org/
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1251254.1251264
https://doi.org/10.1093/bioinformatics/btp236
https://doi.org/10.1093/bioinformatics/btp236
https://doi.org/10.1186/1756-0500-4-171
https://doi.org/10.1093/bioinformatics/btv506
https://doi.org/10.1371/journal.pone.0155461
https://doi.org/10.1093/bioinformatics/btv179
https://doi.org/10.1109/TII.2017.2650204
https://doi.org/10.1145/2809890.2809893
https://doi.org/10.1109/TPDS.2017.2716929
https://doi.org/10.1109/TPDS.2017.2716929
https://doi.org/10.1016/j.future.2015.03.023
https://doi.org/10.1093/bioinformatics/btr325
https://doi.org/10.1186/gb-2009-10-11-r134
https://aws.amazon.com/health/genomics/
https://aws.amazon.com/health/genomics/
https://doi.org/10.1109/BigData.2016.7840727
https://doi.org/10.1063/1.3663477
https://doi.org/10.1186/1756-0500-5-27
https://doi.org/10.1093/bioinformatics/btw750
https://doi.org/10.1093/bioinformatics/btw750
http://www.ncbi.nlm.nih.gov
https://cloud.iitmandi.ac.in/d/2ba909564a/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
https://flink.apache.org/

	StreamAligner: a streaming based sequence aligner on Apache Spark
	Abstract
	Introduction
	Mapreduce and Spark streaming

	Related work
	Methods
	Reference preprocessing
	Index generation
	Read mapping
	Phase I-Reference preprocessing
	Phase II-Index generation
	Phase III-Read mapping

	StreamAligner Api
	Results and discussion
	Cluster and dataset
	Index generation
	Read mapping

	Conclusions and future work
	Authors’ contributions
	References

