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Introduction
Machine learning is of increasing importance due to its success and benefit in real-world 
applications. Models used in machine learning are trained from a series of examples 
comprised of features/attributes that are associated with a single label. This label can be 
a class value for classification tasks or a numerical value for regression tasks [1]. When 
faced with unsupervised tasks, the class labels are not provided during training which 
can make the training process more challenging. Once these models are trained we can 
then apply them to predict the value for a newly arriving, unseen instance. Also, if the 
ground truth label is available, we can compare it to the predicted value as to calculate 
performance metrics [2] for the model.
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Traditional machine learning operates under the assumption that the training and 
testing data are taken from the same input feature space and the same data distribution 
[3]. However, this assumption may not hold when faced with real-world scenarios. The 
feature space may differ in the manner that the training data may hold a specific set of 
features, but the testing data may have a feature space of different dimensions, or its fea-
tures may represent different attributes entirely. The data distribution may also differ in 
the manner that, if the training and testing data were collected from different domains, 
the marginal and/or conditional probability distributions [4] may differ. As an example, 
consider the case described in [5], where a model is trained to classify records of Book 
A into predefined categories and is then tested using records from Book B. In this case, 
the model will have degraded performance because the training and testing data were 
taken from different data distributions, since each book has a different variety of words, 
sentences, etc. When the distribution changes, most statistical models need to be rebuilt 
completely using new labeled training data from the new distribution. This process is 
often expensive and difficult due to the effort of collecting sufficient labeled data to train 
an effective new model [6]. Thus, there is a need for a method to create a high-perfor-
mance model for a target domain in a different distribution without such a significant 
amount of labeling effort. This can be achieved using transfer learning.

Transfer learning

Transfer learning (TL) [3, 6, 7] aims to produce an effective model for a target task with 
limited or no labeled training data by leveraging and exploiting knowledge from a differ-
ent, but related source domain to predict the truth label for an unseen target instance. 
Due to insufficient labeled instances, training a model in this target task would result 
in degraded performance as compared to a model trained with sufficient labeled data. 
However, by enhancing the training with supplementary labeled data from a related 
source domain, the model’s ability to classify target instances can be improved. The 
challenge becomes how to distinguish beneficial knowledge in a source domain from 
the inherent cross-domain noise, due to the varied distributions, and apply it to a target 
domain. Transfer learning can be split into two main categories when it comes to the 
feature spaces: homogeneous and heterogeneous transfer learning.

Homogeneous transfer learning

In homogeneous transfer learning, the feature spaces of the data in the source and target 
domains are represented by the same attributes  (Xs = Xt) and labels  (Ys = Yt) while the 
space itself is of the same dimension (ds =  dt). This method thus focuses on bridging 
the gap in the data distributions between the domains as experienced in cross-domain 
transfer [7]. Overall, as described in [3] and [7], homogeneous transfer learning solu-
tions can be organized into five categories: Instance-based, feature-based (symmetric 
or asymmetric), model-parameter-based, relational-informational-based and hybrid-
based approaches. An in-depth review of these approaches is described in [7]. It can be 
also noted that much of the current literature addresses the problem of homogeneous 
domain adaptation. In this scenario one is performing a single, common task, but under 
a different domain and the goal is to reduce the accuracy drop due to the distribution 
shift.
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Heterogeneous transfer learning

The other category of transfer learning is Heterogeneous Transfer Learning (HTL). In 
this scenario, the feature spaces between the source and target are nonequivalent and 
are generally non-overlapping. In this case,  Xs ≠ Xt and/or  Ys ≠ Yt as the source and 
target domains may share no features and/or labels, while the dimensions of the feature 
spaces may differ as well. This method thus requires feature and/or label space transfor-
mations to bridge the gap for knowledge transfer, as well as handling the cross-domain 
data distribution differences. This case is more challenging, as there are fewer represen-
tational commonalities between the domains. In other words, knowledge is available 
from source data but it is represented in a different way than that of the target. The chal-
lenge becomes how to extract it.

Most heterogeneous transfer learning solutions fall into two categories when it comes 
to transforming the feature spaces: symmetric and asymmetric transformation. Symmet-
ric transformation, illustrated in Fig. 1a, takes both the source feature space  Xs and target 
feature space  Xt and learns feature transformations as to project each onto a common 
subspace  XC for adaptation purposes. This derived subspace becomes a domain-invar-
iant feature subspace to associate cross-domain data, and in effect, reduces marginal 
distribution differences. Performing this brings the feature spaces for both domains 
together into a common feature representation where one can then apply traditional 
machine learning models such as Support Vector Machines (SVM). Optimally, one can 
also apply models built for homogeneous transfer learning which consider the distribu-
tion differences and domain transfer ability observed in the subspace. Asymmetric trans-
formation mapping, illustrated in Fig. 1b, transforms the source feature space to align 
with that of the target  (Xt → TXs) or the target to that of the source  (Xs → TXt). This, in 
effect, bridges the feature space gap and reduces the problem into a homogeneous trans-
fer problem when further distribution differences need to be corrected. This approach 
is most appropriate when the source and target have the same class label space and one 
can transform  Xs and  Xt without context feature bias. Context feature bias occurs when 
there are conditional distribution differences between the domains as a feature in one 
domain may have a different meaning in another. In either category, once the issue of 
varied feature spaces is resolved we may need to solve marginal and/or conditional dis-
tribution differences. This can be done through homogeneous adaption solutions which 
account for these distribution differences observed during cross-domain tasks.

Fig. 1 Illustration of symmetric (a) and asymmetric (b) feature transformation for HTL
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Domain Adaptation (DA) tasks, as previously discussed, may also be present as HTL 
problems and is known as Heterogeneous Domain Adaptation (HDA). This task is 
addressed by most of the current methods.

Negative transfer

The goal for transfer learning is to enhance the performance of a target task using an 
auxiliary/source domain. The issue becomes that sometimes transferring knowledge 
from a source domain may have a negative impact on the target model. This is also 
known as negative transfer. In such case, if one were to create a standard classifier, using 
only the limited labeled target data available for the application, then it would have bet-
ter performance than a transfer model using both the limited labeled target data and 
the source data. This occurs mostly when the source domain has very little in common 
to the target. For transfer learning to be successful it is assumed that the source and 
target are related in some way. The less related they are, the more cross-domain noise is 
experienced. Thus, less performance enhancing knowledge is identified and extracted. 
Rosenstein et  al. [8] demonstrated this by showing how transferring between dissimi-
lar domains causes performance loss. Some homogeneous transfer learning solutions 
employ safeguards against negative transfer as reviewed in [7]. On the other hand, most 
current heterogeneous transfer learning methods do not address this issue as to be later 
discussed.

Big data application

The theoretical foundation of transfer learning is data-size independent and, although 
not extensively investigated, may be applied to big data [9, 10] to achieve the same ben-
efits as within normal data environments. Specifically, both heterogeneous and homo-
geneous transfer learning methods are applicable to big data scenarios. This is because 
one can leverage these methods to enhance a target task in a big data environment with 
a source domain. As described by [7], transfer learning is especially attractive in the big 
data environment because, due to the growth of big data repositories, one can enhance 
their machine learning task by using an available dataset from a similar domain. In doing 
so, one can avoid the costly effort of collecting new labeled data which is especially 
apparent in the big data scope.

Paper overview/contributions
In this section, we will review the notations and organization used in this paper. The 
motivation for this survey paper is to provide a comprehensive, centralized overview of 
current heterogeneous transfer learning methodologies. The following outlines the con-
tributions of our paper.

  • Our main contribution is a comprehensive survey of 38 methods for heterogeneous 
transfer learning which operate under varied settings, requirements, and domains. 
This provides the centralized outlook into current methodologies.

  • Second, we present an in-depth discussion and analysis of the surveyed methods. 
This is done via review and comparison performed amongst the methodologies as 
well as their limitations.
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  • Third, we present the shortcomings of current research in this domain as well as 
future work for further investigation.

Unlike previous surveys related to transfer learning, we focus distinctly on heterogene-
ous transfer learning and its related challenges. Specifically, [6] only briefly introduces 
the idea of HTL without surveying any of its methodologies while our survey goes in-
depth into HTL, its challenges, and its current methods. Also, the survey conducted by 
[7] has a greater focus on general transfer learning methodologies and reviews only a 
few of the current methodologies for HTL, while we survey and analyze over three times 
as many. Thus, our unique focus on heterogeneous transfer learning provides a more 
comprehensive study across state-of-the-art methodologies and provides greater insight 
over other related surveys into this growing domain.

When faced with a cross-domain transfer learning task it is important to understand 
one’s requirements as to select an appropriate method. Because labeling efforts are 
often expensive, one may have little or no available training labels in the target domain. 
Thus, this paper intuitively organizes the reviewed methods around target and source 
label requirements so a machine learning practitioner or researcher can easily select an 
appropriate HTL method based on the availability of labels in their target task.

In the literature, it can be noted that there are opposing definitions for terms used to 
describe label requirements [7]. For example, Liu et al. [11] use the notation of super-
vised transfer learning to denote a fully-labeled source domain and a limited labeled 
target, while unsupervised transfer learning denotes a mostly labeled source with no tar-
get domain labels. Conversely, the work of Cook and Feuz [12] who use supervised and 
unsupervised transfer learning to denote the presence or absence of labels respectively 
only in the source domain. Furthermore, they use the notation of informed and unin-
formed to denote the presence or absence of labels respectively in the target domain. 
Due to these inconsistencies, we denote the categories explicitly by their label require-
ments to avoid confusion. The surveyed HTL methods are organized into the following 
categories: “Methods which require limited target labels”, “Methods which require lim-
ited target labels and accept unlabeled target instances”, “Methods which require no tar-
get labels”, “Methods which require limited target labels and no source labels”, “Methods 
which no target or source labels”, as well as an “HTL preprocessing method”. In Tables 1, 
2, 3, 4, we provide an overview of the surveyed methods in these categories. Further-
more, we present a deeper analysis into these methods in the “Discussion” section, fol-
lowed by the “Conclusion”, and finalized with “Future work”.   

Methods which require limited target labels
In this section, we survey various techniques which require labeled source data and 
limited labeled target data. Most of the current literature does not define how many 
instances would be considered “limited”, but they assume it to be too few to create an 
effective standard classifier. In such case, transfer learning is required to enhance perfor-
mance using an auxiliary, label-abundant domain.
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Table 1 Surveyed HTL methods which require limited target labels

Methods Characteristics Sections

COTL [13] Online tasks, multiview ensemble “COTL, OHTWC”

OHTWC [19] Requires co-occurrence data, online tasks, weighted ensemble “COTL, OHTWC”

HFA [23] Symmetric transformation w/augmentation “HFA”

HMCA [29] Requires source classifier, model-transfer “HMCA”

SHFR [31] Asymmetric, multi-class “SHFR”

TTI [36] Requires co-occurrence data, translator, image classification “TTI”

TLRisk [37] Requires co-occurrence data, translator, Markov chain, risk minimiza-
tion

“TLRisk”

ARC-t [28] Asymmetric, image classification, kernel methods “ARC-t”

SHDA-RF [41] Asymmetric, random forest and label pivots “SHDA-RF”

IFSR [12] Asymmetric, domain-independent metafeatures to compute similarity “FSR (IFSR, UFSR, ELFSR)”

ELFSR [12] Asymmetric, FSR ensemble, multi-source, stacking method “FSR (IFSR, UFSR, ELFSR)”

SMVCCAE [64] Symmetric, multi-view ensemble, CCA analysis “SMVCCAE, SSMVCCAE”

Table 2 Surveyed HTL methods which require limited target labels and accept unlabeled 
target data

Methods Characteristics Sections

DAMA [27] Symmetric, manifold alignment with labels, multi-source “DAMA”

CDLS [46] Symmetric and landmark weights “CDLS”

IDL for HDA [49] Online tasks, symmetric eigenanalysis-based “IDL for HDA”

MOMAP [51] Asymmetric, mapping by rotation and translation, multi-class, 
multi-source

“MOMAP”

HeMap [26] Symmetric, spectral mapping Bayesian method, cluster-based 
sampling

“HeMap”

Proactive HTL [54] Symmetric, label embeddings, proactive learning “Proactive HTL”

SHFA [47] Symmetric transformation w/augmentation for semi-supervised “SHFA”

CT-Learn [57] Requires co-occurrence data, joint transition probability graph, 
Markov random walk, multi-source

“CT-Learn”

SSKMDA [60] Instance-based asymmetric, kernel matching “SSKMDA”

SCP-ECOC [62] Symmetric, multi-class, ECOC scheme “SCP-ECOC”

MMDT [48] Asymmetric, image, max-margin, multi-class “MMDT”

SSMVCCAE [64] Symmetric, multi-view ensemble, CCA analysis, SRKDA “SMVCCAE, SSMVCCAE”

TNT [65] Neural network-based mapping and classification “TNT”

HDANA [67] Symmetric, deep learning, autoencoder mapping “HDANA”

Table 3 Surveyed HTL methods which require no target labels

Methods Characteristics Sections

CT-SVM [70] Symmetric, CCA, transfer SVM “CT-SVM”

HHTL [71] Asymmetric, requires source-target correspondence data, deep learn-
ing, mSDA

“HHTL”

HDCC [76] Symmetric, CCA, group-weighing, video annotation, multi-source “HDCC”

CL-SCL [78] Symmetric, structural correspondence learning, text classification “CL-SCL”

HDP [80] Asymmetric through metric selection and matching “HDP”

FuzzyTL [85] Fuzzy logic, intelligent environments, FIS “FuzzyTL”

UFSR [12] Asymmetric, domain-dependent metafeatures to compute similarity “FSR (IFSR, UFSR, ELFSR)”

ELFSR [12] Asymmetric, FSR ensemble, multi-source, voting method “FSR (IFSR, UFSR, ELFSR)”

RLG, GLG [11] Symmetric, LMM, Grassmann manifold “RLG, GLG”
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COTL, OHTWC

Zhao et al. [13] proposed a framework called Online Transfer Learning (OTL) to address 
online transfer learning tasks under homogeneous and heterogeneous scenarios. Spe-
cifically, the heterogeneous approach is called Co-regularized OTL (COTL). Standard 
machine learning assumes that training data is provided all at once in a batch manner, 
but this assumption may not always hold in real-world applications. Online learning [14] 
tasks are designed for when training instances arrive in an online/sequential manner. 
Online transfer learning aims to transfer knowledge from an offline source domain to 
an online target learning task which is represented by a different feature space. During 
these online HTL tasks, OTL assumes that the feature space of the source is a subset of 
the target domain and the procedure to solve these tasks is as follows. First, a classifier 
is built from the labeled source data, denoted as h(x), using regular supervised learn-
ing with SVM or online learning via the Perceptron algorithm [15, 16]. The method 
then proposes to use a multi-view approach for the target data. Multi-view [17] theory 
describes how the same data can be viewed through different representations or “views”. 
Two classifiers are built for two newly constructed views for the target data (denoted 
as f1 and f2) where f1 is initialized to the source prediction function h and f2 is initial-
ized to 0. The predicted label is calculated as a function of these two views thus creat-
ing an ensemble classifier. For each new arriving training instance, both functions are 
updated using co-regularization optimization. If an arriving target training instance is 
incorrectly predicted then the ensemble is updated through the optimization procedure 
which aims to classify the next new example correctly without deviating too much from 
the original ensemble through regularization terms. This method thus exploits source 
domain knowledge and enhances an online learning target task having both domains 
represented by differing feature spaces. Experiments were performed comparing the 
proposed COTL against the Passive Aggressive algorithm (PA) [18], PA initialized to the 
source, and COTL with both views initialized to 0. The proposed COTL demonstrated 
superior performance by producing lower mistake rates, i.e. higher accuracy, on bench-
mark datasets which proves the method as an effective technique for knowledge transfer 
for online learning tasks.

Yan et  al. [19] also proposed a method for online HTL learning tasks called Online 
Heterogeneous Transfer with Weighted Classifiers (OHTWC). This method proposes 
using unlabeled co-occurrence data to serve as a bridge between the two domains. The 
way this method works is by first creating an offline source classifier based on the simi-
larity relationship between the instances of the source and target through the co-occur-
rence data. Using Pearson correlation [20], the similarity is measured between the new 

Table 4 Other surveyed HTL methods

Methods Category Characteristics Sections

HTLIC [22] Unlabeled source, limited 
target

Image classification, bipartite graph, matrix factoriza-
tion, unlabeled source of text and annotated images

“HTLIC”

aPLSA [96] Unlabeled source and target Unsupervised, image clustering, PLSA extension, anno-
tated auxiliary images

“aPLSA”

DCN [103] Preprocessing Determine relatedness of domains using co-occur-
rence data, multi-source

“DCN”
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arriving target instance and its co-occurred counterpart. Then, the similarity between 
the source and its co-occurred counterpart is measured. Therefore, combining these 
two measures will provide us with the similarity of the arriving target instance with the 
source from a different feature space. The prediction for this classifier is done through a 
weighted sum of the k-nearest neighbors of the source instances deemed most similar.

A second classifier is then constructed for the target instances using the online Passive 
Aggressive [18] algorithm. This classifier is updated for each arriving training instance 
based on whether it predicted the instance correctly or not. The updating is done 
through a positive regularization parameter and a hinge loss function. Having these 
two classifiers, the final prediction for arriving instances is done as an ensemble of the 
two. A Hedge [21] strategy is used to dynamically update weights assigned to each of the 
classifiers. This is done by changing the voting weights based on the loss suffered from 
each classifier respectively. The larger the loss, the larger the weight decrease occurs to 
such classifier causing the more accurate classifier to have a higher weight for prediction 
purposes. Figure 2, adapted from [19], provides an illustration of this method for using 
weighted online and offline classifiers to perform an online task. An experiment for text-
to-image classification was performed to test the effectiveness of the proposed algo-
rithm. The proposed algorithm was compared against PA [18], SVM, HTLIC [22], and 
PA using k-NN on co-occurrence data. The results show that the proposed OHTWC 
algorithm achieved best performance against the baselines for most cases by having the 
lowest error rates.

OHTWC differs from COTL in the manner that OHTWC uses a weighted ensemble 
rather than a co-regularized multi-view approach. It also uses co-occurrence data to link 
the source and target domains while COTL does not since COTL only uses the source 
and target data.

HFA

Duan et al. [23] proposed an HDA method called Heterogeneous Feature Augmentation 
(HFA). It aims to solve scenarios when the source and target domain are represented 

Fig. 2 Illustration of OHTWC adapted from [19] showing the use of offline and online classifiers to predict 
labels for an online task
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by heterogeneous features and dimensions. This method uses a labeled source with a 
limited labeled target along with a symmetric transformation for the feature space differ-
ences. First, the data from the source and target is transformed into a common subspace 
using projection matrices P and Q respectively. These are found using standard SVM 
with hinge loss in both the linear and nonlinear cases. Then, two new feature mapping 
functions are proposed to augment the transformed data in the common latent space 
with their original features. This is illustrated in Eq. (1), adapted from [23]. These new 
feature mappings, φs and φt, consist of the transformed features (Pxs and Qxt) to cre-
ate the common subspace, the original features (xs and xt) used to augment the sub-
space, and zeroes  (0ds and  0dt) to account for dimensional differences. In other words, 
the original source features will be added to the common subspace along with zeroes for 
the original target features and the original target features will be added to the subspace 
along with zeroes for the original source features as to match the differences in dimen-
sions. Thus, creating an augmented common feature space.

This method is expanded from Feature Replication (FR) which was first proposed by 
Daume III [24] to offset the conditional distribution differences between the domains. 
FR aims to solve the HDA problem by padding with extra zeroes to make the dimen-
sions from the two domains the same while HFA uses this methodology but extends it 
by utilizing the latent common features. Duan et  al. [23] also proposed a transforma-
tion metric H which combines P and Q in efforts to simplify the optimization problem. 
Therefore, it is only necessary to solve for H making the subspace a latent subspace. The 
optimization problem is solved to develop a final target prediction function to predict 
newly arriving target instances. This is done through an alternating optimization pro-
cedure which simultaneously solves the dual problem of the SVM and finds the optimal 
transformation metric H. Experiments were performed for object recognition and text 
categorization tasks. The proposed HFA method was compared with a standard SVM 
trained on the target, KCCA [25], HeMap [26], DAMA [27], and ARC-t [28]. The pro-
posed method demonstrated effectiveness for these HDA tasks by having higher classifi-
cation accuracy averaged over ten rounds of the experiments.

HMCA

Mozafari et al. [29] proposed a framework called Heterogeneous Max-margin Classifier 
Adaptation (HMCA) which addresses heterogeneous and homogeneous domain adapta-
tion problems. This method uses model-transferring for these DA tasks and is an exten-
sion from their previous work [30]. Model-transferring domain adaptation methods use 
a previously trained source classifier for adaptation purposes on a target domain. These 
methods require trained source classifiers and the target data during training thus the 
source training samples are not required for building the classifier in the target. This is 
because, in this case, the parameters from the source classifier are used in the adapta-
tion process rather than the source samples. HMCA learns a max-margin classifier for 
the target domain, and adapts it according to the source classifier’s pre-learned offset. 

(1)ϕs
�

xs
�

=





Pxs

xs

0dt



, ϕt
�

xt
�

=





Qxt

0ds
xt




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This adaption occurs through a modification in the target’s SVM objective function 
which minimizes the distance of the target’s offset from the source’s offset. To do this, 
the source classifier and the labeled target domain data are projected onto a one-dimen-
sional space. This offset can be seen as the discrimination point which the classifier uses 
to separate and distinguish the two classes in the one-dimensional space. Thus, to utilize 
source knowledge and adapt the target classifier utilizing the source model, a linear SVM 
is found whose offset discriminates the target samples correctly in the one-dimensional 
space. This is done under the condition that it also must have the minimum distance to 
the offset of the source as to maximize the similarity between the domains.

Since only the classifier offset is required from the source domain to adapt for the 
target, this method works for domains represented by heterogeneous features. Even 
so, HCMA has limitations though as it faces issues with overfitting (when there is high 
dimensionality and low target samples), noise, and outliers. It also makes two assump-
tions. The first is that the source and target classifiers be built with the same ratio of 
positive and negative samples, an assumption which may not always hold in real-world 
situations. The second is that the two domains hold an Intra-Sample Distance Pattern 
(ISDP) condition. ISDP is used here as a measure of correspondence between samples 
in the source and target domains. Two domains with similar ISDP mean they are highly 
similar as a sample from one domain corresponds to that of another. In other words, it 
is assumed that the source and target have similar conditional distributions in the one-
dimensional space. This ISDP assumption does not always hold in real-world scenarios, 
though it does act as a method to measure the domain adaptability of source classifiers 
as to select the most similar source domain to that of the target when multiple source 
classifiers are available. Experiments were conducted under homogeneous and hetero-
geneous scenarios and the proposed HMCA showed increased accuracy rates for pedes-
trian detection and image classification tasks.

SHFR

Zhou et al. [31] proposed a method for HDA tasks when more than two classes are pre-
sent. The proposed method is called  Sparse Heterogeneous Feature Representation 
(SHFR) and it aims to solve the HDA problem through a sparse feature transforma-
tion matrix G. This is an asymmetric transformation to map the weight vectors learned 
from the binary classifiers of the source domain (as multi-class problems are commonly 
decomposed into multiple binary classifiers) to those of the target. The transformation 
G, is learned using multi-task learning from [32] and the goal is to minimize the distance 
between the weight vectors as to reduce the difference between the domains after trans-
formation. In other words, both the source and target have assigned weight vectors to 
their classifiers and a transformation metric is constructed which minimizes the differ-
ence between the transformed source and target vectors. Learning this feature mapping is 
based on two assumptions: (1) the feature mapping G is highly sparse and (2) the transfor-
mation is class-invariant meaning all classes share the same mapping. This sparse, class-
invariant transformation helps reduce bias of weak binary classifiers and improve overall 
performance. The learning task is conducted as a compressed sensing [33] problem (CS).

Through CS theory, it can be shown that the estimation error of the transformation 
matrix decreases with an increased number of classifiers. The issue becomes how to 
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create enough binary classifiers for optimal performance without making redundant, 
extra classifiers. The method proposes using the Error Correcting Output Codes [34] 
(ECOC) scheme to generate the binary classifiers. This method increases the robustness 
and accuracy of SHFR as it uses a voting scheme for prediction. This is particularly use-
ful as not all the learned binary target classifiers will have high predictive capabilities 
due to limited labeled training data. As long as there are more correct classifiers than 
incorrect, then the prediction will be accurate. Linear SVM’s are used during the learn-
ing process and are trained using the target and transformed source. In the study, experi-
ments were performed for text document classification, two being cross-lingual and one 
being cross-view. The proposed method was compared with DAMA [27], ARC-t [28], 
HFA [23], standard SVM trained using only target data using one-vs-one and one-vs-all 
strategy for multi-class classification, and SHFR using one-vs-one as to test the ECOC 
scheme. Principal Component Analysis [35] (PCA) was used to reduce the number of 
dimensions as the baseline methods cannot handle such high-dimensional features. The 
proposed method SHFR with ECOC performed best for all tests and demonstrated to be 
an effective method for multi-class HDA.

TTI

Qi et  al. [36] proposed an HTL method for image classification. This method uses a 
Translator for Text to Images (TTI). TTI uses labeled source text data, text-image co-
occurrence data, and limited labeled image target data. Image classification currently 
has two challenges: (1) labeled image data is relatively scarce and expensive to collect 
and (2) features of image data lack semantic meaning for class prediction as they rep-
resent visual features rather than conceptual ones. On the other hand, labeled text data 
is often more available than labeled image data and text features have more semantic 
meaning for predicting a class label. With this observation, this method proposes using 
transfer learning to exploit such text data to improve image classification. The issue 
becomes how to relate the text to the images for semantic knowledge transfer. To close 
this gap, this method uses a text-image co-occurrence matrix which contains images 
along with the text that occurred with them on the same webpage. Co-occurrence infor-
mation is effective in this case because of the assumption that the text around an image 
is describing the concepts in such image. This co-occurrence information is relatively 
inexpensive to collect and serves as a bridge to learn the correspondence for translating 
the semantic information between the features of the text source domain to that of the 
image target domain. This translation is done through a form of a feature transforma-
tion called a “semantic translator function.” This translator takes into account the source, 
target, and co-occurrence data and learns the correspondence between the text from the 
source and the images of the target through the co-occurrence bridge. Each translator 
for the source text contains a “topic space” which is a common subspace to associate the 
data for translation.

This translator function is optimized through proximal gradient based optimization to 
find effective transformation matrices and complies with the parsimony principle. This 
principle states that the least complex, effective model is preferred as this avoids over-
fitting issues when faced with low training samples. Figure 3, adapted from [36], illus-
trates the semantic label propagation from the source texts to the test image. As shown 
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in the figure, each of the translators are aggregated to create a final prediction function 
f(x(t)). Experiments were conducted for image classification and the proposed method is 
compared against HTLIC [22], TLRisk [37], and a baseline classifier trained only on the 
images without any source knowledge. The proposed TTI had the best performance in 
most cases, even when the number of labeled target samples were reduced.

TLRisk

Dai et al. [37] proposed a method for heterogeneous transfer learning called Translated 
Learning via Risk Minimization (TLRisk). This method proposes using a translator to 
perform a form of an asymmetric mapping by “translating” the features from a source 
feature space to that of a target feature space as to learn within a single feature space. It 
uses the language model of [38] and combines the use of such feature translation with 
nearest neighbor learning. This proposed method is modeled by a Markovian chain. The 
source feature space can be modeled as an initial Markov chain c → ys → xs where the 
source data xs is represented by features ys. Also, the target can be similarly modeled as 
c → yt → xt. Thus, the proposed method can be modeled by a new Markovian chain of 
c → ys → yt → xt which illustrates the transfer of knowledge from a source feature space 
to that of the target using ys → yt as a feature-level translation. This translation is done 
by learning a probabilistic model which uses co-occurrence data as a bridge between the 
source and target feature spaces. Furthermore, the proposed model performs translated 
learning through an extension of the risk minimization framework of [38]. The objective 
of this is to minimize an expected risk function with respect to the labeled training data 
and the feature translator. This risk function is formulated as an expected loss of classify-
ing a test instance as a particular class thus we want to minimize the risk function as to 
have a higher probability of correct classification. Due to computational costs of these 
operations, the risk function is approximated and the algorithm is implemented using 
dynamic programming.

This method has similarities to TTI [36] as it uses a feature translator to solve the dif-
fering feature spaces and also uses co-occurrence data as the link. However, they differ 

Fig. 3 Illustration for TTI adapted from [36] showing the process of semantic label propagation from source 
texts to test image using the learned translator. Output is a final prediction function
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in properties such that TLRisk uses a Markovian chain model and risk minimization and 
TTI uses the “topic-space” as a common subspace in the translator. Experiments were 
performed on text-aided image classification and cross-language classification to test the 
effectiveness of the proposed TLRisk method. This method was evaluated using three 
different dissimilarity functions when approximating the loss function. The results show 
that TLRisk outperformed the baselines no matter which dissimilarity function was used 
demonstrating it as an effective method.

ARC‑t

Kulis et  al. [28] proposed a flexible framework for supervised HDA tasks for image 
domains called Asymmetric Regularized Cross-domain transfer (ARC-t). This method 
is based off using asymmetric, non-linear transformations learned in kernel space to 
map the target visual domain to the source. This asymmetric transformation is based 
on metric learning and this framework is an extension from [39] as it was made to func-
tion for domains with different dimensions through changes of the regularizer. Simi-
lar to DAMA [27], this method uses label information to construct the similarity and 
dissimilarity constraints between instances in the source and those projected from the 
target domain. It uses labeled data from the source and limited labeled data from the 
target. This method can be applied to situations where the target category differs from 
the training categories through the use of the correspondence constraints. The objective 
function for the transformation W contains the regularizer, in this case it is the squared 
Frobenius norm, but can extend to others such as trace-norm, and cost terms. These 
are minimized through an alternating optimization procedure. The transformation is 
learned in a non-linear Gaussian radial basis function kernel.

After the transformation, the target is mapped to the source and one can apply many 
classification methods such as SVM or k-Nearest Neighbors (k-NN). In the case of this 
work, k-NN was used. This method, in essence, also provides support for multi-class 
scenarios. Experiments were conducted to test this approach for object recognition with 
benchmark datasets under two scenarios: (1) source and target contains labeled train-
ing instances for all categories and (2) source contains labeled training instances for all 
categories but the target only contains half of the categories and shall be tested with data 
containing all categories. The proposed kernelized method was compared with metric 
learning [40], ITML [39], SVM, feature augmentation [24], and variations of k-NN. Since 
these methods do not support heterogeneous feature spaces with different dimensions, 
Kernel Canonical Correlation Analysis (KCCA) was used as pre-processing only on the 
baselines to project the heterogeneous feature spaces into a common subspace. The 
results show the proposed ARC-t had best performance for most cases over the base-
lines especially when faced with the challenge of adapting to new categories, features, 
and codebooks. It can be also noted that the kernelized version of ARC-t had significant 
improvements over the linear variant thus demonstrating the effectiveness of the ker-
nelization proposed.

SHDA‑RF

Sukhija et al. [41] proposed an HDA solution called Supervised Heterogeneous Domain 
Adaptation via Random Forest (SHDA-RF). This method works for any standard HDA 
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tasks but was motivated by its application for activity recognition in smart homes. In 
short, these smart home tasks learn the daily activities of the home owner through sen-
sors but, when building a model for a new target home, there are limited labels available 
in this new home. Because of this, the intention is to transfer knowledge from a source 
home to a target home. Due to the varied positioning of the sensors and home layouts, 
it creates heterogeneous feature spaces but the overall activities are the same. Therefore, 
this algorithm assumes that the source and target have different features that categorize 
data partitions with similar label distributions. With this assumption, the shared label 
distributions can act as a pivot to learn a mapping between the feature spaces of the 
source and target. The generated sparse mapping in this process represents target fea-
tures as linear combinations of source features. The goal of this is to create a mapping of 
the source domain features to the target domain features with the shared labels acting as 
the bridge.

To find these pivots, the method proposes using the leaf nodes of random forest [42] 
models created for the source and target. Each the target and the source domains will 
have their own random forest model built for them which estimates the pivots along 
with relationship matrices for each. These measure the contribution of the source and 
target domain’s specific features to the shared label distribution. The contribution matri-
ces can be found through the structure of the random forest. The leaf nodes of the deci-
sion trees hold a label distribution which are associated with a particular data partition. 
The path of each decision tree in the random forest from the root to this leaf contains a 
sequence of features chosen as split functions. Thus, using the features from this path 
we now have the label distribution and the domain specific features that are associated 
with it. For the case of duplicate label distributions in leaf nodes, the algorithm takes an 
average of the feature contribution vectors. The sparse mapping to map the source to the 
target is derived by running the least absolute shrinkage and selection operator method 
from the relationship matrices and minimizes the difference between them during opti-
mization. The target random forest model is then re-trained using the mapped source 
data and the target data as before it was trained only on the target data. Random forest 
is particularly useful for this method since it reduces overfitting and complexity as only 
a single model is needed for each domain to find the relationship between the features of 
the source and target to the shared pivot. Experiments were performed for home activity 
recognition and text categorization. The results showed that the proposed SHDA-RF is 
effective by having the lowest error rates in most of the tests.

Methods which require limited target labels and accept unlabeled target 
instances
In this section, we survey various semi-supervised techniques which require labeled 
source data and limited labeled target data but they also accept unlabeled target 
instances during training. These techniques aim to enhance performance by exploiting 
knowledge from the unlabeled instances by incorporating them into different aspects of 
the target model training process.
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DAMA

Wang and Mahadevan [27] proposed an HDA solution called Domain Adaption using 
Manifold Alignment (DAMA). This method uses a manifold alignment based approach 
and is an extension from their previous framework [43]. Standard manifold alignment 
techniques require a small amount of cross-domain correspondence relationships to 
learn mapping functions, but these correspondences are often difficult to obtain and 
sometimes require manual translation which can be highly expensive. DAMA makes use 
of the label information rather than correspondence to align the input domains. This 
HDA approach learns mapping functions to project multiple source domains and the 
target into a latent common subspace. When creating the subspace, each input domain 
is treated as a manifold and the mapping function is constructed for each input domain 
while preserving the topology of each one. Instances with the same label are matched 
and forced to be neighbors while those with different labels are separated. To do this, 
each manifold is represented by a Laplacian matrix which models the similarity of 
instances with others who share the same label. These are then joined into a larger matrix 
representation which serves as a joint manifold for the union of all input domains. Since 
this joint manifold has features from all the input domains, a dimensionality reduction 
process is performed to remove redundant features and is solved through a generalized 
eigenvalue decomposition. Once this common subspace is derived, one can combine 
this approach with other existing DA approaches as to support multiple source domains.

The DA approach used in this work to apply on this subspace is built in two stages. 
First, a linear regression model is trained using the labeled source data in the latent 
subspace. Then manifold regularization [44] is applied with a second linear regression 
model. This is then aggregated with the first to minimize prediction error for the labeled 
instances in the target. In other words, the first regression model uses the data from the 
source while the second adapts the first model to the target domain. During manifold 
regularization, unlabeled target instances are used to reduce overfitting issues caused by 
having very limited labeled target data. Experiments were performed on text document 
categorization and ranking tasks. The proposed method was compared with Canonical 
Correlation Analysis (CCA) [45], correspondence-based manifold alignment [43], and 
manifold regularization [44] (target only). The results showed the proposed method per-
formed the best followed by manifold regularization, correspondence-based manifold 
alignment, and CCA being the worst performing in this case.

CDLS

Tsai et  al. [46] proposed a semi-supervised HDA solution called Cross-Domain Land-
mark Selection (CDLS). This method derives a domain-invariant common subspace and 
learns representative cross-domain landmarks for adaptation purposes. To initialize the 
process, first all the target domain data is projected into an m-dimensional subspace. 
Here, m ≤ min(ds, dt) as to prevent overfitting from mapping a low dimensional space 
into a higher one. Then a feature transformation A is learned to project the source data 
onto the m-dimensional space creating a common subspace for the source and target 
data. A linear SVM is trained on the labeled cross-domain data to predict pseudo-labels 
for the unlabeled target instances. Once this is initialized the optimization process begins 
which updates the transformation A and landmark weights {α, β}. Then, with these new 
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landmark weights, an updated SVM is trained to predict new pseudo-labels for the unla-
beled target instances. This process repeats until convergence is reached. From this, final 
predicted labels are the output thus exploiting unlabeled target data during training.

These landmark weights are assigned to instances which are most representative of 
the labeled target instances and thus are more suited to be used for adaption. The higher 
the α, the more similar a labeled source instance is to a labeled target instance of the 
same class. The higher the β, the more similar an unlabeled target instance is. Those 
with lower weights have a higher chance to be misclassified. From this observation, one 
should use the instances with the higher weights for adaptation purposes as they are 
most representative of the target domain thus filtering out noisy examples. A parameter 
δ ∊ [0, 1] is then introduced to set the cut-off point for the portion of source labeled and 
target unlabeled instances to be used. If δ = 0, then no cross-domain data will be used 
and the classifier will be trained only on the available target data. Note that when δ = 0, 
this a supervised variant of CDLS used in the experiment called CDLS_sup. If δ =  1, 
then all the cross-domain data will be used including those with low weights. Both of 
these are non-optimal as the first exploits no cross-domain data and the latter uses too 
much which introduces noisy examples, thus δ = 0.5 was used in the study. Experiments 
were performed for object recognition and cross-lingual text categorization. The pro-
posed method was compared with SHFA [47], DAMA [27], MMDT [48], CDLS_sup, 
and an SVM trained only on the labeled target data. The proposed method performed 
significantly better for all tests.

IDL for HDA

Han and Wu [49] proposed an Incremental Discriminant Learning (IDL) method for 
online HDA tasks. Online tasks, as described previously, are applicable when training 
samples are acquired sequentially. Standard models need to be completely rebuilt if new 
training data becomes available but to save time and space resources, this method incre-
mentally optimizes its projection matrices as to account for such new data. This sym-
metric feature transformation method computes projection matrices to map the data 
from both domains into a common subspace. In this subspace, class labels are exploited 
to build a discriminative subspace. This is done through the transformations during 
which the variance of the samples of different classes are maximized and the variance 
of samples within the same class are minimized. In other words, the distance between 
instances of the same class is reduced and instances of different classes are separated to 
create such discriminative subspace. From this subspace, a standard SVM can be applied 
for classification using the projected data from both domains. When a new instance 
arrives, it is projected onto this discriminative subspace where it can then be classified 
based on where it landed in relation to the other instances in the subspace.

To allow for incremental training data, the existing projection matrices are updated 
with an eigenspace merging algorithm from Hall [50]. In doing so, this method updates 
the principal components of the total scatter matrix and the between-class scatter matri-
ces as to the compute the projection matrices from them both. When a new training 
instance arrives, first the total scatter matrix is updated, then the between class scat-
ter matrix, and finally the projection matrices are updated. Thus, one only needs to 
store the principal components of these matrices rather than all of the original training 
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data. When updating the scatter matrices, a sufficient spanning set concept is used to 
reduce the dimension of the eigenvalue problem. To utilize unlabeled target instances 
to enhance performance, this method introduces a criterion in the objective function 
as to use these instances to reduce the data distribution difference between the source 
and target. Experiments were performed for cross-view action recognition, object rec-
ognition, and multilingual text categorization which analyzed classification accuracy and 
computation time. The proposed method was compared with KCCA [25], HeMap [26], 
DAMA [27], ARC-t [28], and HFA [23]. The results showed that the proposed method 
had promising results by having good prediction accuracy and fast computational speeds 
in most cases. In the other cases, the results showed it was outperformed and/or slower 
depending on the dataset/test performed.

MOMAP

Harel and Mannor [51] proposed a method called Multiple Outlook MAPing 
(MOMAP). The motivation is to learn for a single task having data from multiple sources 
which may be represented by heterogeneous feature spaces. In their paper, each feature 
space is defined as an “outlook” by the authors. Specifically for HTL tasks, each feature 
space from the source or target is defined as an outlook and the goal is to map each one 
of the source outlooks to that of the target outlook through asymmetric transformation. 
This process is done by first applying a scaling to each of the outlooks as to normal-
ize the features to the same range of [0,1]. During such normalization, the process of 
Winsorization [52] is applied to remove sensitivity when scaling outliers which is done 
by collapsing the extreme two percentile of the data to the high ends of the rest of the 
data. To map the two outlooks, a process of rotation and translation is performed to 
match the source to the target. This is done by first grouping the classes together from 
each outlook, translating the means of the features for each class group to zero, and then 
matching the source groups with the corresponding target groups. From this, a transfor-
mation matrix for each group can be created.

To build the matrices, each outlook has a utilization matrix constructed for it and then 
singular value decomposition (SVD) is performed, as to align the marginal distribu-
tions, using the utilization matrices. This is done during the matching by rotation pro-
cess which is performed to derive the transformation matrices for the class groupings. 
When presented with outlooks of different dimensions, the smaller utilization matrices 
are padded with zeros to equalize the dimensions overall. After deriving the transfor-
mations, one can apply a standard classification algorithm using the target outlook and 
the transformed source outlooks. Experiments were performed using homogeneous and 
heterogeneous environments for activity recognition using data from wearable sensors. 
These experiments are multiclass in nature, thus a multi-class SVM was used as the clas-
sifier. Balanced error rate was used as the performance metric due to the uneven class 
distribution of the dataset. For the heterogeneous experiments, the proposed MOMAP 
algorithm was compared with an SVM trained only on the limited target data and an 
SVM trained on a fully-labeled target dataset. The results showed that the proposed 
MOMAP algorithm was outperformed by the SVM trained on a fully-labeled target as 
one would expect. On the other hand, the proposed method outperformed the SVM 
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trained only on the limited target data in most cases by having a lower balanced error 
rate. This, in effect, demonstrated the effectiveness of the proposed method.

HeMap

Shi et  al. [26] proposed an HTL method called Heterogeneous spectral Mapping 
(HeMap). This method may be used when the source and target have different input 
feature spaces/dimensions, different data distributions, and/or different output label 
spaces. A transfer learning task containing all of these can be very challenging. First, 
to address the issue of different input feature spaces, the method proposes using a 
symmetric transformation process to project the source and target data onto a com-
mon subspace through the use of spectral mapping to unify the input spaces. To learn 
the projection matrices and create the common subspace this method does not utilize 
labels, as the source and target may be of different label spaces. Instead, it tries to dis-
cover correspondences between the source and target data points in the optimization. 
The spectral mapping technique uses linear transformations such as, rotation, scaling, 
etc. on the target matrix, and is modeled through an optimization objective which aims 
to maximize the similarity between the source and target while preserving their original 
structure. If they are too unrelated to each other, the projected data may still exhibit dif-
ferences in distributions when preserving the data’s original structure. In this case, the 
process is aborted when they are too unrelated and no source data will be utilized as 
the risk it may degrade performance is too high. To handle the case of different data dis-
tributions, this method extends the approach from the author’s previous work [53] and 
utilizes a clustering based sample selection method on the latent subspace as to select 
source data that is most similar to the target data. This is then used as new training data, 
which in effect aims to resolve the marginal distribution differences and improve per-
formance. To handle the case of different output label spaces, this method also extends 
work from [53] and uses a Bayesian-based method to model the relationship between 
the differing output spaces as to unify them through re-scaling and calibration of the two 
output variables.

This method requires having the same number of instances for both the source and 
target. To satisfy this, the paper proposes randomly duplicating the smaller input to 
match the larger, as to maintain original distribution, with the purpose of making the 
projection matrices of the same size. Classification and regression experiments, which 
include image classification and drug efficacy prediction, were performed to test the 
effectiveness of the proposed algorithm. The proposed HeMap had better performance, 
measured via error rate, compared to the single baseline tested though details of this 
baseline were not provided in the paper.

Proactive HTL

Moon and Carbonell [54] proposed a framework which aims to solve multi-class text 
HTL tasks which we denote as proactive HTL. This method may be used when faced 
with a source and target which exhibit both different feature and label spaces. This 
method uses a symmetric transformation technique to map the source and target onto 
a common subspace, as to resolve the differing feature space issue. Then to resolve the 
differing label spaces, this method simultaneously learns a shared projection to map 
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the data into a final embedded label space. Specifically, the proposed method utilizes a 
skip-gram based language model [55] which learns semantically meaningful vector rep-
resentations of the words as to map the source and target labels into a word embedding 
space. From this space, we can obtain the source and target’s semantic class relations. 
The obtained label term embeddings are used as “anchors” for the source and target as 
to derive instances belonging from semantically related categories. From this, a simul-
taneous optimization objective is performed where, first, two linear transformations 
are learned to map the source and target data into a common subspace. Note that these 
mappings can be learned with deep neural networks, kernel machines, etc. Simultane-
ous to this, the proposed method then learns a shared projection from the common sub-
space to map the joint features into a final embedded label space. By performing this we 
are resolving the issues of heterogeneous feature and label spaces. A 1-NN classifier is 
used to look for the category embedding which is closest to the projected instance in the 
final space.

These tasks are done under a proactive learning framework which exploits unlabeled 
target instances as to expand the original limited target training data and improve per-
formance. Sampling of the unlabeled instances is done by iteratively selecting “bridge” 
instances in the target which utilize source knowledge and maximizes the expected util-
ity function of the target model. The sampling is done using two objectives: (1) maximal 
marginal distribution overlap (MD) which selects unlabeled target instances where the 
marginal distributions of the source and target have the highest overlap, and therefore 
are more semantically related; and (2) maximum projection entropy (PE) which selects 
unlabeled target instances which maximizes entropy of the dot product similarities 
between a projected instance and its possible label embeddings. Experiments for hetero-
lingual text classification were conducted where the source and target datasets contain 
both heterogeneous feature and label spaces. The results demonstrated the proposed 
method is effective compared to the baselines as it lowered error rates.

SHFA

Li et al. [47] directly extended the HFA [23] algorithm and proposed Semi-supervised 
Heterogeneous Feature Augmentation (SHFA). This method exploits the knowledge 
from unlabeled target instances to enhance a target HTL task with limited target labels. 
The method utilizes ρ-SVM with squared hinge loss trained on the limited target as to 
infer pseudo-labels for the unlabeled instances. The task of finding the optimal labels 
is computationally expensive and is denoted as a Mixed Integer Programming prob-
lem. Because of this, an optimal linear combination of the feasible labeling candidates is 
found for the instances leading to a less expensive optimization problem. These pseudo-
labels are used during the building of the final classifier and are estimated when learning 
the optimal nonlinear transformation metric H. As described in Duan [23] and “HFA”, 
H is a combination of the projections P and Q used to map the source and target into a 
common subspace and by using H one does not need to solve for P and Q directly but 
rather only optimize the H transformation matrix. For SHFA, H is decomposed into a 
linear combination of a set of rank-one positive semi-definite matrices. Optimization of 
such is then solved using Multiple Kernel Learning as defined in [56] with the  l1-norm 
constraint. Experiments were performed for object recognition, text categorization, and 
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sentiment classification. The proposed SHFA was compared with the original HFA [23], 
HeMap [26], DAMA [27], ARC-t [28], and an SVM trained only on the labeled target 
instances. The proposed SHFA performed significantly better than the other baselines 
for these experiments by having better classification accuracy, including better perfor-
mance over standard HFA.

CT‑Learn

Ng et al. [57, 58] proposed a Co-Transfer Learning (CT-Learn) framework which aims to 
transfer knowledge between two or more heterogeneous domains. In such case one can 
have a target domain and several source domains, each represented by different feature 
spaces. The proposed method uses a co-transfer strategy which builds relations to link 
the feature spaces, through co-occurrence data, as to co-transfer knowledge amongst 
them simultaneously. First a joint transition probability graph P, shown in Eq. (2) which 
was adapted from [57], is constructed using intra-relationships and inter-relationships 
for all the co-occurrence, labeled, and unlabeled instances across both domains. The 
intra-relationships are calculated through the affinity of the intrinsic manifold struc-
ture between instances of the i th domain. In (2), the diagonal block matrix  P(i,i), which 
is an  ni by  ni matrix, indicates these intra-relationships. The off-diagonal block matrix 
 P(i,j), which is an  ni-by-nj matrix, indicates the inter-relationships between the i th and 
j th domains and is calculated with the co-occurrence data. The weighting parameter 
λi,j controls the amount of knowledge to be transferred from the j th instance space to 
the i th during the learning process. For a standard binary domain transfer learning task 
λtarget,source ≠ 0 and λsource,target = 0 so that knowledge is transferred from the source to 
the target and not the target to the source.

The learning process is modeled as a coupled Markov-chain based random walk with 
restart [59] where each instance is regarded as a node. The proposed method uses this 
random walk during the learning process on the joint transition probability graph to 
propagate the ranking score of labeled instances as to calculate the importance of a set of 
labels to an unlabeled instance. In other words, the proposed method calculates ranking 
scores of labels and generates the possible labels for a test instance through propaga-
tion of these ranking scores. The use of a Markov chain differs from TLRisk [37] as for 
CT-Learn the Markovian principles are used for the learning process while in TLRisk 
it is used to estimate parameters. Binary and multi-class experiments were performed 
comparing the proposed CT-Learn against TTI [36], HTLIC [22], and an SVM model 
trained only on the target data. The results showed the proposed method is statistically 
superior, as it increased accuracy over the baselines when applied to the experiment’s 
cross-language and text-image classification tasks.
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SSKMDA

Xiao and Guo [60] proposed a semi-supervised method called Semi-Supervised Kernel 
Matching Domain Adaptation (SSKMDA) for homogeneous and heterogeneous domain 
adaptation. This method utilizes kernel matching techniques to map target instances to 
the source rather than using a feature-based feature transformation. This method also 
utilizes labeled and unlabeled data from the source and target domains. To address the 
issue of heterogeneous features, the proposed method creates a kernel matrix for the 
target and source data respectively and simultaneously learns a prediction function 
while mapping instances of the target to similar source instances by matching portions 
of these matrices. The motivation for mapping instances rather than features is because 
when performing text classification tasks, the application in the study, the feature spaces 
are often of much higher dimension than the number of instances. Thus, projecting fea-
tures requires much more computational resources. The learning objective of the pro-
posed method consists of a combination of three parts: the kernel matching criterion, 
prediction losses, and graph Laplacian regularization. From the combination of these, 
the goal is to learn the kernel mapping of the instances and the kernelized prediction 
model as to minimize the regularized training losses in both domains. The kernel match-
ing criterion is used to map the individual target instances to source instances based 
on their geometric similarities which are expressed in the kernel matrices. This is done 
using the Hilbert–Schmidt Independence Criterion (HSIC) [61].

Through the use of HSIC, the target kernel matrix is mapped to a submatrix of the 
source kernel matrix while using available labeled target instances as pivots for class sep-
aration. These pivots instances are mapped to source instances of the same class. The 
unlabeled instances are also mapped to their expected class in the source instance set 
using the pivots and kernel affinity measures. Prediction losses are incorporated into the 
learning process as to minimize training loss on both the labeled source and mapped 
labeled target instances for a prediction model trained on the source data. This model 
was generated in a supervised manner. To exploit unlabeled instances within the pro-
posed framework, graph Laplacian regularization terms are incorporated to utilize 
information about the unlabeled data’s geometric structures of the marginal distribu-
tions for each domain. For this method to work, a manifold assumption is made that, 
when mapping the instances, if two points which have similar intrinsic geometry then 
it implies their conditional distributions are similar. Otherwise if they are not similar, 
the matching will be noisy and/or irrelevant. Experiments were performed for cross-lan-
guage text classification comparing the proposed SSKMDA to HeMap [26], DAMA [27], 
ARC-t [28], and HFA [23]. The results demonstrated the proposed method to be more 
effective than these baselines for addressing this task.

SCP‑ECOC

Xiao and Guo [62] also proposed a semi-supervised HTL method for multi-class DA 
called Subspace Co-Projection with ECOC (SCP-ECOC). This method aims to solve 
the issue of disjoint feature spaces by learning a set of symmetric transformation matri-
ces to project the source and target data into a common subspace. While projecting the 
instances, the proposed method simultaneously learns cross-domain prediction mod-
els from the projected labeled instances in the co-located latent subspace. While this 
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subspace allows for cross-domain knowledge transfer, it may have poor discrimina-
tive information as it was generated with little labeled target instances. Therefore, this 
method proposes exploiting unlabeled instances by incorporating them into the co-pro-
jection process and minimizing the means of the projected instances between source 
and target domains. This is due to the assumption that the two domains have similar 
empirical marginal distributions in the subspace which is enforced with a maximum 
mean discrepancy criterion [63]. This, in effect, reduces the marginal distribution differ-
ences between the domains in the subspace.

To handle the challenge of multi-class tasks, the proposed method utilizes Error-Cor-
recting Output Code (ECOC) [34] schemes, specifically exhaustive ECOC. This is used 
rather than the commonly used one-vs-all (OVA) scheme. By using ECOC the multi-
class task can be casted into a larger number of cross-domain binary classification prob-
lems than in the OVA scheme. This thus creates a more robust model because adding 
more of these binary classifiers which increases the stability and informative ability of 
the subspace co-projection when faced with a multi-class scenario. Combining all these 
methods, the learning process becomes a joint minimization process and is solved with 
an alternating optimization procedure. Thus, by combing these methods into one frame-
work, this framework ensures an informative common subspace with high discrimina-
tive ability and minimal marginal distribution difference for knowledge transfer across 
multi-class domains. Experiments were performed on cross-lingual text classification 
and cross-domain digit image recognition tasks. The proposed SCP-ECOC was com-
pared with HeMap [26], DAMA [27], MMDT [48], SHFA [47], SCP with OVA, and a 
baseline trained only on the target instances. The results proved the proposed method 
effective by having the highest classification accuracy for all tests.

MMDT

Hoffman et al. [48] proposed a heterogeneous domain adaptation method for multi-class 
image classification called Max-Margin Domain Transforms (MMDT). This method 
allows for multiple classes, requires limited labeled target training instances, and utilizes 
unlabeled target instances though one can have classes which contain only unlabeled 
instances. This is possible as it adapts all the points through a linear asymmetric fea-
ture transformation to map the target domain to that of the source creating a feature 
transformation shared across all classes. To establish multi-class support, the proposed 
method adapts a max-margin classifier by learning a shared component of the domain 
shift though the feature transformation. MMDT simultaneously learns the projec-
tion matrices along with the classifier parameters and performs optimization on both 
through a classification loss based cost function. In other words, in this framework both 
the classification objective and the feature transformation are updated together based 
on the prediction results of the previous training instance in relation to its truth label. 
By performing such optimization through classification loss, accuracy can be increased. 
This method also provides for less computational cost as it reduces training time by 
using hyperplane, rather than similarity, constraints. By doing so, one can optimize in 
linear space and avoid computational complexities of kernel techniques, thus making the 
proposed method suitable for scaling to larger quantities of training data.
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The main idea behind this method is to jointly learn affine hyperplanes which separate 
the classes consisting of source and target instances. This is done while learning the fea-
ture transformation to map the points of the target to the source such that it projects the 
points onto the correct side of each source hyperplane. In comparison, ARC-t [28] uses 
similarity constraints to map points of the same category close to each other followed by 
a classification step but, on the other hand, MMDT proposes to project the target points 
to the correct side of the already learned hyperplane as for better classification accuracy. 
Experiments were performed to test the performance of the proposed method for image 
classification tasks. Four tests were conducted which include multi-class, homogeneous 
domain adaption, heterogeneous domain adaption, multi-task DA, as well as scaling the 
test to larger datasets for computational performance analysis. For the heterogeneous 
tests, the proposed MMDT was compared with ARC-t [28], HFA [23], and SVM trained 
only on the target data. The results showed that the proposed method was effective and 
it had the highest classification accuracy in most cases, while also having the fastest 
computation time for the larger dataset test while maintaining highest accuracy.

SMVCCAE, SSMVCCAE

Samat et  al. [64] recently proposed two new HTL methods called Supervised Multi-
View CCA Ensemble (SMVCCAE) and Semi-supervised SMVCCAE (SSMVCCAE) for 
remote sensing image classification and pattern recognition tasks. These methods use a 
multi-view CCA ensemble approach. Specifically, the supervised variant (SMVCCAE) 
first takes the target training data and splits it into N views based on multi-view learn-
ing, thus creating multiple views which may be disjoint or partially disjoint feature sub-
sets. Each of these views provide unique but complementary information which can be 
individually compared with the source domain to provide for more enhanced knowledge 
transfer. From this, each view is projected with the entire source data onto a correlation 
subspace. Therefore, this will result in N common subspaces each of which compare a 
target view with the source data. The transformation matrices used for such projections 
are obtained through Canonical Correlation Analysis (CCA) as to project the data sym-
metrically onto these correlation subspaces. Then a base classifier, in this case Random 
Forest [42], is trained on the transformed data on each of these subspaces, thus creating 
N classifiers. These N classifiers are combined to create an ensemble learner where a 
class for an instance of the target testing data is predicted by each of the classifiers in the 
ensemble, thus creating N predictions. To combine these predictions into a final output, 
one may use voting schemes such as majority vote where the class value that was pre-
dicted the most becomes the final output. This may be suitable for some cases but this 
method proposes a more enhanced voting method which uses a weighted vote scheme 
based on the correlation coefficients from the subspaces.

As discussed in “CT-SVM”, the correlation coefficients ρ from the subspace can be 
used to indicate the similarity of the source to the target along such dimension. In this 
case, the higher the ρ value, the greater correlation the source has to a particular tar-
get view meaning there is greater transfer ability for that subspace. From this, we see 
that a higher weight should be placed on the prediction results from a model built on a 
subspace that has a higher correlation coefficient ρ value rather than one with poor cor-
relation. This thus becomes the proposed weighted voting strategy used which is based 
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on these correlation coefficients. This method is the supervised version, SMVCCAE, 
which requires limited target labels but this method is extended to accept unlabeled tar-
get instances in the second proposed method, SSMVCCAE. This method utilizes unla-
beled instances to reduce the data distribution gap by incorporating multiple speed-up 
spectral regression kernel discriminant analysis (SRKDA) into the original supervised 
method. These unlabeled instances are used during the process of building the affinity 
matrix which is utilized in the KDA problem. Experiments were performed for hyper-
spectral image classification which demonstrated that the proposed methods were 
effective as they achieved higher classification accuracy and computational efficiency 
compared to the baselines.

TNT

Chen et  al. [65] proposed a neural network based framework called Transfer Neural 
Trees (TNT) for semi-supervised HDA tasks. This framework is divided into two layers: 
mapping and prediction. The first layer is that of mapping the source and target into a 
domain-invariant representation while the second layer performs adaptation and clas-
sification. This process of mapping, adaptation and classification are all solved in a joint 
manner. Mapping of the source domain data is performed separately to that of the target 
domain data while each using a single-layer neural network. For the case of this study, 
these neural networks apply the hyperbolic tangent as the activation function with an 
output dimension of 100. To account for the unlabeled target instances in semi-super-
vised tasks, an embedding loss term is incorporated into the target domain feature map-
ping. When performing adaptation and classification, minimizing this loss term can 
increase predictive consistency for the outputs of the individual trees and the forest as 
a whole. This process also preserves the structural consistency between the labeled and 
unlabeled target instances.

For adaptation and classification, Chen et al. [65] also proposed Transfer Neural Deci-
sion Forest (Transfer-NDF) for use in the TNT framework. Inspired from deep neural 
decision forest [66] and random forest [42], Transfer-NDF uses neural networks as deci-
sion trees as to build a forest of neural decision trees. To build this forest, first the source 
domain data is observed to build the individual trees. Both the source mapping and the 
forest are updated via backpropagation. Then, once the trees are obtained, the target 
domain data is observed to perform distribution adaptation. Also, during the learning 
of Transfer-NDF, a process of stochastic pruning is applied which adapts representative 
neurons for better generalization from the learned source domain to that of the target. 
In the case of this study, Transfer-NDF consists of 20 trees with a depth of 7. Similar to 
the process of Random Forest, each tree samples 20 dimensions from the final mapping 
output for a diverse representation of the data.

Experiments were performed for cross-domain object recognition and text-to-image 
classification. The proposed TNT method was compared with MMDT [48], HFA [23], 
SHFR [31], SCP-ECOC [62], dNDF [66], SVM trained only on the labeled target data, 
and a two-layer neural network trained only on the labeled target data. The proposed 
method outperformed these baselines for almost all of the experiments thus demon-
strating its effectiveness for these tasks.
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HDANA

Wang et al. [67] recently proposed a semi-supervised HDA method called Heterogene-
ous Domain Adaptation Network based on Autoencoder (HDANA). Through the use 
of a Deep Learning [68] approach, this method performs symmetric transformation to 
project the source and target data onto a shared feature space. This process is realized by 
using two autoencoder networks for the source and target domain data respectively. The 
authors claim that, by performing such multi-layer non-linear mapping methodology, 
one can obtain a more abstractive shared feature space which better represents the prob-
ability distributions of the data compared to shallow transfer learning methods. Each 
autoencoder network in this method consists of n + 1 layers, n of which are feature lay-
ers and the final layer is the classification layer.

At the last feature and classification layer of each autoencoder network, the marginal 
and conditional distributions are matched by introducing a Maximum Mean Discrepancy 
(MMD) metric. This is to reduce the cross-domain data distribution differences exhib-
ited in the shared subspace. Along with the aforementioned metric, a manifold alignment 
term based on label information is also introduced into the objective function. The addi-
tion of such term is to preserve the geometric structure and label consistency of the data. 
This manifold alignment term contains three parts: geometric, similarity, and dissimilar-
ity terms. The geometric term based on graph ensures that the manifold structure of the 
data within each domain remains unchanged though it does not account for label infor-
mation. Thus, the similarity term is maximized during optimization for intra-class exam-
ples and the dissimilarity term is maximized for inter-class examples. This ensures that 
instances of the same class have a similar shared feature representation while those from 
different classes share a different one. These terms allow for a more discriminatory shared 
feature representation. Finally, to improve classification performance, a loss term for the 
softmax classifier used in the classification layer is incorporated into the objective func-
tion. The output obtained from this loss term is used during optimization.

To optimize the terms of the autoencoders and the objective function, the gradient 
descent method with backpropagation is used to learn updated parameters. For each 
iteration, new pseudo-labels are calculated for the unlabeled target instances and the 
process of mapping, classifying, and updating continues until convergence is reached. 
The output obtained from the final softmax classifier becomes the final predicted labels 
for the unlabeled target domain data.

Experiments were performed for cross-domain object recognition and cross-lingual 
text categorization. The proposed HDANA was compared with DAMA [27], MMDT 
[48], SHFA [47], G-JDA [69], TNT [65], SVM trained only on the labeled target data, 
and an Autoencoder trained only on the labeled target data. The results showed that the 
proposed method had superior performance over these benchmarks for all of the tests 
conducted.

Methods which require no target labels
In this section, we survey various techniques which require labeled source data but do 
not require any labeled target data. These techniques are useful when collecting even 
limited labeled target data is too expensive. These methods utilize the unlabeled tar-
get instances during the training process and generally either infer their labels, align 
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the source data (or source prediction function) to that of the target domain, incorpo-
rate them into the mapping process, or utilize them otherwise to represent the target 
domain.

CT‑SVM

Yeh et al. [70] proposed a framework for cross-domain pattern recognition tasks which 
uses Kernel CCA for symmetric feature transformation and proposed a modified SVM 
named Correlation-Transfer SVM (we denote as CT-SVM). This method utilizes Canon-
ical Correlation Analysis (CCA) [45] for deriving a domain-invariant joint feature space 
to associate data from the source and target. Here, CCA aims to maximize the corre-
lation, through a coefficient ρ, between two variable sets and learns projection vectors 
to derive a subspace which can be used as a common feature representation to solve 
cross-domain problems. Reduced Kernel CCA is utilized when non-linear subspaces are 
desired. The common subspace dimension is bounded by the minimum feature dimen-
sion whether it from the source or target feature space as to prevent overfitting. Once 
this common subspace is derived, one can project unseen test data onto the subspace 
for classification by a model trained from the source view data, as in this case no labeled 
target instances are available. Rather than directly using this subspace, this method pro-
poses to exploit the domain adaption ability that can be observed in the subspace.

Each dimension in the derived CCA is associated to its own ρ value. The higher the 
correlation coefficient ρ, the closer the source and target domains are to each other in 
such dimension thus it is more suited for domain transfer. An example of this can be 
seen in Fig. 4 which was inspired from [70]. As illustrated in Fig. 4a, in the dimension 
with the higher ρ value the source and target data are more similar and their points on 
the subspace are more clustered together. Therefore, a classifier projected onto the sub-
space will have an easier time discriminating between the classes for the unseen target 
test data. On the other hand, in Fig.  4b, in the dimension with the lower ρ value the 
source and target are dissimilar, as there is a higher difference in distribution, which 
will result in lower recognition performance. Standard CCA-based approaches for 

Fig. 4 Illustration for CT-SVM, inspired from [70], showing the difference between a ρ value with higher 
correlation (a) versus a ρ value with lower correlation (b) when projecting source and target instances onto 
correlation subspaces
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cross-domain tasks do not take the domain transferability into account when learning 
classifiers in the correlation subspace which can lead to degraded performance when 
lower ρ values are present.

This method thus proposes using a modified SVM called Correlation-Transfer SVM 
which takes such transferability into account by enforcing a suppression of the learned 
SVM along such dimensions with lower ρ values as they have little or no beneficial 
knowledge for transfer to the target task. This, in effect, will provide more focus on the 
attributes with higher correlation between the source and target domains where benefi-
cial discriminatory knowledge is more likely to be transferred from. This method does 
not require labeled target data and it utilizes the available unlabeled target and source 
pairs to select a kernel parameter which results in the highest correlation performance. 
Experiments were performed for cross-view action recognition, handwritten digit recog-
nition, and image-to-text/text-to-image classification to analyze the effectiveness of the 
proposed algorithm. The proposed method was compared with combinations of linear 
and kernel SVM and CCA where the proposed method was shown to be effective. The 
results also indicate that deriving a common subspace better suited for domain adaption 
is more important than designing a complex classifier in a standard feature space.

HHTL

Zhou et  al. [71] proposed a method for HTL called Hybrid Heterogeneous Transfer 
Learning (HHTL). This method creates an asymmetric mapping from the target to the 
source and takes into account bias issues of cross-domain correspondences. HHTL pro-
poses using a Deep Learning [68] approach to perform cross-domain feature mapping 
and distribution bias reduction. It uses a labeled source, unlabeled target, and unla-
beled correspondence data. When using correspondence data between source and tar-
get domains the method assumes that they are statistically representative (though this 
assumption may not always hold in real-world scenarios). An example of using corre-
spondence data is when one has a cross-lingual, cross-domain review sentiment classifi-
cation task in which we could use review-correspondences to learn a mapping between 
the two languages. The issue becomes that transforming the data from one language to 
another may not be effective due to distribution bias caused by the difference in product 
domains. Thus, this method aims to discover a latent feature representation to reduce 
such bias after transformation.

To do so, this method proposes applying a marginalized Stacked Denoised Autoen-
coder (mSDA) [72, 73] on the source domain data with its corresponding unlabeled 
data and the target with its corresponding data as to learn high-level feature representa-
tions. Then from these high-level representations, a feature mapping is learned to cre-
ate a latent common representation as to bridge the gap between heterogeneous feature 
spaces. These two steps of mSDA and heterogeneous feature mapping are recursively 
applied to the source and target data in each layer as to generate the different levels and 
feature transformations for the K layers used in this deep learning approach. After such 
process, standard classification models can be used on the source data with the latent 
representation to build a target classifier. Experiments were performed for multi-lingual 
sentiment classification with biased and unbiased correspondence instances. The pro-
posed HHTL method was compared with HeMap [26], multimodal deep learning [74] 
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with CCA, cross-lingual KCCA [75], and SVM-based method. This SVM-based method 
transfers labels predicted from the source correspondence data to the target as to train a 
target SVM on these pseudo-labels. Results showed the proposed method had the high-
est accuracy rates for the unbiased tests and for most cases in the biased tests.

HDCC

Wang et  al. [76] proposed a framework called Heterogeneous Discriminative Analysis 
of Canonical Correlation (HDCC) to handle HDA for the application of video annota-
tion, as well as other HTL, tasks. For video annotation tasks, it is often expensive and 
difficult to collect sufficient labeled videos to build an effective classifier. The goal, in 
this case, is to use transfer learning to transfer knowledge from a label abundant image 
source domain to enhance a target video annotation task which, in this case, has no 
labels. The issue becomes that source image data are represented by static image fea-
tures while target video data are represented by spatial–temporal video features. Thus, 
this method adopts Canonical Correlation Analysis (CCA) to create a common subspace 
using projection matrices for the source and target by incorporating both the discrimi-
native information exhibited in the source, and the topology information in the target. 
The topology information in the target is explored by taking each target video and split-
ting it into smaller clips where then a frame is selected randomly, thus creating a static 
image from the video as to relate to the static source images. The discriminative infor-
mation is extracted from the source by maximizing the similarity (reducing the variance) 
of infra-class samples while minimizing the similarities (maximizing the variance) of 
inter-class samples to create a more discriminative space. From this subspace, we can 
then apply standard learning algorithms to create a target model.

In this work, DASVM [77] is used due to the distribution differences between the cap-
tured keyframe and the source image. This method initializes the model using the source 
labeled data and then they are gradually replaced by target instances to learn the final 
separation hyperplane. Wang et al. [76] also extends HDCC by introducing a joint group 
weighing methodology to learn from multiple heterogeneous sources. The idea behind 
this is to organize source images into groups in a joint manner based on their semantic 
meanings rather than origin. Then, weights are assigned to each group of input source 
data based on their relatedness to the target video. This in turn, allows for selection of 
more performance enhancing source data which contains greater semantic knowledge 
for transferring to the target task. The training with these groups can be split into two 
phases: (1) a classifier is learned for each input source group and (2) weights are assigned 
and optimization of such generate the target classifier. In the test phase, image frames 
are extracted from the videos and inputted into the classifier to predict a final label. 
Experiments were performed for image-aided video annotation which demonstrated the 
effectiveness of the proposed HDCC and group weighing methods.

CL‑SCL

Prettenhofer and Stein [78] proposed a new HTL method called Cross-Language Struc-
tural Correspondence Learning (CL-SCL) for cross-language text classification that 
is built upon structural correspondence learning (SCL) [79]. These transfer learning 
tasks are inherently heterogeneous in nature as the feature space of a source document 
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is written in a different language as the target. They also have non-overlapping feature 
spaces due to each language having a distinct word set in their vocabulary. In this case, 
the goal of such task is to enhance the performance of a target text classification task 
which contains only unlabeled instances utilizing knowledge from a source domain with 
amble labeled and unlabeled documents. As mentioned previously, these documents do 
not share any common features/words as they are from different languages; however, 
one can link the two of them through the words’ semantic meaning. Using this concept 
as well as SCL theory, this method proposes using word pairs {ws, wt} as pivots which 
capture correspondences between the source and target languages as they are semanti-
cally equivalent. From these correspondences, we can learn a symmetric transformation 
mapping to discover a common latent feature space which reduces the task into a stand-
ard classification problem.

This CL-SCL method is comprised of three steps. The first step selects a small set of 
word pairs to be used as pivots by querying a translation oracle, such as Google Trans-
late, with a source word to finds its corresponding translation in the target vocabulary. 
With this relation, ws captures the correspondence with the source vocabulary and wt 
with the target. Both words from these pivots must have good predictive value and 
occur frequently to be effective. The second step removes these pivot words from a copy 
of each feature space where then a linear classifier is trained for each pivot using the 
data from both domains. These pivot classifiers are applied to this copy as to predict 
whether a pivot word occurs in a document based on the other words in it. This allows 
us to model the relationship of a pivot word to other words in documents associated to 
each class. From these, we then compute correlations across pivots with singular value 
decomposition in step three as to then finally learn a transformation mapping to apply to 
each input space to discover the latent feature subspace. This method uses less resources 
than current approaches as it does not require extensive multi-lingual dictionaries or 
parallel corpus. Experiments performed for cross-language sentiment classification 
showed the proposed CL-SCL had competitive results.

HDP

Nam and Kim [80] proposed an HTL method called Heterogeneous Defect Prediction 
(HDP) for software defect prediction, though it can also be applied for other tasks. Most 
software defect prediction studies have been performed to train a model for a project 
and test it within the same project while using the same set of metrics/attributes. This is 
known as within-project defect prediction (WPDP). When a new project is developed, 
it contains little or no historical defect data. Therefore, one can use transfer learning 
techniques to apply data/models from other source projects and to detect defects in the 
new target project. This is otherwise known as cross-project defect prediction (CPDP). 
Most CPDP approaches require both source and target projects to be represented by the 
same set of metrics as for homogeneous transfer learning though this becomes a limita-
tion as it may be challenging to find source projects which are characterized by the exact 
same set of metrics as one’s new target project. To address such limitation, the proposed 
method can accept heterogeneous metric sets to transfer knowledge from a source to a 
target software defect detection task.
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This approach uses two steps before creating a target classifier: metric selection and 
metric matching. First, metric selection (a.k.a. feature selection [81] denoted in other 
domains) is applied to the source data to remove redundant and irrelevant features. 
Techniques applied for this include gain ratio, Chi squared, relief-F, and significance 
attribute evaluation [82, 83]. During the experiments, the top 15% of metrics were 
selected as suggested by [82]. Second, metrics are matched between the source and tar-
get based on similarities of distribution or correlation. The manner this is done is by 
measuring the similarity between a source and target metric pair using one of three ana-
lyzers (PAnalyzer, KSAnalyzer, or SCoAnalyzer) to calculate a “matching score.” From 
this, dissimilar pairs are eliminated based on a threshold value and the remaining are 
organized into groups of unique pairing combinations. Each of these groups has all the 
combinations of pairings without duplicate metrics. The best combination of metric 
matching is found by selecting the group with the highest sum of matching scores using 
weighted bipartite matching [84], thus leaving one remaining group which matches the 
metrics that are most similar. These scoring techniques include: (1) The PAnalyzer which 
uses percentile based matching, (2) The KSAnalyzer which uses the p value from the 
Kolmogorov–Smirnov Test, and (3) The SCoAnalyzer which uses the Spearman’s rank 
correlation coefficient to measure sample correlation. After such procedure, a standard 
classification algorithm may then be trained on the transformed source to detect defects 
for target projects. Experiments performed for cross-project defect prediction showed 
the proposed HDP method effective in most cases, as described by the authors. These 
results may be misleading though due to certain results not being included in calcula-
tions as described by Weiss et al. [7].

FuzzyTL

Shell and Coupland [85] proposed an HTL method called Fuzzy Transfer Learning 
(FuzzyTL) for learning in intelligent environments (IE). Intelligent environments con-
sist of a wide-range of applications where sensors of diverse kinds are placed to gather 
information about an environment. IE’s are often dynamic and transient in nature due 
to fluid environments and changing conditions which causes uncertain datasets. Each 
IE is unique due its specific implementation which includes characteristics such as vari-
ations in the environments themselves as well as sensor placement, construction, type, 
and quantity. Thus, when trying to learn a model for a new IE it is challenging to collect 
sufficient labeled training data to learn an effective model for such IE. Transfer learning 
can be used in this case to transfer knowledge from labeled data of an existing source IE 
to enhance building a model for a target IE.

The proposed FuzzyTL method utilizes fuzzy logic [86] as to transfer knowledge from 
contextually varying environments to model a target task in an IE using labeled source 
data. Using fuzzy logic as a base, this framework can absorb the inherent uncertainty 
and dynamic nature of IE’s by incorporating approximation and greater expressive-
ness of such uncertainty exhibited within the data. This proposed method consists of 
two main parts: learning and adaptation. During the learning phase, the Fuzzy Interface 
System (FIS) is constructed using the source labeled data, which is the basis for captur-
ing knowledge from the source, and transferring it to the target model. The structure 
of the FIS consists of fuzzy sets and fuzzy rules which are formulated using an Ad-Hoc 
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Data Driven Learning (ADDL) process and the algorithm by [87, 88]. During the Adap-
tation phase, the generated source FIS and the target unlabeled data are used to adapt 
the fuzzy rule set and the fuzzy rule base from the FIS as to capture variations in the 
data and assist in bridging the contextual gap between the source and target. Figure 5, 
adapted from [85], provides an illustration of the FuzzyTL process to transfer knowledge 
from the source to the target and predict a value in the target. Experiments were per-
formed using data from a real IE sensor network as for comparing FuzzyTL to ADDL. 
The results showed that the proposed method outperformed this baseline as it was able 
to adapt to changes in temporal and situational contexts inherent in IE’s.

FSR (IFSR, UFSR, ELFSR)

Feuz and Cook [12] developed three variants of their proposed Feature-Space Remap-
ping (FSR) method for HTL tasks when one has either limited target labels or optionally 
no target labels as well as an ensemble technique. This work extends from the previous 
version of their paper [89]. These methods do not assume the source and target domains 
contain the same feature spaces, probability distributions, dimensions, or label spaces.

The proposed method, called Feature-Space Remapping, handles these issues by 
remapping the target data from their original feature spaces to that of the source fea-
ture space through an asymmetric transformation. This mapping is found through the 
use of metafeatures which are used to find the similarity between a feature pair. More 
specifically, first metafeatures are created, based on the availability of target labels, from 
the source and target data. Then, from these metafeatures, a similarity matrix is con-
structed by computing a similarity score between the source and target metafeatures. 
To construct the mapping, feature pairs with the highest similarity scores are selected as 
to decrease the error when applying target domain data to a previously learned source 
domain model. This mapping is many to one as many target features can map to one 
source feature but not the reverse. If multiple target features are mapped to a single 
source feature, then their values are combined with an aggregation protocol such as 

Fig. 5 Illustration for FuzzyTL, adapted from [85], which provides an overview of the methodology
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minimum, maximum, average, etc. This mapping is applied to the target test data which 
maps its feature space to the most related source features and a final prediction is done 
with the prediction function trained on the source data. This FSR method can also be 
used as a preprocessing step to obtain a common feature space for later use with homo-
geneous transfer learning techniques.

Three variants of this method are proposed IFSR, UFSR, and ELFSR. Informed Fea-
ture-Space Remapping (IFSR) is used when limited target labels are provided. Thus, 
domain-independent metafeatures can be constructed with the aid of these labels. The 
metafeatures are found for this method by computing a feature-label co-occurrence 
value for each feature from the source and target space by calculating the expected value 
of a feature based on the given label from the labeled training data. Uniformed Feature-
Space Remapping (UFSR) is used when no labeled target training data is provided. Thus, 
domain-dependent features are constructed due to the lack of labeled to assist in the 
mapping process. The metafeatures built for this method are created to model the con-
ditional distributions such that the mapping process will select a feature pair with simi-
lar conditional distributions as this implies they are more similar for classifying a label 
and thus should be mapped together. Ensemble Learning via Feature-Space Remapping 
(ELFSR) extends these models by accepting multiple source domain data and creates 
an ensemble learning scenario. Here, an individual mapping from the target domain is 
learned to each one of the input source domains and a separate base classifier is built 
for each of these source domains. Combining these base classifiers creates an ensemble 
model. The final prediction for a class label in this model is calculated by a voting or 
stacking [90] scheme. Experiments were performed for activity recognition and docu-
ment classification tasks which showed promising results for the proposed methods. 
These promising results are especially noted for the ensemble classifier as ensemble clas-
sification often provides better performance over singular models.

RLG, GLG

Liu et  al. [11] proposed two models called Random Linear monotonic map Geodesic 
flow kernel model (RLG) and Grassmann Linear monotonic map Geodesic flow ker-
nel model (GLG). These methods are designed for unsupervised HTL and use a labeled 
source domain along with an unlabeled target domain. Both models use a symmetric 
transformation to map the source and target data into a latent common subspace using 
a proposed Linear Monotonic Map (LMM) method. To ensure reliability and guaran-
tee that knowledge is transferred appropriately, the resulting mappings must satisfy two 
conditions: (1) the mappings are monotonic and (2) performing the inverse of the maps 
results in the original feature spaces. Also, when transferring knowledge, it is important 
to maintain the same label space of the target domain after transformation as a signifi-
cant change implies an error must exist. Therefore, in this method, the mappings must 
also satisfy the condition that the label space remains unchanged in this process. By 
using these rules when learning the mappings, one avoids particular conditions for nega-
tive transfer. From this latent subspace, both models employ the Geodesic Flow Kernel 
(GFK) [91, 92]. This is a homogeneous transfer learning method which is being used in 
this case to transfer knowledge between the projected domains.
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The difference between the two proposed models lies within the generation of the 
transformation parameters for the LMM method. Random LMM GFK (RLG) randomly 
selects the parameters for the mappings. While this is computationally effective, it does 
not ensure a reliable model. Because of this, GLG is proposed which optimizes these 
parameters. Grassmann LMM GFK (GLG) uses a Grassmann manifold to measure 
the distance between the heterogeneous source and target domains as to optimize the 
parameters of the LMM through the construction of a cost function. The incorporation 
of the Grassmann manifold also ensures the geometric properties of the data remains 
unchanged during this process. The downside is that this method is computationally 
complex and has poor scalability. Optimization of such is done with an evolutionary 
algorithm through micro-analysis. Experiments were performed for credit assessment, 
text classification, and cancer detection to test the effectiveness of the proposed RLG 
and GLG. The proposed methods were compared with variations of KCCA [70], and 
GFK. The results indicated that both of the proposed methods achieve superior accuracy 
over the baselines for the tests conducted.

Methods which require limited target labels and no source labels
In this section, we present an HTL technique for the category under which one has lim-
ited target labels but aims to enhance the performance of the target classifier using only 
unlabeled source data. This is useful when one wants to gain the benefits of transferring 
knowledge but cannot collect a suitable fully-labeled domain. It is also attractive as unla-
beled data is relatively cheap, thus it is to one’s benefit to exploit it for a target task.

HTLIC

Zhu et al. [22] proposed an HTL method for image classification tasks called HTL for 
Image Classification (HTLIC). As discussed previously, image feature spaces contain 
visual attributes and often lack deterministic semantic meaning thus it may be costly 
to collect sufficient labeled image data to train an effective classifier on such features. 
For example, SIFT [93] descriptors, which are commonly used to represent visual data 
from images, model pixel data and lack the conceptual knowledge that can be found in 
other feature spaces, such as from text documents, to classify an instance. The proposed 
HTLIC method aims to solve such challenge by enhancing a target image classification 
task with limited labeled data by exploiting semantic knowledge derived from unla-
beled text documents and unlabeled annotated images from an auxiliary source. This 
unlabeled auxiliary data is relatively inexpensive to collect and can enhance target image 
classification performance with this process.

First, a connection is found between the unlabeled text documents and unlabeled 
annotated images from an auxiliary source of related concepts. This is done using a 
two-layer bipartite graph where the top layer represents the relationship between the 
images and the tags while the bottom layer represents the relationship between the 
tags and the documents. Thus, from this we can form connections between the images 
and the text using the annotating tags to bridge the heterogeneous feature spaces gap. 
Using this connection, we can discover a common semantic space between the text and 
images by extracting latent semantic features from low-level image features using Latent 
Semantic Analysis (LSA) [94] and learning high-level features through collective matrix 
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factorization (CMF) [95]. Once such semantic view is constructed, the images in the 
target domain can be transformed to match this new enhanced feature space for image 
classification as it contains greater knowledge for classification than the original. This in 
turn is expected to provide greater classification performance. A standard classification 
model can then be trained from the transformed target images to make predictions on 
test images. In this case, linear SVM’s were applied for the experiment. This method dif-
fers from aPLSA [96] for input requirements, as HTLIC also accepts unlabeled auxiliary 
documents rather than just unlabeled annotated images. Additionally, HTLIC requires 
limited target labels while aPLSA does not. Experiments were performed on image clas-
sification tasks to compare the proposed HTLIC to PCA, Tag [97], and an SVM trained 
only on the labeled target images. The proposed method was shown to be effective by 
having the highest classification accuracy for most tests.

Methods which require no target or source labels
In this section, we present an unsupervised HTL method which does not require any 
source or target labeled data. These unsupervised learning tasks aim to find a hidden 
structure from the data rather than directly determining the probabilities an instance 
can be categorized as a particular label. This is because, in this case, these labels are not 
given so one can only analyze patterns in the unlabeled data provided. Due to this, full 
classification tasks cannot be performed under this scenario, as in the previous catego-
ries, since no labels are provided. However, other tasks such as clustering [98] can still 
benefit from the use of transfer learning and an auxiliary source domain.

aPLSA

Yang et  al. [96] proposed a method for unsupervised HTL for image clustering tasks 
called annotation-based PLSA (aPLSA). aPLSA performs these tasks through the use 
of user-annotated auxiliary images from social websites. This method does not require 
a labeled source or target, but rather utilizes such annotated images to find a correla-
tion between the text and image features. This is to improve the performance of image 
clustering tasks even when the data is sparse as to learn a latent feature representation. 
Image clustering tasks aim to organize images into groups, or clusters, based on their 
similarities or differences. Similar images are grouped into the same cluster, while dis-
similar ones are separated into other clusters. A major application for this task is when 
organizing search-engine results for a query-based image search. Motivated by such 
application, this method proposes to use heterogeneous transfer learning as to transfer 
knowledge from socially annotated auxiliary source images to enhance a target cluster-
ing task. Correspondences between the instances of the domains are not assumed in this 
case when using the heterogeneous auxiliary data. Therefore, the images may be unre-
lated and still improve performance.

The proposed method extends the use of Probabilistic Latent Semantic Analysis 
(PLSA) [99, 100] to incorporate annotated auxiliary information. The idea is to per-
form PLSA on both the source and target simultaneously and link them through com-
mon latent variables. First, PLSA is applied to the target images as to obtain an image 
instance-to-feature co-occurrence matrix. Along with this, PLSA is conducted on the 
annotated image data at the same time to obtain a text-to-image feature co-occurrence 
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matrix. These matrices are used to estimate the clustering function. While perform-
ing these simultaneously, the common latent variables are used to combine the two to 
learn high quality latent variables for use during target clustering. In other words, the 
image features are clustered into latent variables and then, simultaneously, the annotated 
auxiliary information is clustered in to the same latent variables. Thus, providing a con-
nection for the transferring of knowledge with an enhanced feature representation for a 
target image clustering task. Experiments were performed for image clustering compar-
ing the proposed aPLSA to K-means [101], PLSA [99], and STC [102]. For K-means and 
PLSA, experiments were performed applying these methods to the target data only, as 
well as combining the target and auxiliary data. The results showed that the proposed 
method had better results than the baselines as it had lower entropy, indicating less ran-
domness for better classification results, under all experiments. This shows that one can 
use aPLSA to improve an image clustering task by transferring knowledge from unre-
lated auxiliary annotated images.

Methods for HTL preprocessing
In this section, we discuss a preprocessing method which may be applied before using 
the surveyed HTL methods as to have them operate with optimal performance. In this 
case, preprocessing methods are used to set the appropriate parameters required in 
each algorithm for optimal final performance. Currently, for methods that require such 
parameters, one has to manually select the proper values or test with a set of values, 
both of which are expensive and time consuming. This provides motivation for the use 
of a preprocessing method, as it can aid in selecting the proper parameter values.

DCN

Yang et  al. [103] proposed an HTL preprocessing method based on using a Directed 
Cyclic Network (DCN). This method is proposed to be used before performing an HTL 
task to improve the overall effectiveness of the transfer learning method used. This 
method aims to measure the relatedness between N ≥ 2 heterogeneous domains through 
co-occurrence data by learning transferred weights in order to determine whether a 
source domain is suitable for transferring knowledge to a target domain, as well as how 
much of that knowledge should be transferred. This co-occurrence data represents the 
same data from the target and source domains, but in different feature spaces. Therefore, 
one can use it independently to determine similarities amongst them to see whether 
a domain is suitable for knowledge transfer before applying computationally complex 
HTL methods. This is done by performing PCA on the co-occurrence data to compute 
their principal components for each feature space. The coefficients of such components 
have the same discriminatory order of significance for prediction purposes as the origi-
nal domain’s feature spaces. Using these coefficients, a directed cyclic network is built 
for each principal component to model the relationship amongst the domains and cap-
ture strong or weak relations amongst them. Here, each node represents a domain and 
the directed edge contains the transferred weight measuring the conditional dependence 
from one domain to another. The larger the weight value, the more knowledge can be 
transferred from one domain to another. Note that this graph can be asymmetric, as the 
i th domain may affect the j th more than the j th affects the i th domain. The optimal 
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network structure is computed through a Markov Chain Monte Carlo (MCMC) [104] 
method. Once a DCN is constructed for each principal component, they are merged 
into a single DCN by computing a weighted sum of the edge weights. More weight is 
given to the components used to construct the DCN that have higher contributions 
which is based on their corresponding eigenvalues. A low final edge weight means little 
knowledge can be transferred from such source domains implying it is unrelated and not 
suitable for knowledge transfer thus aiding in selecting the best source domain to use. 
The final transferred weights can also be used to set the parameters in the HTL meth-
ods for better overall performance. This was proven in the experiments under which the 
proposed method was incorporated into aPLSA [96], HTLIC [22], and CT-Learn [57]. 
Note that these each fall into different label requirement categories, thus implying the 
proposed method may be used for any HTL scenario.

Discussion
In this section, we compare and analyze various characteristics of the surveyed HTL 
methods as well as their empirical studies. This includes presenting patterns and differ-
ences exhibited amongst the different methodologies along with shortcomings of cur-
rent research in this domain.

Comparative analysis

All of the surveyed HTL methods have the commonality that they propose a method-
ology for knowledge transfer when faced with differing feature spaces. They each pro-
pose a unique process to address such issue. One of the patterns that can be noticed 
amongst them to accomplish this is the use of co-occurrence data. TTI [36], TLRisk 
[37], OHTWC [19], CT-Learn [57], and DCN [103] use co-occurrence data as a bridge 
between the source and target feature spaces. Co-occurrence data is most often used for 
text aided image classification and is relatively cheap to collect. It is effective because of 
the assumption that the text surrounding an image on a webpage is semantically related 
to the image. Therefore, one can use this co-occurrence information as a bridge to relate 
text features and image features. This bridge, in essence, can be used to solve the issue 
of differing feature spaces. This has similarities to the pivot-based methods which bridge 
the feature spaces through individual pairs of instances from each domain that are 
linked together. This is done in CL-SCL [78] where each pivot pair contains an instance 
from each domain but they are directly semantically related. In cross-lingual text clas-
sification, a pivot is comprised of a word from each language and the link is modeled as 
a direct translation of the words which serves as a bridge between the languages. The 
pivot methods differ from the use of co-occurrence data as pivots are taken directly 
from instances in the input datasets while the co-occurrence data is its own independent 
input data set.

Another pattern that can be noted is the use of Canonical Correlation Analysis (CCA) 
to solve the differing feature space issue. Surveyed methods that employ this include CT-
SVM [70], HDCC [76], SMVCCAE [64], and SSMVCCAE [64]. CCA aims to maximize 
the similarity between two variable sets by projecting them onto a correlation subspace. 
Both CT-SVM and SMVCCAE/SSMVCCAE utilize the ρ correlation coefficient calcu-
lated in CCA which measures the correlation/similarity between the two variable sets 
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in each dimension. CT-SVM uses this metric to suppress learned SVM’s on dimensions 
that have poor correlation to increase focus on those that are more similar. On the other 
hand, SMVCCAE/SSMVCCAE propose using a weighted voting system based on the ρ 
values.

Many of these methods are also application-specific and it would be difficult or impos-
sible to port them to other applications. Most of the surveyed methods are designed for, 
or applied to, image and cross-lingual text classification tasks which are common appli-
cations for HTL. Methods designed specifically for image classification such as HTLIC 
[22] and TTI [36] would be impossible for use on non-image domains. Also, porting 
application-specific methods such as FuzzyTL [85] may not have optimal performance 
outside of their domain. Co-occurrence data, as required by some previously discussed 
methods, is also very application-specific and it may be difficult to obtain or source for 
certain applications.

Additionally, most of the surveyed methods also do not address the issue of differing 
label spaces or differences in marginal/conditional distributions. When using a hetero-
geneous auxiliary dataset, the class labels may not match in real-world scenarios. Specif-
ically, FSR [12], HeMap [26], and Proactive HTL [54] are the only surveyed methods that 
directly address this issue of differing label spaces. Also, when drawing data from a dif-
ferent domain, this auxiliary data may exhibit data distribution differences and further 
adaptation is required in this case to correct this after resolving the feature space gap.

Moreover, the surveyed methods also lack investigation into many common real-
world machine learning challenges that may arise during transfer learning tasks. This 
includes noise (either class or attribute), class imbalance, outliers, high-dimensionality, 
as well others [105–107]. These issues have a unique impact on transfer learning tasks 
as they may present in either the source or the target domain which causes changing 
circumstances [108–110].

Performance analysis

All of the surveyed HTL methods conduct an empirical study to investigate the effec-
tiveness of their proposed algorithm for different tasks. Most of the surveyed methods 
conduct their study with a uniquely designed experimental testbed and compare their 
proposed algorithm with few (if any) other HTL algorithms. All of the proposed meth-
ods claim they have better performance than the selected baseline algorithms of the 
study. These baseline algorithms are often not originally designed for HTL tasks and 
are expected have inferior performance when applied to these tasks. The most common 
baselines used were variations of SVM trained on only the available source or target 
data. One can note that it is not meaningful to compare an algorithm with others that 
would inherently have inferior performance in the designed testbed. This, in essence, 
would not provide strong evidence towards the superiority of the proposed method. On 
the other hand, a more valuable discovery would be if the proposed algorithm demon-
strated better performance over other HTL algorithms that have the same label require-
ments. Only few of the studies conducted utilized other HTL methods in the same label 
requirement category.

Specifically, none of the algorithms in  the “Methods which require no target labels” 
section compare the performance of their algorithm to others in the same category. 
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Currently, the issue is that one cannot directly compare the performance of the sur-
veyed algorithms using the data provided. This is because there are little commonalities 
observed in the experimental testbeds of the surveyed methods in each category. Com-
paring these methods using the little overlap that may exist would not provide meaning-
ful conclusions due to the varied nature of the studies. Thus, these are shortcomings of 
the current research. This is also the limitation of current research in this domain as 
we cannot provide a direct performance comparison of the surveyed methods. It would 
be insightful to have a comparative study conducted to evaluate the effectiveness of the 
surveyed algorithms on a common, fair experimental testbed. To do this, a standardized 
test framework could be developed for heterogeneous transfer learning algorithms, as 
was done for homogeneous transfer learning algorithms [111, 112].

Conclusion
When faced with little or no labeled training data, a model trained on such data will have 
insufficient discriminatory ability and would be unable to predict accurately. In order to 
handle this issue, transfer learning techniques have received significant focus in research 
communities. Specifically, heterogeneous transfer learning has been recently studied as 
it broadens the application of current transfer learning methods.

In this paper, we provided a comprehensive survey of 38 methods which are designed 
to handle these heterogeneous transfer learning tasks. We organized these methods 
based on labeling requirements. This is because the motivation for transfer learning is 
to improve performance for a target task when faced with little or no labeled data thus 
this organization is intuitive as one must select an appropriate algorithm based on one’s 
available resources. In addition, we also provided an in-depth discussion and analysis.

For heterogeneous transfer learning tasks, one may face the issue of differing feature 
spaces along with any combination of differing feature dimensions, label spaces, or data 
distributions. Because of this, these tasks are often more challenging but are present in 
many real-world applications such as cross-language text classification, image classifica-
tion, as well as many others.

Overall, the surveyed methods aim to find a commonality between the source and tar-
get domains to bring the feature spaces to a common representation as to extract perfor-
mance-enhancing knowledge without the inherent cross-domain noise.

Future work
First, as HTL is a relatively recent area in research, there are still many areas of interest 
to investigate. One of these is the issue of scalability. The rise of big data has led to many 
real-world applications that could benefit from transfer learning on very large datasets. 
Unfortunately, most HTL techniques are highly complex and scale very poorly because 
of this. Thus, there is a need to investigate and develop highly computationally efficient 
methods which can be applied to large datasets.

Second, another area to investigate is negative transfer. Most of these methods do not 
employ safeguards against negative transfer. More specifically, none of the surveyed tech-
niques have such safeguards except RLG/GLG. This technique claims to avoid negative 
transfer by setting the right environment for knowledge transfer by ensuring the label 
spaces do not change after transformation; though this method does not necessarily prevent 
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negative transfer. Thus, there is a need for research of methods which implement such safe-
guards or techniques that can be incorporated into current HTL methods for this task.

Third, further investigation into correcting differences in marginal and conditional 
distributions for HTL tasks should be conducted, as most of these techniques focus on 
the issue of bridging the feature space gap but do not effectively consider data distribu-
tion issues once the feature spaces have been aligned.

Fourth, most of these methods assume the label spaces are the same between the 
source and target but under certain HTL tasks this assumption does not hold thus fur-
ther investigation into such problem would be beneficial.

Finally, these methods do not investigate the effect of the presence of noise or class-
imbalance in either the source or target domain on the performance of a transfer learn-
ing task thus an investigation into such may prove useful for real-world applications 
where these issues are common.
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