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Abstract 

This paper aims to showcase the value of implementing a Bayesian framework 
to analyze and report results from international large-scale assessments and provide 
guidance to users who want to analyse ILSA data using this approach. The motiva-
tion for this paper stems from the recognition that Bayesian statistical inference is fast 
becoming a popular methodological framework for the analysis of educational data 
generally, and large-scale assessments more specifically. The paper argues that Bayes-
ian statistical methods can provide a more nuanced analysis of results of policy 
relevance compared to standard frequentist approaches commonly found in large-
scale assessment reports. The data utilized for this paper comes from the Teaching 
and Learning International Survey (TALIS). The paper provides steps in implementing 
a Bayesian analysis and proposes a workflow that can be applied not only to TALIS 
but to large-scale assessments in general. The paper closes with a discussion of other 
Bayesian approaches to international large-scale assessment data, in particularly 
for predictive modeling.

Introduction
This paper aims to showcase the value of implementing a Bayesian framework to analyse 
and report on data from international large-scale assessments (ILSAs) with the OECD 
Teaching and Learning International Survey (OECD, 2019, 2020) serving as an example, 
and to provide guidance to users who want to analyse ILSA data using this approach. 
The motivation for this paper stems from the recognition that Bayesian statistical infer-
ence is fast becoming a popular methodological framework for the analysis of educa-
tional data generally, and large-scale assessments more specifically.

Bayesian inference can be conceptualised as a framework for quantifying uncertainty 
in statistical models. This uncertainty arises in not knowing (or ever knowing) the true 
value of a parameter of interest, for example a regression coefficient. This uncertainty 
is encoded into a Bayesian analysis through forming a probability distribution for the 
parameter(s) of interest describing the analysts assumptions, before seeing the data, as 
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to the expected value and variance of a parameter. The analysts prior assumptions can be 
more or less “informative”, arising from a summary of past research, expert opinion, or 
both. The mechanics of Bayes’ theorem (described in more detail below) combines prior 
beliefs with the extant data in hand to provide updated distributions of the parameters 
of interest. The major advantage of the Bayesian approach is how such results are inter-
preted. By explicitly assigning a probability distribution to parameters, Bayesian analysis 
provides a framework to help answer questions such as “What is the most likely range 
of values for a given parameter?” or “What is the probability that a parameter exceeds 
a certain value?” The advantage of presenting results in this fashion is that it provides 
a more nuanced analysis of the effects of interest, and is, arguably, more informative to 
policy makers than simply indicating whether an effect is statistically significant or not.

Purpose and organization of paper
The OECD published a two-volume report based on the results of TALIS 2018. The first 
volume was entitled TALIS 2018 Results: Teachers and school leaders as life long learn-
ers (OECD, 2019) and the second volume was entitled TALIS 2018 Results: Teachers 
and school leaders as valued professionals (OECD, 2020). Both volumes not only contain 
detailed descriptive statistics across countries/economies, as well as by contextual vari-
ables, but also these volumes report the results of statistical models designed to provide 
predictive information regarding important outcomes of interest. For example, Volume II 
summarizes the results of various regression analyses aimed at identifying relevant pre-
dictors of teacher job-satisfaction and teacher self-efficacy separately (See Figures II.1.7 
and II.1.8 in OECD (2020)). The analyses of these outcomes were carried out as follows. 
For each country, least-squares regression analysis was conducted with the TALIS com-
posite scales of teacher job satisfaction (T3JOBSA) or teacher self-efficacy (T3SELF) as 
the dependent variables (Dumais and Morin, 2019), and predictors such as whether the 
teacher engaged in induction activities when joining the school. There were nine sepa-
rate regression analyses. Many of these added control variables such as teachers’ gender 
and years of experience as a teacher. Sampling weights were also included and sampling 
error was estimated using balanced repeated replication (BRR) weights to account for 
and adjust for the multi-stage, stratified, clustered nature of the sample. Missing data 
was handled using listwise deletion, which assumes that the missing data are missing-
completely-at-random (Little and Rubin, 2020) which can result in a substantial loss of 
data and statistical power. The results in Figures II.1.7 and II.1.8 of (OECD, 2020) are dis-
played with marks indicating whether there was a positive and significant association (+) 
between job satisfaction and one of the predictors (after controls), a non-significant asso-
ciation with a blank mark, or a negative association (-) if there was a statistically signifi-
cant negative association. The raw regression coefficients associated are also available in 
supplementary tables.

A major concern with the analytic approach used for the results in Figures II.1.7 and 
II.1.8 is that the categorization of the results as positive, no-effect, or negative, provides 
little information regarding the substantive importance of an effect in terms of how 
strongly different the results are from no effect at all. This issue touches on the continu-
ing discussion over null hypothesis significance testing (see e.g., Wasserstein and Lazar 
(2016)), and the fact that with large sample sizes such as those in TALIS, significant 
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but relatively trivial results could be reported. Instead, it would be useful to have more 
substantive information regarding the importance of the effect beyond a dichotomous 
determination of whether or not an effect is statistically significant, and the approach 
taken in this paper is to compute the probability that the obtained effect is different from 
zero and to rank countries on the size of those probabilities.1 It is important to note, 
that presenting results in this fashion can only be achieved via a Bayesian analysis, as 
will be described in more detail below. Thus, the purpose of this paper is to demonstrate 
an alternative mode of reporting based on reanalyzing the Figures II.1.7 and II.1.8 from 
the TALIS report from the perspective of Bayesian statistical inference (see e.g., Gelman 
et al. (2014); Kaplan (2023)).

The organization of this paper is as follows. In Sect. Overview of TALIS, we provide 
a brief overview of TALIS 2018. This is followed in Section Preliminaries on Bayesian 
inference by a review of the key elements of Bayesian statistical inference that are rel-
evant to this paper. A more technical treatment of Bayesian inference is given in Kaplan 
(2023). In Sect. Analysis of TALIS Dataas a Bayesian HierarchicalModel we describe our 
analysis of the TALIS data as a special case of a so-called Bayesian hierarchical model 
which incorporates the elements of multilevel modeling required for the proper anal-
ysis of data arising from complex sampling designs such as TALIS. Then, in Sect.  An 
Example Using TALIS we present the steps of our reanalysis of Figures II.1.7 and II.1.8 
in OECD (2020), respectively. This will be followed in Sects. Results for the analysis of 
teacher job satisfaction and Results for the analysis of teacher self-efficacy by the results 
of our reanalysis of teacher job satisfaction and teacher self-efficacy, respectively. We 
will display necessary diagnostic plots using data from the United States to demonstrate 
important aspects of Bayesian computation in Appendix 1: Fig 3, 4, 5, 6. Also, we will 
provide both tables and figures of the estimates as well as the probability of the obtained 
effects being different from zero and then rank order countries/economies by the sizes 
of these probabilities. We focus on only one analysis - namely the effect of participation 
in induction activities as it predicts teacher job satisfaction and teacher self-efficacy. Our 
reanalyses of the remaining predictors in Figures II.1.7 and II.1.8 are provided in Appen-
dixes 3 and 4, respectively. Section  A proposed Bayesian workflow for ILSA analyses 
provides a proposed Bayesian workflow that can guide analyses of the type presented in 
this report, and Section Conclusion concludes with a discussion of the Bayesian advan-
tage as it pertains to the analysis of ILSA data as well as directions for future applications 
of Bayesian inference to ILSA data, particularly the problem of accounting for model 
uncertainty and prediction.

Overview of TALIS
In 2008, the Organization for Economic Cooperation and Development (OECD) con-
ducted the first cycle of the Teaching and Learning International Survey (TALIS). TALIS 
is an international, large-scale survey of teachers, school leaders and the learning envi-
ronment in schools. The overarching goals of TALIS are to provide policy makers, educa-
tors, and other stakeholders with rigorous and detailed information around nine central 

1  It should also be emphasized that the frequentist confidence interval provides no additional substantive information 
about the importance of an effect beyond that of the frequentist p-value.
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themes. These included: (1) teachers’ instructional practices; (2) school leadership; (3) 
teachers’ professional practices; (4) teacher education and initial preparation; (5) teacher 
feedback and development; (6) school climate; (7) job satisfaction; (8) teacher human 
resource issues and stakeholder relations; and (9) teacher self-efficacy.

Elements of the TALIS survey design

The first cycle of TALIS was conducted in 2008, the second cycle was conducted in 2013, 
and the third cycle on which this paper is based was conducted in 2018. The fourth cycle 
will be conducted in 2024. Across the cycles of TALIS, the survey design remained more 
or less unchanged. The key features of the TALIS design have focused on; (1) the iden-
tification of an international population of teachers and school leaders of mainstream 
schools, here defined as those teachers and school leaders working primarily in lower 
secondary (ISCED2) schools; (2) a target sample size of 200 schools per country; 20 
teachers and one school leader in each school; (3) a target response rate of 75% of the 
sampled schools, together with a 75% response rate from all sampled teachers in the 
country; (4) a target response rate of 75% of the sampled school leaders; (5) the construc-
tion of separate questionnaires for teachers and school leaders, each requiring between 
45 and 60 min to complete; (6) two modes of data collection: questionnaires completed 
on paper or online, and (7) consistent survey windows for Northern and Southern Hem-
isphere countries.

Reporting goals of TALIS

As TALIS is an observational study of teachers’ and school leaders’ attitudes, beliefs, and 
opinions, it cannot be used to draw causal inferences. Instead, the strength of TALIS lies 
in its ability to provide internationally comparable evidence focused specifically on the 
day-to-day working lives of teachers and school leaders as seen from their perspective. 
This information is further broken down by relevant contextual variables such as teach-
ers’ gender, age and experience - and by schools’ characteristics - geographical location, 
school type and composition. In addition, with information from the 2008 and 2013 
cycles, important trend information can be gleaned to help inform country level policy. 
This is accomplished by keeping many of the survey questions constant across the cycles.

Preliminaries on Bayesian inference
In this section, we provide a non-technical overview of Bayesian ideas. For a more tech-
nical review see Gelman et al. (2014) and Kaplan (2023). Bayesian statistics has long been 
overlooked in the formal quantitative methods training of social scientists. Typically, the 
only introduction that a student might have had to Bayesian ideas is a brief overview 
of Bayes’ theorem while studying probability in an introductory statistics class. This is 
not surprising. First, until recently, it was not feasible to conduct statistical modeling 
from a Bayesian perspective owing to its complexity and lack of available software. Sec-
ond, Bayesian statistics addresses many of the problems associated with frequentist null 
hypothesis significance testing (see e.g.,  Wagenmakers (2007); Wasserstein and Lazar 
(2016); Kaplan (2023)), such as the methods applied to Figure II.1.7 and therefore can 
be controversial. We will use the term frequentist to describe the paradigm of statistics 
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commonly used today, and which represents the counterpart to the Bayesian paradigm 
of statistics. Historically, however, Bayesian statistics predates frequentist statistics by 
about 150 years.

Frequentist probability

Following the discussion given in Kaplan (2023) most students and researchers in the 
social sciences were introduced to the axioms of probability by studying the properties 
of the coin toss or the dice roll. These studies address questions such as (1) What is the 
probability that the flip of a fair coin will return heads?; (2) What is the probability that 
the roll of two fair die will return a value of seven? To answer these questions requires 
enumerating the possible outcomes and then counting the number of times the event 
could occur. The probabilities of interest are obtained by dividing the number of times 
the event occurred by the number of possible outcomes - that is, the relative frequency 
of events. Before introducing Bayes’ theorem, it is useful to review the axioms of prob-
ability that have formed the basis of frequentist statistics. These axioms of can be attrib-
uted primarily to the work of Kolmogorov (1956).

Underlying frequentist statistics is the idea of long-run frequency. An example of prob-
ability as long-run frequency concerns the dice roll. In this case, the number of possible 
outcomes of one roll of a fair die is six. If we wish to calculate the probability of rolling a 
two, then we simply obtain the ratio of the number of favorable outcomes (here there is 
only one favorably outcome), to the total possible number of outcomes (here six). Thus, 
the frequentist probability is 1/6 = 0.17 . However, the frequentist probability of rolling a 
two is purely theoretical because in practice, the die might not be truly fair or the condi-
tions of the toss might vary from trial to trial. Thus, the frequentist probability of 0.17, 
relates to the relative frequency of rolling a two in a very large (indeed infinite) and per-
fectly replicable number of dice rolls.

This purely theoretical nature of long-run frequency nevertheless plays a crucial role 
in frequentist statistical practice. Indeed, the entire structure of Neyman - Pearson 
hypothesis testing and Fisherian statistics that was used in the TALIS reports is based 
on the conception of probability as long-run frequency. Our conclusions regarding null 
and alternative hypotheses presuppose the idea that we could conduct the same study 
(in our case TALIS) an infinite number of times under perfectly reproducible conditions. 
Moreover, the frequentist interpretation of confidence intervals also assumes a fixed 
parameter with the confidence intervals varying over an infinitely large number of iden-
tical studies.

Epistemic probability

But there is another view of probability, and that is as subjective belief. Specifically, a 
modification of the Kolmogorov axioms was advanced by de Finetti (1974) who sug-
gested replacing the (infinite) countable additivity axiom with finite additivity and sug-
gested treating probability as subjective.2

2  A much more detailed set of axioms for subjective probability was advanced by Savage (1954).
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The use of the term subjective is perhaps unfortunate insofar as it promotes the idea 
of fuzzy, unscientific, reasoning. Lindley (2007) relates the same concern and prefers the 
term personal probability to subjective probability. Howson and Urbach (2006) adopt the 
less controversial term epistemic probability to reflect an individual’s greater or lesser 
degree of uncertainty about the problem at hand. Put another way, epistemic probability 
concerns our uncertainty about unknowns.

Bayesian inference
The goal of statistical inference is to obtain estimates of the unknown parameters which 
we denote as θ . For this paper, the unknown parameters will be regression coefficients 
relating policy relevant predictors to key outcomes in TALIS. The major difference 
between Bayesian statistical inference and frequentist statistical inference concerns the 
assumptions regarding the nature of θ . In the frequentist tradition, the assumption is that 
θ is unknown, but has a fixed value that we wish to estimate. Measures such as the stand-
ard error or the frequentist confidence interval provide an assessment of the uncertainty 
associated with hypothetical repeated sampling from a population. In Bayesian statistical 
inference, θ is also considered unknown, however, similar to the data, θ is viewed as a 
random variable possessing a prior probability distribution that encodes our assumptions 
about the true value of θ before having seen the data. For example, on the basis of prior 
studies and/or expert opinion, we may be quite certain that the value of a regression coef-
ficient of interest is positive, but uncertain about the range of values the coefficient can 
take on. In another case, we may also be quite certain about not only the sign of the effect 
but also its variation. Because both the observed data, denoted as y, and the parameters θ 
are assumed to be random variables, probability theory allows us to model the joint prob-
ability of the parameters and the data as a function of the conditional distribution of the 
data given the parameters, and the prior distribution, namely:

where p(θ , y) is the joint distribution of the parameters and the data, p(y|θ) is the dis-
tribution of the data conditional on the parameters and represents the expression of 
the model, and p(θ) is the prior distribution, again the device wherein we encode our 
assumptions about the unknown parameters before seeing the data. Bayes’ theorem 
(Bayes, 1763; Laplace, 1774) is then defined as

where p(θ |y) is referred to as the posterior distribution of the parameters θ given the 
observed data y representing our updated knowledge about the parameters of interest 
after having encountered the model and the data, and is equal to the data distribution 
p(y|θ) times the prior distribution of the parameters p(θ) normalized by p(y) so that the 
posterior distribution sums (or integrates) to one.

Prior Distributions

The general approach to considering the choice of a prior distribution on θ is based on 
how much information we believe we have prior to data collection and how precise we 

(1)p(θ , y) = p(y|θ)p(θ).

(2)p(θ |y) =
p(θ , y)

p(y)
=

p(y|θ)p(θ)

p(y)
,
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believe that information to be. The strength of Bayesian inference lies in its ability to 
incorporate our uncertainty about θ directly into our statistical models.

Non‑informative Priors

In some cases we may not be in possession of enough prior information to aid in 
drawing posterior inferences. Or, from a policy perspective, it may be prudent to not 
reveal assumptions about effects of interest ahead of time, and instead, let the data 
speak for itself. Regardless, from a Bayesian perspective, this real or assumed lack of 
information is still important to consider and incorporate into our statistical models 
(Kaplan, 2023).

The standard approach to quantifying a lack of information is to incorporate non-
informative prior distributions into our analyses. In the case in which there is no 
prior knowledge to draw from, perhaps the most extreme non-informative prior dis-
tribution that can be used is the uniform distribution ranging from −∞ to +∞ , and 
denoted as U(−∞,+∞) The uniform distribution essentially signals that we believe 
that our parameter of interest can take on an infinite number of values, each of which 
is equally likely. The problem with this particular specification of the uniform prior is 
that it is not proper insofar as the distribution does not integrate to 1.0. However, this 
does not always lead to problems, and is more of a conceptual issue. Highly diffused 
priors such as the Gaussian distribution with a mean of zero and standard deviation 
of ten, denoted as N (0, 10) , could also be used.

Weakly informative priors

Situated between non-informative and informative priors are weakly informative pri-
ors. Weakly informative priors are distributions that provide one with a method for 
incorporating less information than one actually has in a particular situation. Specify-
ing weakly informative priors can be useful for many reasons. First, it is doubtful that 
one has complete ignorance of a problem for which a non-informative prior such as the 
uniform distribution is appropriate. Rather, it is likely that one can consider a more rea-
sonable bound on the uniform prior, but without committing to much more information 
about the parameter. Second, weakly informative priors are very useful in stabilizing the 
estimates of a model, particularly in cases of small sample sizes (see, Gelman (2006)). 
Specifically, Bayesian inference can be computationally demanding, and so although 
one may have information about, say, higher level variance terms, such terms may not 
be substantively important, and/or they may be difficult to estimate, especially in small 
samples. Therefore, providing weakly informative prior information may help stabilize 
the analysis without impacting inferences.

Informative priors

Finally, it may be the case on the basis of previous research, expert opinion, or 
both, that information can be brought to bear on a problem and be systematically 
incorporated into the prior distribution. Such priors are referred to as informative. 
Informative prior distributions require that the analyst commits to the shape of the 
distribution. For example, if a parameter of interest, such as a regression coefficient is 
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assumed to have a normal prior distribution, then the analyst must commit to speci-
fying the average value and the precision around that value. Given that informative 
priors are inherently subjective in nature, they can be quite incorrect. Fortunately, 
Bayesian theory provides numerous methods for assessing the sensitivity of results 
to the choice of prior distributions (see e.g. Kaplan (2023); Depaoli et al. (2020), for a 
discussion of sensitivity to priors).

Bayesian computation in brief

As stated in the introduction, the key reason for the increased popularity of Bayesian 
methods in the social sciences has been the (re)discovery of numerical algorithms for 
estimating posterior distributions of the model parameters given the data. Prior to these 
developments, it was virtually impossible to derive summary measures of the posterior 
distribution, particularly for complex models with many parameters. The numerical 
algorithms that we will describe in this chapter involve Monte Carlo integration using 
Markov chains – also referred to as Markov chain Monte Carlo (MCMC) sampling. 
These algorithms have a rather long history, arising out of statistical physics and image 
analysis (Geman and Geman, 1984; Metropolis et al., 1953). For a nice introduction to 
the history of MCMC see Robert and Casella (2011).

Bayesian inference focuses on calculating summary statistics of the posterior distri-
bution. For very simple problems, this can be handled analytically. However for com-
plex, high-dimensional problems involving multiple integrals, the task of analytically 
obtaining summary statistics can be virtually impossible. So, rather than attempting to 
analytically solve these high dimensional problems, we can instead use well-established 
mathematical computation methods to draw samples from a target distribution of inter-
est (in our case the posterior distribution) and summarize the distribution formed by 
those samples. This is referred to as Monte Carlo integration.

Often, we direct the algorithm to sample from multiple points in the posterior distri-
bution. These are referred to as chains, and our goal is to ensure that the MCMC samples 
arising from each chain mix well and yield a good approximation to the true posterior 
distribution of each of the model parameters. In addition, the nature of MCMC algo-
rithms is to initiate dependent draws from the posterior distribution with the goal that 
over the iterations, the draws become independent. This is important for monitoring the 
so-called effective sample size of the analysis. Strong autocorrelation over the iterations 
yields draws that are not independent and hence lead to lower effective sample sizes 
on which the posterior estimates are obtained. The converse is that lower autocorrela-
tion indicates independent draws and effective sample sizes that are close to the actual 
number of draws requested of the algorithm. An approach to aiding in reducing auto-
correlation is to calculate posterior statistics based on every tth draw from the posterior 
distribution. This is called thinning.

Given the computational complexity of MCMC, it is absolutely essential for Bayesian 
inference that the convergence of the MCMC algorithm be assessed. The importance 
of assessing convergence stems from the very nature of MCMC in that it is designed to 
converge to a distribution rather than to a point estimate. Because there is not a single 
adequate assessment of convergence, it is important to inspect a variety of diagnostics 
that examine varying aspects of convergence. Among these are (a) trace plots for mixing, 
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(b) auto-correlation plots to assess independence, (c) posterior probability distribution 
(density) plots for all parameters to assess mixing and convergence, (d) potential scale 
reduction factors to assess mixing and convergence, and (e) effective sample size to 
assess independence. For this paper, we will concentrate primarily on the potential scale 
reduction factor (referred to as Rhat), and the effective sample size (referred to as n_
eff) as these two provide the most reliable information regarding the convergence of the 
algorithm.

Potential scale reduction factor

When implementing an MCMC algorithm, one of the most important diagnostics is the 
potential scale reduction factor (see, e.g., Gelman and Rubin (1992a); Gelman (1996); 
Gelman and Rubin (1992b)), often denoted as Rhat or R̂ . This diagnostic is based on 
analysis of variance and is intended to assess convergence among several parallel chains 
with varying starting values. Specifically, Gelman and Rubin (1992a) proposed a method 
where an overestimate and an underestimate of the variance of the target distribution is 
formed. The overestimate of the variance of the target distribution is measured by the 
between-chain variance and the underestimate is measured by the within-chain variance 
(Gelman, 1996). The idea is that if the ratio of these two sources of variance is equal to 1, 
then this is evidence that the chains have converged. If the R̂ > 1.01, this may be a cause 
for concern. Brooks and Gelman (1998) added an adjustment for sampling variability in 
the variance estimates and also proposed a multivariate extension of the potential scale 
reduction factor which does not include the sampling variability correction.

The R̂ diagnostic is calculated for all chains over all iterations. A problem with R̂ origi-
nally noted by Gelman et al. (2014) and further discussed in Vehtari et al. (2021) is that it 
sometimes does not detect non-stationarity, in the sense of the average or variability in 
the chains changing over the iteration history. A relatively new version of the potential 
scale reduction factor is available in Stan (Stan Development Team, 2021). This version 
is referred to as the Split R̂ , and is designed to address the problem that the conventional 
R̂ cannot reliably detect non-stationarity. The Split R̂ which quantifies the variation of a 
set of Markov chains initialized from locations points in parameter space. This is accom-
plished by splitting the chain in two and then calculating the Split R̂ on twice as many 
chains. So, if one is using four chains with 5,000 iterations per chain, the Split R̂ is based 
on eight chains with 2,500 iterations per chain.

Effective Sample Size

Related to the autocorrelation diagnostic is the effective sample size denoted as n_eff  in 
the Stan output, which is an estimate of the number of independent draws from the 
posterior distribution. In other words, it is the number of independent samples with the 
same estimation power as the T autocorrelated samples. Staying consistent with Stan 
notation, the n_eff is calculated as

where S is the total number of samples. Because the samples from the posterior distribu-
tion are not independent, we expect from Equation (3) that the n_eff will be smaller than 

(3)n_eff =
S

1+ 2
∑∞

s=1 ρ
s
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the total number of draws. If the ratio of the effective sample size to the total number of 
draws is close to 1.0, this is evidence that the algorithm has achieved mostly independ-
ent draws. Much lower values could be a cause for concern as it signals that the draws 
are not independent, but it is important to note that this ratio is highly dependent on the 
choice of MCMC algorithm, number of warmup iterations, and number of post-warmup 
iterations. As a general rule of thumb, Vehtari et al. (2021) have recommended that the 
effective sample size be greater than 400.

Summarizing the posterior distribution

Having obtained satisfactory convergence to the posterior distribution, the next step is 
to calculate point estimates and obtain relevant intervals. The expressions for point esti-
mates and intervals of the posterior distribution come from expressions of conditional 
distributions generally.

Posterior predictive checking

A very natural way of evaluating the overall quality of a model is to examine how well 
the model fits the actual data. Examples of such approaches abound in frequentist statis-
tics, often based on “badness-of-fit” measures. In the context of Bayesian statistics, the 
approach to examining how well a model fits the data is based on the notion of posterior 
predictive checking, and the accompanying posterior predictive p-value. An important 
philosophical defense of the use of posterior predictive checks can be found in Gelman 
and Shalizi (2012).

The general idea behind posterior predictive checking is that there should be little, if 
any, discrepancy between data generated by the model, and the actual data itself. Any 
deviation between the data generated from the model and the actual data implies model 
mis-specification.

In the Bayesian context, the approach to examining model fit and specification utilizes 
the posterior predictive distribution of replicated data accounting for uncertainty via 
the priors that are placed on the model parameters. Thus, posterior predictive checking 
accounts for the uncertainty in the model parameters and the uncertainty in the data.

As a means of assessing the fit of the model, posterior predictive checking implies that 
the replicated data should match the observed data quite closely if we are to conclude 
that the model fits the data. One approach to quantifying model fit in the context of pos-
terior predictive checking is to calculate the posterior predictive p-value. If the model-
generated data fit the actual data well, then any differences should be due to chance 
- meaning that the posterior p-value should be around 0.50. Any large deviations sug-
gest model misfit that could stem from model mis-specification (e.g. omitted variables, 
incorrect functional form, etc.), poorly specified priors, or both.

Interval summaries of the posterior distribution

One important consequence of viewing parameters probabilistically concerns the inter-
pretation of uncertainty intervals. Recall that the frequentist confidence interval requires 
that we imagine a fixed parameter, say the population mean µ . Then, we imagine an infi-
nite number of repeated samples from the population characterized by µ . For any given 
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sample, we can obtain the sample mean x̄ and then form a 100(1− α) % confidence inter-
val. The correct frequentist interpretation is that 100(1− α) % of the confidence intervals 
formed this way capture the true parameter µ under the null hypothesis. Notice that 
from this perspective, the probability that the parameter is in the interval is either zero 
or one.

In contrast, the Bayesian framework assumes that a parameter has a probability distri-
bution. Sampling from the posterior distribution of the model parameters, we can obtain 
its quantiles. From the quantiles, we can directly obtain the probability that a param-
eter lies within a particular interval. So, for example, a 95% posterior probability inter-
val (also referred to as a credible interval) would mean that the probability that the true 
value of the parameter lies in the interval is 0.95. Notice that this is entirely different 
from the frequentist interpretation, and arguably aligns with common sense.3

Ninety-five percent posterior probability intervals are not the only interval summaries 
that can be obtained from the posterior distribution, and a major benefit of Bayesian 
inference is that any interval of substantive importance can be obtained directly from 
the posterior distribution through simple functions available in R such as pnorm::stats 
that calculate areas under probability distributions. This is particularly noteworthy when 
trying to gauge just how much different an obtained estimated effect is from zero. That 
is, even if zero lies within the 95% credible interval, there may be a sizable difference 
between zero and the obtained effect in terms of the distribution of credible values, and 
this size may be substantively important. This is to be contrasted with the frequentist 
approach wherein if zero is in the 95% confidence interval, the effect is deemed non-sig-
nificant (at the 5% level). We present these probabilities in this paper, but it should fur-
ther be noted that the flexibility available in being able to summarize any aspect of the 
posterior distribution admits a much greater degree of nuance in the kinds of research 
questions one may ask. For our paper, we are computing the area between zero and the 
mean of the posterior distribution, which corresponds to the parameter estimate. We 
indicate that any interval can be obtained, including the difference between, say 0.10 and 
the mean of the posterior distribution. Of course, this would render a smaller probability.

Analysis of TALIS data as a Bayesian hierarchical model
A common feature of data collection in the social sciences is that units of analysis (e.g. 
students or employees) are nested in higher level organizational units (e.g. schools or 
companies, respectively). Indeed, in many instances, the substantive problem concerns 
specifically an understanding of the role that units at both levels play in explaining or 
predicting outcomes of interest. For example, the TALIS study deliberately samples 
schools (within a country) and then samples teachers within the sampled schools. Such 
data collection plans are generically referred to as clustered sampling designs. Data from 
clustered sampling designs are then collected at both levels for the purpose of under-
standing each level separately, but also to understand the inputs and processes of teacher 
and school level variables as they predict both school and teacher level outcomes. Higher 

3  Interestingly, the Bayesian interpretation is often the one incorrectly ascribed to the frequentist interpretation of the 
confidence interval.
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levels of nesting are, of course, possible, e.g. teachers nested in schools, which in turn are 
nested in local educational authorities, such as school districts.

It is probably without exaggeration to say that one of the most important contributions to 
the empirical analysis of data arising from such data collection efforts has been the devel-
opment of so-called multilevel models. Original contributions to the theory of multilevel 
modeling for the social sciences can be found in Burstein (1980); Goldstein (2011), and 
Raudenbush and Bryk (2002), among others.

The intercepts and slopes as outcomes model

For this paper, we discuss the most general form of the multilevel model - the intercepts 
and slopes as outcomes model, with an example that will be presented below. Suppose 
that interest centers on reported job satisfaction of teachers in the United States. Fol-
lowing the TALIS naming conventions, let T3JOBSAij denote reported job satisfaction of 
teacher i in school j. We may wish to model T3JOBSAij as a function of the teacher i took 
part in induction activities in school j, denoted as TT3G08ij . In the empirical example 
below. The intercepts and slopes as outcomes model can be written as

where β0j is the intercept that for school j representing the average job satisfaction score 
for the school, β1j are the regression coefficients representing the relationship between 
teacher job satisfaction and career choice which might vary over the J schools, and, rij is 
a residual term. Raudenbush and Bryk (2002) have referred to the model in Equation (4) 
as the level-1 model.

Interest in multilevel regression models stems from the fact that we can model the 
intercepts and slopes as a function of school level predictors, which we will denote as 
zj . For example, we could ask whether school average job satisfaction or the relation-
ship between school average job satisfaction and first career choice can be predicted by 
whether the school is public or private. For the TALIS reports that we are reanalyzing, 
school level effects were not included, but rather the intercepts and slopes were allowed 
to simply vary across schools without an attempt to explain the variation. In this case, 
the so-called level-2 model can be written as 

where γ00 is the grand mean of job satisfaction, γ10 the grand mean of the job satisfac-
tion and induction relationship, and u0j and u1j capture un-modeled between-school 
variation.

To express Equations (4) and (5a) - (5b) as a Bayesian hierarchical model we specify 
the following distributions for T3JOBSAij , β0j , β1j , γ00 , and γ01 . Generally, normal distri-
butions are chosen for regression coefficients because these distributions are conjugate. 
Conjugate distributions are those that when multiplied by the probability distribution of 
the data, yield posterior distributions in the same distributional family (Kaplan, 2023). 
For this model, we specify the following distributions for the regression coefficients, 

(4)T3JOBSAij = β0j + β1j(TT3G08)ij + rij ,

(5a)β0j = γ00 + u0j ,

(5b)β1j = γ10 + u1j ,



Page 13 of 36Kaplan and Harra ﻿Large-scale Assessments in Education            (2024) 12:2 	

To complete the hierarchical specification, prior distributions would need to be sup-
plied for the variance terms, σ 2

j  , τ 200 , τ
2
10 , ω

2
00 , and ω2

10 . Several reasonable choices of pri-
ors are available for the variance terms, but for this paper, we choose a non-informative 
half-Cauchy distribution because it has been shown to be computationally stable as a 
non-informative prior for variance terms (Gelman, 2006; Kaplan, 2023).

An example using TALIS
The following section discusses the specifics of how analyses were conducted for this 
paper. We begin by describing the TALIS sample and then move on to how we treat 
missing data and sampling weights.

Sample

The data used in these analyses originates from the 2018 cycle of TALIS, which includes 
48 countries and economies. TALIS focuses on teachers and school leaders in lower sec-
ondary education (ISCED Level 2). TALIS follows a stratified two-stage probability sam-
pling design. This means that teachers are randomly selected from the list of in-scope 
teachers for each of the randomly selected schools. See the TALIS Technical Report 
(Dumais and Morin, 2019) for more detail regarding the sampling strata and stratifica-
tion for the international sampling design and for national sampling designs.

Sampling weights

The use of weights is important because it allows researchers to conduct statistical anal-
yses using non-representative samples that can be mathematically corrected to better 
represent the population of interest. With a survey such as TALIS, schools are randomly 
sampled in a given country or economy, and teachers within those schools are sampled. 
These samples cannot be perfectly representative of the population of teachers in a given 
country, so the implementation of weights to counteract this is necessary.

For this study, we use the final estimation weights, denoted as TCHWGThij , which were 
drawn from the original TALIS 2018 report (Dumais and Morin, 2019). These weights 
are calculated as the product of design weights for schools, the design weight for teach-
ers, and the three adjustment factors for teachers and these weights sum to the popu-
lation of relevant teachers in the country. However, preliminary analyses revealed that 
more stable convergence of the computing algorithm could be achieved through the use 

(6a)T3JOBSAij ∼ N [β0j + β1j(TT3G08)ig , σ
2
j ],

(6b)β0j ∼ N (γ00, τ
2
00),

(6c)β1j ∼ N (γ10, τ
2
10),

(6d)γ00 ∼ N (µ00,ω
2
00),

(6e)γ10 ∼ N (µ10,ω
2
10).
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of normalized sampling weights. These normalized weights, denoted as NORMWGThij , 
were calculated for each participating teacher as the ratio of sample size n to the total 
population N multiplied by the final estimation weights TCHWGThij . The normalized 
weight can be written as

where i denotes each participating teacher for each participating school j in explicit stra-
tum h for sample size n and total population size of N. These normalized weights sum to 
the number of teachers in the sample for each country.

An important feature of the frequentist analysis of large-scale assessments is the use of 
balanced repeated replication (BRR) weights that are needed to produce unbiased esti-
mates of sampling error. It should be noted that we did not use BRR weights in this study 
because, to the best of our knowledge, there is no research examining the use of BRR 
weights in a Bayesian context, and an investigation into this problem is beyond the scope 
and purpose of this paper. The development and application of BRR weights in a Bayes-
ian context is an area for future research. For more detail on the construction and use of 
BRR weights for TALIS 2018, see Dumais and Morin (2019)

Missing data

Missing responses coded as “not reached” or responses that were otherwise omitted 
or deemed invalid were imputed using predictive mean matching (Rubin, 1986). The 
essential idea behind predictive mean matching is that missing values are imputed by 
matching the predicted values from the observed data using a predictive mean metric 
to the predicted values using regression imputation. Then, the procedure uses the actual 
observed value for the imputation. That is, for each regression, there is a predicted value 
for the missing data and also a predicted value for the observed data. The predicted value 
for the observed data is then matched to a predicted value of the missing data using, say, 
a nearest neighbor distance metric. Once the match is found, the actual observed value 
(rather than the predicted value) replaces the missing value. If more than one match is 
found, a random match is used. Predictive mean matching produces unbiased estimates 
under the assumption that the data are missing completely at random or missing at ran-
dom (Little and Rubin, 2020). This study assumes that the missing data are missing at 
random, though we recognize that this assumption may not hold and that the missing 
data may not be missing at random.

Although this process can be conducted only once to impute missing data, multiple 
draws of plausible values account for uncertainty surrounding a single imputed miss-
ing data point. The practice of multiple imputation fits in the Bayesian perspective, as 
parameters are assumed to take on a probability distribution instead of a singular fixed, 
but unknown, value. For the current paper, we analyzed the first imputed data set via 
predictive mean matching using the mice package in R (van Buuren, 2012).4

(7)NORMWGThij =
n

N
∗ TCHWGThij

4  We attempted to analyze multiply imputed data sets as per best practice but encountered problems with model con-
vergence. Additional discussion of multiple imputation is presented in Sect. Results for the analysis of teacher self-effi-
cacy, but suffice to say that the analysis of even one multiply imputed data set is better than the use of listwise deletion.
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Due to the format of the TALIS teacher survey, several questions were not logically 
applicable to a given respondent due to their answers to previous questions. These miss-
ing patterns are not easily imputable as seemingly random missing responses previously 
discussed. For example, a teacher who indicated they never participated in any induction 
activities at their current school would not answer further questions asking for details 
about what kinds of induction activities they participated in. Here, missing responses for 
the following questions specifying their participation in activities were imputed to show 
they did not participate in that specific activity. For other questions where there was not 
a logically imputed response from not applicable questions or questions that were not 
administered in certain countries, responses were excluded from the analysis.

Results for the analysis of teacher job satisfaction
All analyses used the Stan-based software program rstanarm (Goodrich et al., 2020) and 
all software code used for these analyses are available at https://​bmer.​wceruw.​org/​index.​
html. For these examples, we requested four chains with 5000 iterations per chain. The 
algorithm uses half of the iterations as warm-up, and we requested a thinning interval 
of 10. This leads to a total sample size of 1000 iterations. Appendices 1 and 2 display the 
convergence plots for the analysis of Teacher Job Satisfaction and Teacher Self-Efficacy, 
respectively, from the United States sample only. Focusing on the analysis of Teacher 
Job Satisfaction, the plots suggest some small concerns regarding convergence, but the 
Rhat and n_eff values for the United States shown in Table 1 reveal adequate evidence of 
convergence.

Our results reveal relatively poor fit to country average teacher job satisfaction with 
a posterior predictive p-value of 0.67. Similar convergence plots and posterior predic-
tive checks would be necessary for each country and for all analyses. Figure 1 displays 
the results of the regression of teacher job satisfaction on participation in any induction 
activities at a teacher’s current school, controlling for teachers’ gender and years of expe-
rience as a teacher, ordered in terms of the size of the effect, labeled on the y-axis. The 
color of the bubble represents ranges of probabilities that the true effect lies between 
zero and the estimated effect. Of course, bubble plots with other probability ranges can 
be specified based on what the analyst believes are useful to the substantive question at 
hand. Nevertheless, we believe this plot, and subsequent plots and tables, conveys the 
idea that an effect could be deemed non-significant from a frequentist point of view (i.e. 
not significantly different from zero) but that the actual difference between the obtained 
effect and zero could be quite large. Note that because the estimated effect is at the mean 
of the posterior distribution these probabilities cannot exceed 0.5 in absolute value.

We see in Fig.  1 that countries such as England (United Kingdom) and the UAE 
showed larger mean estimated effects and relatively large probabilities that the true 
effect is between zero and the estimated effect. However, note that there are coun-
tries with smaller effects that nevertheless have similarly large probabilities that the 
effect is greater than zero, such as Italy and Austria. Bubble plots are provided for all 
of the regression analyses included in Figure II.1.7 of OECD (2020) and can be found in 
Appendix 3.

https://bmer.wceruw.org/index.html
https://bmer.wceruw.org/index.html


Page 16 of 36Kaplan and Harra ﻿Large-scale Assessments in Education            (2024) 12:2 

Fi
g.

 1
 B

ub
bl

e 
pl

ot
 fo

r r
ea

na
ly

si
s 

of
 F

ig
ur

e 
II.

1.
7:

 R
eg

re
ss

io
n 

of
 te

ac
he

r j
ob

 s
at

is
fa

ct
io

n 
on

 p
ar

tic
ip

at
io

n 
in

 a
ny

 in
du

ct
io

n 
ac

tiv
iti

es
 a

t c
ur

re
nt

 s
ch

oo
l. T

he
 y

-a
xi

s 
is

 th
e 

m
ea

n 
es

tim
at

ed
 e

ffe
ct

, t
he

 x
-a

xi
s 

ar
e 

th
e 

co
un

tr
ie

s, 
an

d 
th

e 
co

lo
r o

f t
he

 b
ub

bl
es

 re
pr

es
en

t r
an

ge
s 

of
 p

ro
ba

bi
lit

ie
s 

th
at

 th
e 

eff
ec

t i
s 

di
ffe

re
nt

 fr
om

 z
er

o



Page 17 of 36Kaplan and Harra ﻿Large-scale Assessments in Education            (2024) 12:2 	

Table 1  Participation in any induction activities predicting teacher job satisfaction

a Statistically significant at 95% confidence level from the original report are indicated in bold

Country Posterior Mean (sd) 95% CI Effective 
Sample 
Size

Rhat Prob. 
|effect| 
 = 0

Original 
Resultsa

2.5% 97.5%

England (UK) 0.78 (0.21) 0.37 1.21 763 1.0 0.50 0.84
United Arab Emirates 0.70 (0.10) 0.51 0.88 1081 1.0 0.50 0.65
Singapore 0.59 (0.16) 0.27 0.92 917 1.0 0.50 0.63
Finland 0.54 (0.16) 0.23 0.88 947 1.0 0.50 0.48

CABA (Argentina) 0.53 (0.15) 0.23 0.82 955 1.0 0.50 0.54
Chile 0.51 (0.19) 0.13 0.89 943 1.0 0.50 0.44
Portugal 0.49 (0.13) 0.13 0.64 930 1.0 0.50 0.44
Australia 0.45 (0.16) 0.14 0.76 935 1.0 0.50 0.52

Korea 0.41 (0.16) 0.10 0.71 1018 1.0 0.50 0.38

Norway 0.41 (0.11) 0.17 0.62 1016 1.0 0.50 0.39
Estonia 0.40 (0.12) 0.17 0.64 971 1.0 0.50 0.38
Shanghai (China) 0.40 (0.12) 0.17 0.63 1031 1.0 0.50 0.43
Brazil 0.37 (0.13) 0.12 0.65 1072 1.0 0.50 0.46
Hungary 0.37 (0.14) 0.10 0.63 1015 1.0 0.50 0.34
Romania 0.35 (0.11) 0.14 0.56 1004 1.0 0.50 0.39
Mexico 0.34 (0.10) 0.15 0.53 1171 1.0 0.50 0.29
Czech Republic 0.33 (0.11) 0.14 0.54 954 1.0 0.50 0.36
Latvia 0.33 (0.12) 0.08 0.56 997 1.0 0.50 0.31

Belgium 0.29 (0.10) 0.09 0.49 936 1.0 0.50 0.37

Kazakhstan 0.23 (0.07) 0.10 0.36 1056 1.0 0.50 0.27
Alberta (Canada) 0.56 (0.24) 0.10 1.03 1053 1.0 0.49 0.53

South Africa 0.46 (0.19) 0.08 0.85 762 1.0 0.49 0.79
France 0.40 (0.17) 0.06 0.73 607 1.0 0.49 0.43
Sweden 0.39 (0.18) 0.03 0.73 712 1.0 0.49 0.38
Colombia 0.27 (0.12) 0.05 0.51 1074 1.0 0.49 0.26
Spain 0.22 (0.09) 0.04 0.40 960 1.0 0.49 0.31
New Zealand 0.38 (0.18) 0.02 0.73 1010 1.0 0.48 0.34
United States 0.37 (0.18) 0.03 0.72 1048 1.0 0.48 0.34
Israel 0.37 (0.17) 0.04 0.69 1056 1.0 0.48 0.27
Bulgaria 0.31 (0.15) 0.03 0.60 1021 1.0 0.48 0.25
Austria 0.20 (0.12) -0.03 0.45 1101 1.0 0.45 0.21

Italy 0.21 (0.13) -0.07 0.69 1101 1.0 0.44 0.27
Croatia 0.17 (0.13) -0.08 0.43 1016 1.0 0.40 0.21
Viet Nam 0.12 (0.10) -0.08 0.31 932 1.0 0.37 0.09
Malta 0.19 (0.21) -0.19 0.64 984 1.0 0.32 0.28

Denmark 0.15 (0.17) -0.20 0.52 1020 1.0 0.31 0.27
Netherlands 0.12 (0,15) -0.17 0.32 1073 1.0 0.29 0.13
Saudi Arabia 0.15 (0.20) -0.23 0.54 986 1.0 0.28 0.40
Japan 0.12 (0.15) -0.17 0.42 903 1.0 0.28 0.13

Georgia 0.11 (0.18) -0.22 0.46 990 1.0 0.23 0.08
Slovak Republic 0.06 (0.11) -0.16 0.27 963 1.0 0.19 0.10
Slovenia 0.06 (0.14) -0.20 0.33 1055 1.0 0.18 0.04
Lithuania 0.24 (0.10) 0.04 0.44 1094 1.0 0.16 0.26
Türkiye 0.07 (0.16) -0.25 0.38 1030 1.0 0.15 0.13
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These bubble plots are designed to provide quick glance at the results. More detailed 
results including the 95% posterior probability interval and the precise probability 
that the true effect of interest is between zero and the estimated effect can be found in 
Table 1, where we also present the results of the least-squares regression from OECD 
(2020).

An inspection of Table 1 reveals that for most countries, the effective sample size is 
nearly 1000 indicating low auto-correlation. In addition, the Rhat values are 1.0, indi-
cating convergence of the algorithm. Further inspection of Table 1 provides insight into 
one of the main advantages of using Bayesian methods for the analysis and reporting of 
ILSA data, namely the capacity to examine the entire posterior distribution of the effect. 
Take, for example, Austria and Georgia. For Austria, we observe that zero is in the cred-
ible interval and its frequentist p-value also indicates that the effect is not statistically 
significant. Yet, the probability that the true effect is between zero and the estimated is 
0.45. So, the p-value (and the frequentist confidence interval) would lead to a single deci-
sion of non-significance, and the credible interval would indicate that the zero is a plau-
sible value. However, because we have the whole posterior distribution to work with, the 
actual probability of the true effect lying between zero and the estimated effect is 0.45. 
Contrast this with Georgia where zero is in the credible interval but the effect is deemed 
statistically significant. However, the actual probability that the true effect is between 
zero and the estimated effect is 0.23. Of course, these interpretations require substantive 
justification, which would not be possible given the binary (significant/non-significant) 
decision framework of null hypothesis significance testing.

Results for the analysis of teacher self‑efficacy
Appendix 2 displays the convergence diagnostic plots for the analysis of Teacher Self-
Efficacy for the United States. As with the analysis of Teacher Job Satisfaction, the analy-
ses of Teacher Self-Efficacy also shows some issues of convergence, however, the Rhat 
and n_eff shown in Table 2 indicate that convergence has been achieved. Again, on the 
basis of the posterior predictive p-value of 0.23, the model shows quite poor prediction 
of the United States average teacher self-efficacy.

Figure 2 depicts the relationship between induction participation at a teacher’s current 
school and teacher self-efficacy, controlling for teachers’ gender and years of experience 
as a teacher. More detailed results can be found in Table 2.

An inspection of Table 2 also reveals that for most countries, the effective sample size 
is nearly 1000 indicating low auto-correlation. In addition, the Rhat values are 1.0, indi-
cating convergence of the algorithm. Substantive interpretations for Table 2 follow the 
same logic as those discussed above for Table 1. Take, for example, Sweden. Here we find 
that zero is in the 95% credible interval and it is not statistically significant based on the 
frequentist p-value. However, the estimated probability that the true effect lies between 
zero and the estimated effect is 0.40. Again, this type of nuanced interpretation of the 
results is only possible via Bayesian inference. Bubble plots for the remaining analyses 
for Teacher Self-Efficacy can be found in Appendix 4.
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Table 2  Participation in any induction activities predicting teacher self-efficacy

a Statistically significant values are indicated in bold

Country Posterior Mean (sd) 95% CI Effective 
Sample 
Size

Rhat Prob. 
|effect| 
 = 0

Original Resultsa

2.5% 97.5%

United Arab Emirates 0.49 (0.09) 0.33 0.66 959 1.0 0.50 0.48
CABA (Argentina) 0.47 (0.17) 0.13 0.77 900 1.0 0.50 0.40
Spain 0.40 (0.09) 0.24 0.56 794 1.0 0.50 0.39
Romania 0.34 (0.13) 0.10 0.59 1007 1.0 0.50 0.37
Chile 0.41 (0.18) 0.05 0.75 961 1.0 0.49 0.39
Latvia 0.30 (0.12) 0.06 0.55 1047 1.0 0.49 0.29
Czech Republic 0.25 (0.09) 0.09 0.43 855 1.0 0.49 0.27
Croatia 0.24 (0.10) 0.04 0.45 1063 1.0 0.49 0.27
Colombia 0.23 (0.10) 0.02 0.43 1184 1.0 0.49 0.10

Hungary 0.23 (0.10) 0.04 0.43 1006 1.0 0.49 0.24
Kazakhstan 0.20 (0.09) 0.02 0.36 941 1.0 0.49 0.28
England (UK) 0.36 (0.18) 0.02 0.71 845 1.0 0.48 0.36
Estonia 0.25 (0.12) 0.01 0.49 996 1.0 0.48 0.28
Belgium 0.19 (0.09) 0.02 0.38 801 1.0 0.48 0.28
Saudi Arabia 0.36 (0.19) -0.01 0.73 1054 1.0 0.47 0.53
Shanghai (China) 0.31 (0.16) 0.01 0.62 1060 1.0 0.47 0.31
Türkiye 0.27 (0.14) 0.01 0.48 814 1.0 0.47 0.23

Netherlands 0.22 (0.13) -0.03 0.47 934 1.0 0.46 0.24
Italy 0.20 (0.11) -0.01 0.40 883 1.0 0.47 0.21
France 0.25 (0.16) -0.07 0.56 1069 1.0 0.44 0.37
Finland 0.23 (0.14) -0.03 0.50 1084 1.0 0.46 0.25
Mexico 0.20 (0.12) -0.03 0.44 1000 1.0 0.46 0.22
Portugal 0.12 (0.08) -0.04 0.26 996 1.0 0.44 0.12
Brazil 0.20 (0.14) -0.07 0.47 921 1.0 0.43 0.18
Sweden 0.19 (0.15) -0.11 0.48 1044 1.0 0.40 0.14

Slovenia 0.17 (0.14) -0.09 0.43 1013 1.0 0.40 0.17

Japan -0.18 (0.14) -0.46 0.09 932 1.0 0.40 -0.08

Singapore -0.26 (0.20) -0.68 0.14 1090 1.0 0.40 -0.19

Australia 0.15 (0.13) -0.10 0.41 1057 1.0 0.37 0.13

Viet Nam 0.14 (0.12) -0.09 0.37 997 1.0 0.37 0.24
South Africa 0.19 (0.18) -0.15 0.56 1071 1.0 0.35 0.01

Israel 0.17 (0.17) -0.19 0.53 1094 1.0 0.33 0.24

Slovak Republic 0.11 (0.12) -0.13 0.36 973 1.0 0.32 0.14

Denmark 0.10 (0.12) -0.13 0.32 838 1.0 0.30 0.08

Lithuania 0.10 (0.12) -0.13 0.34 917 1.0 0.29 0.13

Korea 0.12 (0.17) -0.22 0.44 914 1.0 0.27 0.10

Austria -0.08 (0.11) -0.29 0.14 1045 1.0 0.26 -0.07

Georgia 0.16 (0.23) -0.29 0.57 863 1.0 0.25 0.03

Norway -0.04 (0.08) -0.18 0.12 954 1.0 0.20 -0.04

Alberta (Canada) 0.09 (0.21) -0.29 0.51 891 1.0 0.18 0.03

Malta 0.08 (0.20) -0.32 0.48 946 1.0 0.16 0.21

New Zealand -0.06 (0.17) -0.38 0.28 1057 1.0 0.14 0.03

United States -0.04 (0.15) -0.32 0.24 1024 1.0 0.10 -0.22

Bulgaria -0.01 (0.11) -0.23 0.22 930 1.0 0.03 -0.07
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A proposed Bayesian workflow for ILSA analyses
Our analyses of teacher job satisfaction and teacher self-efficacy in Sects. An example 
using TALIS and Results for the analysis of teacher job satisfaction, respectively, suggest 
a possible workflow for a Bayesian analysis of large-scale educational data utilizing non-
informative or weakly informative priors. Our proposed workflow follows one proposed 
by (Kaplan (2023), Chapter 12), but of course, other workflows are possible depending 
on the extent of detail desired in reporting research results (Gelman et al., 2020). Moreo-
ver, there are certain similarities between the steps of this workflow and the steps that 
could be followed in a frequentist analysis of the same data. Fig 3.

The steps of our workflow are as follows. 

1.	 Specify the outcome and set of predictors of interest, taking special care to note the 
assumptions regarding the distribution of the outcome - e.g. is the outcome assumed 
to be normally distributed, or does the outcome perhaps follow some type of non-
normal distribution such as the logistic or Poisson distribution. Specifying simple 
Bayesian models for the moments of the distribution (e.g. mean and variance) and 
examining the sensitivity of different prior choices can be quite useful and provide 
a sense of the probability model that generated the outcome. For this paper, the out-
come variables are composite scales and were treated as normally distributed.

2.	 Specify the functional form of the relationship between the outcome and the predictors. 
For the analysis of ILSA data generally, this will most likely be a type of linear or general-
ized linear model, but more complex models are, of course, possible. Because this paper is 
styled to represent the analyses that were conveyed in the original TALIS reports, we uti-
lized linear models, treating each predictor separately. As discussed above, we fully rec-
ognize the biases that might occur in treating the predictors separately, but it is beyond 
the scope of this paper to develop a full predictive model of the outcomes of interest. As 
an aside, it is important to note that there may be more than one model that could have 
plausibly generated the data. Keeping the problem of model uncertainty in the back of 
one’s mind is quite important depending on the goals of the analysis. We discuss the issue 
of model uncertainty in the Conclusions section of the paper.

3.	 Take note of the complexities of the data structure - e.g. are the data generated from 
a clustered sampling design? Are there sampling weights? Accounting for the com-
plexities of the data structure can be handled by careful specification of a Bayesian 
hierarchical model. The use of sampling weights can be easily incorporated in Stan-
based programs such as rstanarm (Goodrich et al., 2020) and brms (Bürkner, 2017). 
It is furthermore critical to appropriately handle missing data. The original TALIS 
report used listwise deletion, which, as noted earlier, rests on the strict assumption 
that the missing data are missing-completely-at-random, and can result in a substan-
tial loss of data and statistical power. The state-of-the-art for handling missing data 
rests on some form of multiple imputation (Rubin, 1987), and for this study, we used 
multiple imputation under predictive mean matching, though other choices are avail-
able. Because we encountered some convergence problems we decided to use the first 
imputed data set under predictive mean matching. Also, we did not account for the 
multilevel nature of the data, and admittedly, this could induce some biases in our 
results. Additionally, it should be pointed out that another legitimate approach to 
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handling multiply imputed data sets in a Bayesian analysis was proposed by Zhou and 
Reiter (2010) who recommended analyzing each imputed data set separately and then 
mixing and summarizing the posterior draws. They find this approach to yield less 
biased parameter estimates than averaging the parameter estimates.

4.	 Decide on the prior distributions for all parameters in the model. These priors will be 
either non-informative, weakly informative, informative, or a mix of all three. Again, the 
differences amongst these types of priors is discussed in Sect. Preliminaries on Bayesian 
inference. In the case of policy-oriented reports such as the TALIS reports, it may be 
desirable to employ non-informative or weakly-informative priors. In the former case, 
non-informative priors do not have the potential of reflecting the researcher’s personal 
opinions and instead let the data speak. The latter case of weakly-informative priors can 
be used to help stabilize computations, but do not contain very much additional infor-
mation. Because the goal of the present paper is to mimic the reporting of a policy-rele-
vant report on TALIS, we utilized non-informative or weakly-informative priors.

5.	 After running the analysis, it is essential that the convergence criteria of the algo-
rithm be checked. The basics of Bayesian computation, along with convergence 
criteria can be found in Kaplan (2023) and was discussed in Sect. Preliminaries on 
Bayesian inference. Note that results cannot be communicated unless there is over-
whelming evidence from a variety of diagnostics that the algorithm converged. There 
are instances, however, where there may be contradictory evidence of convergence. 
For example, trace plots may appear fine, but Rhat values may be somewhat prob-
lematic. All attempts should be made to improve these diagnostics before communi-
cating the results. In most cases, if the effective sample size and Rhat values are rea-
sonable, then one can proceed with communicating the results. This is because these 
diagnostics together capture autocorrelation, mixing, and trend in the iterations.

6.	 Given evidence of computational convergence, and with the results in hand, poste-
rior predictive checking is a necessary step in the Bayesian workflow. Posterior pre-
dictive checks can be set up to gauge overall model fit, but depending on goals of 
the analysis, specific posterior predictive checks can be provided regarding fit of spe-
cific aspects of the posterior predictive distribution. Two examples include assessing 
whether the model fits the variance of the distribution, or whether the model fits 
specific quantiles of the distribution such as extreme values.

7.	 Following posterior predictive checks, a full description of the posterior distributions 
of the model parameters would be provided, including the mean, standard deviation, 
and posterior intervals of interest. Additional posterior intervals of substantive inter-
est should be provided, such as the probability that the effect is greater than (or less 
than, if negative) zero, or the probability that the effect lies between two values of 
substantive importance. For this paper, we provided probabilities the true effect is 
between zero and the estimated posterior mean.

8.	 Sensitivity analyses should be conducted, examining the impact of the choice of pri-
ors on the substantive results. Other choices of priors can include simple comparing 
the findings to the case where all priors are non-informative, or to the case where 
very small changes to the mean and variance of the prior distributions are made. 
Note again, that with large sample sizes such as those encountered in this paper, it is 
likely that results will be robust to reasonable alternative prior distributions.
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9.	 Finally, though it was not discussed in this paper, it may be important to examine model 
uncertainty. Addressing model uncertainty is particularly crucial if the goal of an analysis 
is to develop a model with optimal predictive performance, perhaps to be used for fore-
casting trends. One might also wish to investigate the extent of model uncertainty if the 
analyst is specifying a number of different models. See Kaplan (2021) for more detail about 
addressing model uncertainty with examples from large-scale educational assessments.

Conclusion
It is beyond the scope this paper to list all of the advantages of Bayesian methods over 
frequentist methods. A broader list of advantages can be found in Kaplan (2023) and 
Wagenmakers et al. (2008), however we list a set of important advantages which have 
immediate relevance to this paper, and to the analysis and reporting of ILSAs generally.

Summarizing the Bayesian advantage

1.	 Bayesian inference is the only paradigm of statistics that allows for the quantifica-
tion of epistemic uncertainty - that is, uncertainty regarding our knowledge about 
unknown parameters. This form of uncertainty is not only present in our knowledge 
of the parameters of interest, but also in the very models that are used to estimate 
those parameters. Central to Bayesian theory and practice is that the posterior prob-
ability intervals around parameter estimates are more accurate in the sense that these 
intervals will accurately reflect epistemic uncertainty, particularly in small sample 
size cases, and they will be similar to frequentist confidence intervals (though with 
an entirely different interpretation) in large sample size cases. Bayesian models will 
also demonstrate better predictive performance than frequentist models by account-
ing for uncertainty in both the parameters of models and the choice of models them-
selves, they are better calibrated to reality (Dawid, 1982; Kaplan, 2021).

2.	 Bayesian inference provides posterior predictive checks, which allow one to examine 
the fit of the model with reference to its predictive performance. For the two exam-
ples in this paper, evidence for good predictive fit was lacking, which suggests that 
one should proceed with caution in interpreting the results. In the context of our 
analyses, this result is not surprising insofar as each predictor was taken one-at-a-
time, and the regression model was no-doubt highly misspecified. Nevertheless, pos-
terior predictive checking is an integral part of any Bayesian workflow.

3.	 In large samples, Bayesian approaches and frequentist approaches will converge to 
very similar values, though their interpretations are different. As noted above, fre-
quentist parameters are treated as fixed and only uncertainty due to sampling vari-
ability can be estimated through reference to the estimate’s standard error. Bayesian 
estimates are interpreted probabilistically, and this, arguably, provides a much richer 
interpretation than the simple decision of whether a parameter estimate is statisti-
cally significant or not. For this paper, we highlighted how Bayesian estimates provide 
interesting probabilistic interpretations as we proceeded through the results.

4.	 Related to the third point, perhaps the major advantage of Bayesian inference of rel-
evance to the analysis and reporting of ILSA data is that the analyst can summarize 
the entire posterior distribution of the effect - a consequence of treating parame-
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ters as random. Thus, not only can one provide, say, a 95% posterior interval for the 
effect, but, indeed, any interval of interest. In our analysis, we examined the probabil-
ity that the estimated effect is different from zero. Additionally, we might wish to cal-
culate the probability that the true effect lies between any two substantively impor-
tant intervals. It is important to note that this kind of analysis is simply not possible 
in a frequentist setting.

To conclude, this paper suggests an alternative approach to the analysis and reporting of 
TALIS data with relevance to other ILSAs. We attempted to stay close to the reporting 
style in OECD (2020) while at the same time demonstrating key differences between the 
conventional significance testing approach in OECD (2020) and the Bayesian alternative. 
Adopting the Bayesian alternative to analysis and reporting of TALIS, and ILSAs more 
generally, is not without some cost; perhaps most importantly considerable thought 
would need to be given regarding what constitutes substantively important effects. We 
recognize that this task is very difficult but we maintain that it is still more beneficial to 
policy than simply providing an “up/down” significance test. Finally, we strongly recom-
mend that additional consideration be given to predictive modeling described above.

Appendix 1 Convergence plots for the analysis of teacher job satisfaction: 
United States
See Figs. 3, 4, 5 and 6.

Fig. 3  Trace plots for the model predicting teacher job satisfaction by participation in any induction activities 
at current school. United States sample. These plots should exhibit a clear rectangular horizontal band over 
the x-axis. These plots show some problems with the mixing of the chains
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Fig. 4  Autocorrelation plots for the model predicting teacher job satisfaction by participation in 
any induction activities at current school. United States sample. These plots should show a very 
high auto-correlation at the first lag and very small auto-correlations thereafter. These plots very low 
autocorrelation signifying independent draws from the posterior distributions
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Fig. 5  Posterior probability distribution (density) plots for the model predicting teacher job satisfaction by 
participation in any induction activities at current school. United States sample. The plots for the regression 
coefficients and correlations should exhibit more or less a bell-shaped curve while the plot for the variance 
terms should exhibit a long tail and are bounded below at zero. We note some small problems with the 
correlation between the error terms of the intercept and slope equations, Sigma[idschool:induction,(Interc
ept)]
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Appendix 2 Convergence plots for the analysis of teacher self‑efficacy: United 
States
See Figs. 7, 8, 9 and 10.

Fig. 6  Posterior predictive check plots for the model predicting teacher job satisfaction by participation 
in any induction activities at current school ( p = .65 ). United States sample. This plot should exhibit a 
bell-shaped curve with the test-statistic for the data (denoted by the solid black line) positioned at the center 
of the distribution (0.50), indicating excellent fit to the mean of teacher job satisfaction. We find some misfit 
to the mean of teacher job satisfaction

Fig. 7  Trace plots for the model predicting teacher self-efficacy by participation in any induction activities at 
current school.United States sample. These plots should exhibit a clear rectangular horizontal band over the 
x-axis. These plots show some problems with the mixing of the chains
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Fig. 8  Autocorrelation plots for the model predicting teacher self-efficacy by participation in any induction 
activities at current school. United States sample. These plots should show a very high auto-correlation 
at the first lag and very small auto-correlations thereafter. These plots very low autocorrelation signifying 
independent draws from the posterior distributions
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Fig. 9  Posterior probability distribution (density) plots for the model predicting teacher self-efficacy by 
participation in any induction activities at current school. United States sample. The plots for the regression 
coefficients and correlations should exhibit more or less a bell-shaped curve while the plot for the variance 
terms should exhibit a long tail and will be bounded below at zero. The posterior distribution of the effect 
associated with t3jobsaij is not as symmetric as desired. This could be improved by increasing the number 
of MCMC iterations. We also note that the correlation between the error terms of the intercept and slope 
equations, Sigma[idschool:induction,(Intercept)], is very small

Fig. 10  Posterior predictive check plots for the model predicting teacher self-efficacy by participation in any 
induction activities at current school ( p = .20 ). United States sample. This plot should exhibit a bell-shaped 
curve with the test-statistic for the data (denoted by the solid black line) positioned at the center of the 
distribution (0.50), indicating excellent fit to the mean of teacher self-efficacy. We find that the model does 
not fit the mean very well
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Appendix 3 Results for teacher job satisfaction
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Appendix 4 Results for teacher self‑efficacy
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