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Background
The reporting of effect sizes in quantitative research lends interpretability and practical 
significance to findings and provides comparability across studies (Kelley and Preacher 
2012). Further, providing effect sizes in a study can aid future researchers in conduct-
ing meta-analysis to synthesize findings from multiple studies (Denson and Seltzer 2011) 
and power analysis to plan future studies (Kelley and Preacher 2012). Effect size has 
been defined in various ways, but recent work considers it “a quantitative reflection of 
the magnitude of some phenomenon that is used for the purpose of addressing a ques-
tion of interest” (Kelley and Preacher 2012). More specifically, measures of effect size 
can broadly be categorized as either measures of variance explained (Tabachnick and 
Fidell 2007) or measures of standardized effect size (Snijders and Bosker 2012).

Because of these important benefits, organizations such as the American Psycho-
logical Association (APA) and American Educational Research Association (AERA) 
are moving toward stronger language requiring the reporting of effect sizes (Kelley 
and Preacher 2012; Peng and Chen 2013). Many educational and psychological jour-
nals are also following suit in requiring effect sizes in tandem with a de-emphasis on 
null hypothesis significance testing (NHST; Kelley and Preacher 2012). In response to 
these guidelines, researchers have found that the prevalence of effect size reporting has 
increased, although there is room for improvement in both prevalence as well as quality 
of reporting (Peng and Chen 2013). Although the importance and usefulness of effect 
size reporting is clear, guidance regarding effect size measures for multilevel models is 
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scarce. Further, multilevel models may be particularly relevant in cross-cultural edu-
cational research using international datasets due to the nesting of data (i.e. students 
within schools within countries, etc.).

This paper provides guidance regarding choice and interpretation of effect size meas-
ures for multilevel models. A demonstration using large-scale survey data is provided 
for each topic. Assessing effect size for random effects is demonstrated using the ICC. 
Following this, assessing effect size for fixed effects is demonstrated using standard-
ized regression coefficients and f2. Lastly, complexities associated with additional topics, 
including three-level models, R2 as a measure of variance explained, and models with 
random slopes will be explored.

Example analysis
An example is provided based on a multilevel model estimated from IEA’s Trends in 
International Mathematics and Science Study (TIMSS) 2011 fourth grade mathematics 
data. Note that although efforts were made to ensure the data and models estimated are 
substantively relevant and realistic, this applied analysis is primarily for demonstration 
purposes. Ten countries were randomly selected (Bahrain, Czech Republic, Denmark, 
Iran, New Zealand, Norway, Slovak Republic, Spain, Sweden, Tunisia) and used as the 
level-2 unit. All data preparation and analysis was done in R (R Core Team 2014) and 
multilevel models were estimated with the lme4 package (Bates et al. 2015) unless speci-
fied otherwise. R syntax for each model is provided in the appendix.

The unit of analysis is students (level 1) and the nesting variable is country (level 2). 
The sample included a total of 46,475 students nested within 10 countries. The largest 
country sample size was 5760 and smallest was 3121 with an average country size of 
4648. In addition, demonstrations involving 3-level models included school membership 
as a level. The sample included 1817 schools. The largest within-school sample size was 
93 and the smallest was 2 with an average school size of 25.6. Missing data was addressed 
with default listwise deletion resulting in a final analytic sample of 44,800 students.

The outcome variable is mathematics achievement. TIMSS provides five plausible val-
ues, which are multiple imputations of the latent construct (Wu 2005), for this variable. 
Only the first plausible value was used for analysis (ASMMAT01). Using only one plausi-
ble value is not preferred compared to using all five plausible value (Rogers and Stoeckel 
2008); however, since using only one plausible value has been shown to typically recover 
population parameters (Rogers and Stoeckel 2008; Wu 2005) and since the present anal-
ysis is primarily for demonstration purposes, use of only one plausible is used simply 
to avoid overwhelming the reader with many new topics at once. Further, it should be 
noted that it is inappropriate to use an average of plausible values for analysis, which 
was therefore not done in the present analysis (Rogers and Stoeckel 2008). The mean for 
math achievement was 475.18 and the standard deviation was 93.77.

Independent variables include Female (ITSEX; recoded 0 = boy, 1 = girl); whether the 
student has an internet connection at home (ASBG05E; recoded 0 = no, 1 = yes); and the 
students’ confidence with math (ASBGSCM, continuous). Overall, the sample was 50% 
female and 78% of students had an internet connection at home. The mean confidence 
value was 10.1 and standard deviation was 1.92, although this variable was standardized 
for most analyses.
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For this analysis, the following random intercept models were estimated:

where Mathij is the outcome for student i within country j; β0 is the intercept; u0j is ran-
dom error at level 2 with estimated variance τ2; eij is random error at level 1 with esti-
mated variance σ2; all other β are slope coefficients.

Although a detailed description of sufficient sample size for multilevel modeling is 
beyond the scope of this paper, it should be briefly mentioned that researchers differ in 
their recommendations. For example, one rule of thumb, the 30/30 rule recommends 
a minimum of 30 groups, with at least 30 members in each group (Hox 2010) whereas 
other researchers suggest that with as few as 10 groups, modeling with random rather 
than fixed effects is appropriate (Snijders and Bosker 2012). Another simulation study 
specifically recommends at least 50 groups to avoid bias is certain parameter estimates 
(Maas and Hox 2005). Ten groups were used for the present study, consistent with 
researcher recommendations (Snijders and Bosker 2012). The primary purpose of analy-
ses in the present study is demonstration; however, applied researchers should be cogni-
zant of differences in the probability of biased parameter estimates and standard errors 
at various sample sizes.

Random effects
With a multilevel model, the intercept is allowed to vary for each level 2 unit. Within the 
unconditional model (Eq. 1), the intercept represents the mean math achievement value 
and the model serves to partition the variance between level 1 and level 2 units. The 
results can be summarized by the intraclass correlation coefficient (ICC) given as:

where τ2 is the between-cluster variance (variance of  u0j) and σ2 is the within-cluster var-
iance (variance of  eij; Snijders and Bosker 2012). The ICC can be interpreted as the pro-
portion of variance in the outcome accounted for by the level 2 unit (cluster) membership 
(Hox 2010; Kirk 2013; Snijders and Bosker 2012) and represents a measure of strength 
of association (Kirk 2013) since it represents a proportion of variance. In addition, the 
ICC can be interpreted as the expected correlation between two randomly drawn level 1 
units within a given randomly drawn level 2 unit (Hox 2010; Snijders and Bosker 2012) 
and since the magnitude of this measure can be interpreted in the same way as a correla-
tion coefficient, it represents an effect size index (Snijders and Bosker 2012). The ICC 
can be interpreted in the context of previous research findings. For example, Hedges and 
Hedberg (2007) report the average ICC for K-12 academic achievement is about 0.22 for 
students nested within schools. Although the present demonstration considers students 
nested within countries and the comparison with ICC = 0.22 may not be particularly 

(1)Mathij = β0 + u0j + εij

(2)
Mathij = β0 + β1 ∗ Femaleij + β2 ∗ Internetij + β3 ∗ Confidenceij + u0j + εij

(3)ICC =
τ 2

τ 2 + σ 2
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helpful; for studies examining achievement of students within schools within the United 
States, this type of reference may be a useful point of comparison.

For the example analysis, the ICC was 0.27 (computed from Eq. 3 based on estimates 
from Eq. 1) indicating that the proportion of variance in math scores explained by coun-
try membership is 0.27. It is unclear what a typical ICC for achievement might be when 
considering nesting of students within countries, but understanding the extent to which 
countries differ may be an important first step for further investigating differences in 
academic achievement between countries.

Fixed effects
Fixed effects, such as intercept or slope coefficients, depend on the scale of the inde-
pendent variable, and so are not comparable across studies or among multiple variables 
within a single study. Some researchers suggest Cohen’s d, which is a measure of the 
standardized mean difference between two categories in a binary variable, as a meas-
ure of effect size for a binary covariate in a multilevel model (Snijders and Bosker 2012; 
Spybrook 2008) and by analogy, one could imagine representing the effect size for a con-
tinuous covariate as the correlation between that covariate and the outcome variable (for 
example, between confidence and math achievement in the TIMSS example). However, 
if Cohen’s d or a bivariate correlation coefficient were to be simply computed (i.e. based 
on the one-level model with no covariates), it would not be recommended as an effect 
size measure since it represents the relationship between the two variables without con-
trolling for level-2 unit membership and other associated covariates.

Instead, the standardized coefficients can be used (Ferron et  al. 2008; Snijders and 
Bosker 2012). These can be obtained by standardizing (i.e. M = 0; SD = 1) each variable 
before analysis (Ferron et  al. 2008) or by standardizing each regression coefficient by 
multiplying it by the standard deviation of X and dividing by the standard deviation of Y 
(Snijders and Bosker 2012).

For the example analysis, Eq.  2 was estimated, and the standardized coefficient for 
Female is 0.004 (p > 0.05); for Internet is 0.186 (p < 0.05) and for Confidence is 0.262 
(p < 0.05). This indicates that the coefficient for Female is not significantly different from 
zero; that one standard deviation increase in the Internet variable is related to 0.186 
expected standard deviations increase in math achievement; and that one standard devi-
ation increase in the Confidence variable is related to 0.262 expected standard devia-
tions increase in math achievement, controlling for associated covariates.

Although these measures are now comparable, the interpretation for binary covari-
ates, such as Female, may still be somewhat difficult; instead, the researcher can dummy 
code the binary covariate and standardize the outcome variable resulting in partially 
standardized coefficients. For the example analysis, this results in a coefficient of 0.008 
(p > 0.05) for Female and 0.45 (p < 0.05) for Internet indicating that females are not sig-
nificantly different from males on math achievement, when controlling for associ-
ated measures, and that students with internet connection are expected on average to 
score 0.45 standard deviations higher on math achievement, controlling for associated 
measures.

Both standardized and partially standardized coefficients provide information about 
the magnitude of the effect (after controlling for other covariates and nesting) and these 
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measures are generally comparable amongst themselves and across studies with simi-
lar populations (and analogously similar analytic samples). One limitation is that these 
measures are dependent on the sample standard deviation of each variable, which will 
be particular to the given sample, and may vary from sample to sample. When work-
ing with large samples however, this sampling variability, or sample to sample variation, 
should be quite small meaning that comparability should typically not be a problem.

Another possibility for effect size of a given fixed effect is (Aiken and West 1991):

where R2
2
 represents the variance explained for a model with the given effect and R2

1
 

represents the variance explained for a model without the given effect and the measure 
can be interpreted as the proportion of variance explained by the given effect relative 
to the proportion of outcome variance unexplained (Aiken and West 1991) and is con-
sidered small at a value of 0.02, medium at a value of 0.15, and large at a value of 0.35 
(Cohen 1992). In the present example, f2 for Confidence is 0.07; for Internet is 0.14; and 
for Female is < 0.01, indicating a small-medium effect, a medium effect, and a negligible 
effect, respectively. These results indicate that confidence explains about 7% of the vari-
ance in math scores relative to unexplained variance and internet access explains about 
14% of variance in math scores relative to unexplained variance. Note that computation 
of R2 is covered in a proceeding section of the present study.

Variance explained
Variance explained for a multilevel model is more complex compared with a single level 
model, since there are now multiple residual terms. A formula for R2 specific to mul-
tilevel models is provided by Snijders and Bosker (2012) and represents proportional 
reduction in prediction error at the individual level:

where σ 2
F  represents the level-one random error variance (variance of eij) for the full 

model (i.e. the model of interest); τ 2F  represents the level-two random error variance 
(variance of u0j) for the full model; σ 2

E represents the level-one random error variance for 
the empty model; and τ 2E represents the level-two random error variance for the empty 
model.

In the present study, variance components based on the empty model (Eq. 1) and the 
full model (Eq.  2) were estimated and used to compute R2 = 0.19 which can be inter-
preted as the proportion of variance in math achievement explained by the covariates 
(female, internet, confidence). The effect size measure related to variance explained for 
the overall model is f2 which can be computed as (Cohen 1992):

(4)f 2 =
R2
2
− R2

1

1− R2
2

(5)R2
= 1−

σ 2
F + τ 2F

σ 2
E + τ 2E

(6)f 2 =
R2

1− R2
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In the present study, f2 = 0.23 for the overall model indicating female, internet access, 
and confidence explain 23% of variance in math achievement relative to the unexplained 
variance in math achievement. Guidelines for interpretation of f2 indicate that 0.02 is a 
small effect, 0.15 is a medium effect, and 0.35 is a large effect (Cohen 1992), indicating 
that the present effect is medium to large.

Three‑level models
Three-level random intercept models include an additional hierarchically nested level 
(Snijders and Bosker 2012). In the present example, another level for school membership 
is added, implying a structure of students nested within schools nested within countries. 
Effect size measures for fixed effects used with a standard two-level multilevel model 
can be used analogously in a three-level model. The three-level model, however, implies 
additional random effects, so although ICC can still be used as an effect size measure, 
multiple different ICC statistics are defined for this model. The empty model can now be 
defined in the present example as:

For student i within school j within country k where β0 is the overall intercept, and 
the remaining terms are random error terms at the country, school, and individual lev-
els respectively such that Var(v00k) = φ2, Var(u0jk) = τ2, Var(eijk) = σ2. Note that while the 
standard two-level model partitions variance between level 1 and level 2, the present 
model is an extension of this where the total variance is partitioned among three levels. 
Three ICC measures can now be defined as follows (Hox 2010):

In the present example with a random effect for school membership added, there are 
46,475 students nested within 1817 schools nested within 10 countries. Based on ran-
dom effect estimates from the empty model (Eq. 7: φ2 = 2376; τ2 = 1906; σ2 = 4778), all 
three ICC values were computed as measures of effect size for random effects. Results 
indicate that ICC at level 3 (Eq. 8) is 0.26, the first version of ICC at level 2 (Eq. 9) is 0.21 
and the second version of ICC at level 2 (Eq. 10) is 0.47. Each of these three measures 
provides different information and is interpreted in a different way. The present results 
indicate that 26% of variance in math scores is accounted at the country level, 21% is 
accounted at the school level; and 47% at the level of schools nested within countries.

(7)Mathijk = β0 + v00k + u0jk + εijk .

(8)ICC, L3 =
φ2

φ2 + τ 2 + σ 2

(9)ICC, L2.1 =
τ 2

φ2 + τ 2 + σ 2

(10)ICC, L2.2 =
τ 2 + φ2

φ2 + τ 2 + σ 2
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Random slopes
The multilevel model implies the addition of a random effect to allow the intercept to 
vary randomly by level 2 unit (this describes the random intercept model that has been 
examined thus far). Additionally, this model can further be generalized to allow the 
slope for a given level 1 covariate to vary randomly by level 2 unit resulting in a random 
slopes model (Snijders and Bosker 2012). This model could be thought of as including 
an interaction effect between the level 1 covariate and the random effect (level 2 unit).
In the present analysis, a random slope for Internet was added, and all predictors were 
standardized (M = 0, SD = 1) for ease of interpretation, resulting in the following model:

Four random effects will be estimated: Var(eij) = σ2; Var(U0j) = τ0
2; Var(U1j) = τ1

2; 
Cov(U0j, U1j) = τ01. Interpretation can proceed in multiple ways. First, since the model 
assumes that the distribution of U1j terms (the difference between the overall slope 
and group-specific slope for each group) is normally distributed with variance τ1

2, the 
range within which 95% of level 2 units would fall can be computed (Snijders and Bosker 
2012). In the present example, the average slope for internet (β2) was estimated as 0.17 
(t = 8.77, p < 0.05) and τ1

2 = 0.003 (SD = 0.06). So a hypothetical country with a “high” 
slope could be computed by starting with the average slope and adding two times the 
square root of τ1

2. Analogously, a hypothetical country with a “low” slope could be com-
puted similarly, but by subtracting two times the square root of τ1

2. In the present exam-
ple, this would imply that 95% of countries would have a slope for Internet between 0.05 
and 0.29. Since these represent standardized coefficients, these slopes can be interpreted 
in the same way as fixed effects based on standardized covariates. Since there is no clear 
effect size measure to aid in interpretation of the random slope, this interpretation may 
offer a helpful alternative in the spirit of presenting the scope of the effect.

Researchers may also want to interpret the covariance term, τ01. As with any covari-
ance, this term can be standardized to report the correlation and interpreted according 
to effect size criteria for r: 0.10 is small; 0.30 is medium; and 0.50 is large (Cohen 1992). 
In the present example, the correlation is 0.07 indicating that countries with higher 
slopes tend to have slightly higher intercepts, but that this relationship is fairly weak, 
according to Cohen’s (1992) criteria. However, caution regarding the intercept interpre-
tation should be applied. The intercept will be specific only to the case where all predic-
tors (X) are equal to zero (Snijders and Bosker 2012). In the present example, this implies 
that the relationship between Internet and Math is stronger for countries with higher 
average math scores for average Internet connectivity, although the effect is relatively 
small. If Internet had not been grand mean centered, the intercept-slope covariance 
term would have taken a different value based on the fact that the intercept would take 
a different meaning. Thus, centering must be carefully considered within the context of 
a random slopes model due to the fact that interpretation of the intercept-slope covari-
ance parameter depends on how covariates are centered. Centering does not, however, 
necessarily directly contribute to issues of comparability across studies.

Since the effect sizes based on computing hypothetical fixed effects and standardiz-
ing the covariance term may still be difficult to interpret, and since guidance regarding 

(11)
Mathij = β0+β1 ∗ Femaleij +β2 ∗ Internetij +β3 ∗Confidenceij +u1j ∗ Internetij +u0j + εij
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interaction effect interpretation emphasizes the importance of plotting results (Aiken 
and West 1991), this guidance is applied here in the context of random slopes. Figure 1 
shows the country-specific regression line regressing Math on Internet for each of the 10 
countries in the dataset (based on Eq. 11). For a larger number of level 2 units, a random 
sample of these units can be plotted so that the lines remain distinct. For the plot, it 
can be seen that some countries display a weak relationship between individual internet 
connectivity and math achievement whereas other countries display a slightly stronger 
relationship.

It is clear from the plot that if Internet were recoded with a different substantive mean-
ing for the value zero, the intercept variance could change, as well as the intercept-slope 
covariance. For example, if 2 was subtracted from each value for Internet, the y-intercept 
would be further right on the plot (Fig. 1) at the location where Internet = 2. In that case, 
the y-intercept for each country would be different and the variability of these intercepts 
(τ0

2) as well as the correlation between these intercepts and the slopes (τ01) would there-
fore differ as well. As a researcher interprets and attempts to explore the scope of these 
effects, their conditional nature should be considered and emphasized accordingly.

-2 -1 0 1 2

-2
-1

0
1

2

Country-specific regression lines

Internet

hta
M

Fig. 1 Demonstration of random slopes

Table 1 Model comparison for random slopes

Model df AIC BIC LogLik Deviance χ2 χ2 df p

No random slope 6 106,446 106,498 − 53,217 106,434

With random slope 8 106,368 106,437 − 53,176 106,352 82.498 2 < 0.001***
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Significance (although not necessarily effect size) can be assessed through model com-
parison procedures, which are demonstrated here to clarify the limitations regarding 
effect size reporting. Estimating a model with and without the random effect for slope 
can provide insight into whether the slope should be allowed to vary randomly. For the 
present study, Table 1 shows the comparison between the model with and without ran-
dom slopes (Eqs. 2, 11).

Lower BIC indicates a better fit, and a difference of greater than 10 indicates “very 
strong” evidence for the more complex model (Raftery 1995) which is provided in the 
present example. Although this model comparison can aid in selecting a model, and even 
possibly assess the strength of that evidence (i.e. BIC), the evidence cannot be used as a 
measure of effect size. Each of the model fit indices (AIC, BIC, and log-likelihood) are a 
function of deviance which is, among other things, a function of sample size (McCoach 
and Black 2008) and so therefore would not be appropriate as measures of effect size.

Measures of variance explained are also generally inappropriate for random slopes, 
because allowing the slope to differ for each level 2 unit does not necessarily explain 
additional variance. It can be noted that the scope of the effect of random slopes is rep-
resented by the variance of those slopes. Although there is not strictly a measure of 
standardized effect size or variance explained for variance terms, the square root of this 
variance (square root of τ0

2) is a standard deviation which is considered an interpretable 
measure of a distribution’s spread (Darlington and Hayes 2017).

One other possibility would be to approximate the scope of the effect by modeling the 
level 2 unit as a fixed effect (if this is substantively plausible) and including the interac-
tion between the covariate and each dummy indicator for group membership. Based on 
this conceptualization, any method appropriate for effect size of a set of fixed effects (i.e. 
the interaction terms) would be feasible.

Complex survey designs
Many large-scale datasets involve complex sampling plans and other additional com-
plexities which may need to be considered during analysis, including use of plausible 
values for achievement measures, inclusion of sampling weights due to non-equal prob-
ability of selection, and inclusion of replicate weights to account for multi-stage sam-
pling. These aspects of analysis are beyond the scope of the present examination of effect 
size, but they should not be ignored. Several resources are available to learn more about 
these topics (Martin and Mullis 2012; Meinck and Vandenplas 2012; Rogers and Stoeckel 
2008; Snijders and Bosker 2012; Wu 2005) and specific software is available to aid in 
analysis, such as the BIFIE package (BIFIE 2017) which is implemented in R.

Conclusions
Reporting measures of effect size is a crucial part of interpretation for applied multilevel 
modeling studies. Researchers can use the ICC to represent the magnitude of random 
effects which could represent country and/or school effects and standardized regression 
coefficients or f2 to represent the magnitude of fixed effects which may represent rela-
tionships of interest when examining substantive questions using international datasets. 
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Complexities associated with three-level models, reporting R2, and random slopes have 
been explored. The topics in the present study have been demonstrated using TIMSS 
data, but the suggestions provided could be applied to any multilevel analysis of primary 
or secondary data.
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Appendix
R Syntax

library(lme4) #package for lmer function used to estimate multilevel model
lmer(Math~(1|IDCNTRY),data=mydata) #equation 1
lmer(Math~Female+Internet+Confidence+(1|IDCNTRY),data=mydata) #equation 2
lmer(Math~(1|FullSchID) +(1|IDCNTRY),data=mydata) #equation 4
lmer(Math~Female+Internet+Confidence +(1+Internet|IDCNTRY),data=mydata) 

#equation 10
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