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Background
One main purpose of large-scale assessments (LSAs) is to provide policy-makers and 
educational institutions with information about students’ proficiency. Having no per-
sonal consequences, educational assessments are low-stakes tests for the test takers 
(Baumert and Demmrich 2001; DeMars 2000; Penk et al. 2014; Wise and DeMars 2005) 
and, therefore, some test takers might not invest full effort throughout the test, resulting 
in an underestimation of their true proficiency levels. As a consequence, the estimates of 
proficiency scores and the inferences based on them (e.g., group differences) are likely to 
be biased (Eklöf 2010; Wise and DeMars 2005; Wise and Kong 2005).
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Background:  In low-stakes educational assessments, test takers might show a perfor-
mance decline (PD) on end-of-test items. PD is a concern in educational assessments, 
especially when groups of students are to be compared on the proficiency variable 
because item responses gathered in the groups could be differently affected by PD. 
In order to account for PD, mixture item response theory (IRT) models have been pro-
posed in the literature.

Methods:  In this article, multigroup extensions of three existing mixture models that 
assess PD are compared. The models were applied to the mathematics test in a large-
scale study targeting school track differences in proficiency.

Results:  Despite the differences in the specification of PD, all three models showed 
rather similar item parameter estimates that were, however, different from the esti-
mates given by a standard two parameter IRT model. In addition, all models indicated 
that the amount of PD differed between tracks, in that school track differences in 
proficiency were slightly reduced when PD was accounted for. Nevertheless, the mod-
els gave different estimates of the proportion of students showing PD, and differed 
somewhat from each other in the adjustment of proficiency scores for PD.

Conclusions:  Multigroup mixture models can be used to study how PD interacts with 
proficiency and other variables to provide a better understanding of the mechanisms 
behind PD. Differences between the presented models with regard to their assump-
tions about the relationship between PD and item responses are discussed.

Keywords:  Educational assessments, Mixture IRT models, Performance decline, Group 
comparisons, Aberrant response behavior

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

List et al. Large-scale Assess Educ  (2017) 5:15 
DOI 10.1186/s40536-017-0049-3

*Correspondence:   
list@ipn.uni‑kiel.de 
1 Leibniz Institute for Science 
and Mathematics Education, 
Kiel, Germany
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40536-017-0049-3&domain=pdf


Page 2 of 25List et al. Large-scale Assess Educ  (2017) 5:15 

A common observation in educational LSAs is that the probability of a test taker giv-
ing a correct response decreases for items at the end of the test (Wu 2010). On the test 
taker’s side, this can be viewed as a performance decline (PD), which can be considered 
as a type of aberrant response behavior reflected in unexpectedly high rates of incorrect 
or omitted responses for end-of-test items (Cao and Stokes 2008; Schnipke and Scrams 
1997; Suh et al. 2012). Whereas, in high-stakes tests, aberrant response behavior on end-
of-test items is often attributed to test speededness (Bolt et al. 2002), in low-stakes tests, 
it is assumed that aberrant response behavior is related to a decline in test-taking effort 
(Wise and Kong 2005). In order to explore PD in educational assessments, mixed-effects 
models (De Boeck and Wilson 2004) have been proposed to analyze item position effects 
by comparing the probabilities of a correct response when the item is presented in dif-
ferent positions (Debeer and Janssen 2013). An alternative strategy proposes using mix-
ture models with categorical latent variables in order to identify the latent classes of test 
takers who differ in their test-taking behavior (Mislevy and Verhelst 1990; Rost 1990). 
Among others, Bolt et al. (2002), Yamamoto (1995), and Jin and Wang (2014) introduced 
mixture models to separate test takers who show aberrant response behavior that corre-
sponds to PD from test takers who respond to all items with full effort.

The aim of our study was to examine the utility of three mixture models to handle 
PD in low-stakes tests and to explore the differences and similarities in the conclusions 
drawn from these models. In this study, we applied the mixture models to investigate 
PD in the mathematics test of a German LSA. First, we explored the differences between 
the PD of test takers attending different school types. Next, we investigated whether PD 
affects the estimation of group differences in proficiency. Then, we compared existing 
mixture models with regard to the differences and similarities in their estimation of PD. 
Furthermore, we demonstrate how to fit these models using standard software such as 
Mplus (Muthén and Muthén 1998–2012).

This article is organized as follows. First, we will provide an overview of the research 
on PD in educational assessments. We will then proceed to present three mixture mod-
els for PD that were extended to multigroup settings. After that, we will apply these 
models to a low-stakes mathematics test in order to compare their performance and 
parameter estimates. Finally, we will present and discuss the differences and similarities 
of these models regarding their measurement of PD and estimated group differences in 
proficiency.

Performance decline in educational assessments

If PD is present, the probability of providing a correct response does not depend solely 
on item parameters and a person’s proficiency. Simulation studies have shown that 
parameter estimates of end-of-test items are biased if PD is not taken into account 
(Oshima 1994; Suh et al. 2012). This is of particular concern when parameter estimates 
of items are going to be treated as known in other applications, for example, in adaptive 
testing, as part of a calibrated item pool, or for test construction purposes (Davey and 
Lee 2011; van Barneveld 2007). In addition, test scores obtained under PD conditions are 
likely to be lower than they would be if the test taker had invested full effort throughout 
the test. Thus, when PD is ignored, proficiency scores are underestimated—the stronger 
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the PD effects are and the more test takers experience PD, the stronger the underestima-
tion of the sample’s average proficiency will be.

Several authors have studied associations between PD and test takers’ characteristics, 
such as ethnicity, language skills, or gender. Bolt et al. (2002) analyzed a high-stakes col-
lege placement test for mathematics and found that the number of students showing PD 
differed between different ethnic groups. Yamamoto and Everson (1995) assessed PD in 
a high-stakes reading comprehension test for university students. They also found differ-
ences between the PD of different ethnic groups. Furthermore, they found that nonpri-
mary-language speakers showed an earlier onset of PD than primary-language speakers. 
For a high-stakes reasoning test, Schnipke and Pashley (1997) also found that nonpri-
mary-language speakers were more strongly affected by PD than primary-language 
speakers.

For low-stakes tests, differences in PD have been reported on a country level for the 
PISA assessments (Debeer et al. 2014; Hartig and Buchholz 2012; Jin and Wang 2014). 
Nagy et al. (2016) also found PD effects to differ between school types in the German 
PISA 2012 study. Furthermore, male test takers have been found to show more guessing 
behavior and lower levels of test-taking motivation than female test takers (DeMars et al. 
2013).

Due to the differential effects found, these results imply that ignoring PD might affect 
the estimations of average proficiency levels in a group-specific way. Thus, when inves-
tigating group differences in proficiency, the extent to which the differences found 
might be caused by differences in PD instead of true differences in proficiency should be 
explored (DeMars et al. 2013; Denis and Gilbert 2012; Mittelhaëuser et al. 2015).

Mixture models of performance decline

Mixture item response theory (IRT; e.g., Embretson and Reise 2000) models can be used 
to identify test takers showing PD. We will refer to these models as mixture PD models 
in the rest of this article. In general, mixture models assume that the population consists 
of subgroups, for which the model parameters differ in particular ways (Mislevy and 
Verhelst 1990; Rost 1990). These subgroups are also referred to as latent classes since 
they are not observed. Based on their individual responses, the probabilities for each 
test taker of belonging to one of these latent classes are estimated along with the other 
model parameters. Mixture PD models consist of two or more latent classes, where one 
class represents test-taking behavior that reflects full effort throughout the test (the no-
decline class), and the other classes represent test-taking behavior that reflects PD (the 
decline classes).

Of these, two models, the two-class mixture model of Bolt et  al. (2002) and the 
HYBRID model of Yamamoto (1995) have been applied to several empirical and simu-
lated data sets (e.g., Boughton and Yamamoto 2007; Cao and Stokes 2008; Hailey et al. 
2012; Mittelhaëuser et al. 2013; Mittelhaëuser et al. 2015; Suh et al. 2012; Wollack et al. 
2003; Yamamoto and Everson 1997). Bolt et al. (2002) developed their two-class mixture 
model to reduce the bias in item parameters that is caused by test speededness in high-
stakes tests. The aim of the model is to identify the group of test takers who run out of 
time and show PD (i.e., the decline class). PD is reflected in higher difficulty parameters 
for end-of-test items. The item parameters of the no-decline class are expected to be 
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unbiased. Later on, the model was also used to model differences in test-taking moti-
vation in low-stakes tests in order to separate motivated from unmotivated test-taking 
behavior (e.g., Mittelhaëuser et al. 2015).

The HYBRID model of Yamamoto (1995) was initially developed to model changes 
in test-taking behavior that occur under conditions of test speededness in high-stakes 
tests. The HYBRID model focuses on determining the position in which a test taker 
switches from effortful response behavior to aberrant response behavior when running 
out of time. The item responses that reflect aberrant response behavior are ignored for 
the estimation of proficiency and item parameters; therefore, item parameter and profi-
ciency estimates are expected to be unbiased. The HYBRID model has also been used to 
investigate PD in low-stakes tests (Cao and Stokes 2008).

Recently, Jin and Wang (2014) proposed a multiclass mixture model to account for PD. 
Similar to Yamamoto (1995) HYBRID model, it makes it possible to determine the point 
where test takers alter their test-taking behavior. In contrast to the HYBRID model, Jin 
and Wang (2014) do not assume that test takers switch to entirely aberrant response 
behavior that is unrelated to proficiency. Rather, the authors model PD as a decline in 
test performance so that the probability of providing a correct response decreases after 
the onset of PD.

In a recent study, the HYBRID model (Yamamoto 1995) and the two-class mixture 
model of Bolt et al. (2002) were compared with regard to their capability to reduce the 
bias in item parameters that is caused by test speededness (Suh et al. 2012). Both models 
were found to be equally capable of estimating the true item parameters and outper-
formed a standard IRT model that did not account for test speededness. In addition, 
in both cases, the results were not affected by the coding of the items not reached by 
the examinees (i.e., missing vs. incorrect). However, the focus of the study of Suh et al. 
(2012) was bias in item parameters; the effects of PD on the estimation of proficiency 
therefore need further investigation. Furthermore, the model of Jin and Wang (2014) has 
not yet been investigated thoroughly, and its performance has not yet been compared 
with that of the model of Yamamoto (1995) or the model of Bolt et al. (2002).

A general mixture IRT model of performance decline

In the three aforementioned mixture PD models, several common assumptions are 
made. It is assumed that test takers respond to the items in the order in which they 
are presented. It is further assumed that PD starts at some point in the test, that is, the 
test takers will have responded to at least the first item with full effort before their test-
taking behavior reflects PD. Thus, a switching point (von Davier and Yamamoto 2007) 
exists at which decline onset can be observed, dividing the item response vector of a test 
taker into two parts: in the first part, item responses depend solely on the test taker’s 
proficiency and on the item characteristics. In the second part, item responses depend 
on a latent person variable underlying the aberrant response behavior that reflects 
PD. Depending on the definition of PD as specified in the particular model, aberrant 
response behavior may or may not be related to proficiency. For both parts, the relation-
ship between item responses and the latent person variable can be modeled within the 
IRT framework. We assume that, before the switching point, a two-parameter logistic 
model (2PLM; Birnbaum 1968) holds. However, after the switching point, we assume 
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that item and person parameters might be different. Furthermore, we assume that some 
test takers show full effort throughout the test. Thus, the sample consists of a mixture of 
test takers with and without PD.

Based on these assumptions, a general mixture PD model can be described, which 
contains the aforementioned models as special cases. In the following, we describe 
such a model for the multigroup case, although the framework can be easily adapted 
for single group situations. According to the 2PLM, the probability of person p provid-
ing a correct response to item i depends on the person’s proficiency (θp) and the item’s 
slope and intercept parameter (αi,βi). The person’s individual switching point (δp) equals 
the last item position before decline onset. Thus, the switching point can take values 
δp = 1, . . . , I, where I is the total number of items in the test. If δp = i, PD will start after 
item i. If δp = 1, PD will start after the first item. If δp = I, PD will not occur at all in the 
test.

Let ηpi be the logit of the probability of correct response of person p to item i: 
ηpi = logit P

(

Xpi = 1|θp, δp
)

. For the general mixture PD model, the conditional item 
response probabilities are defined as

where θp denotes the proficiency variable, αi is the slope parameter or item discrimina-
tion and βi is the intercept parameter1, both before the switching point, that is, for δp ≤ i. 
Note that the item parameters applied to responses before the switching point contain 
no group index g, so that we assume them to be invariant across groups, although this 
assumption can be relaxed.

The parameters α̃ig and β̃ig denote the slope and intercept parameter in group g after 
the switching point, that is, for δp >  i, respectively, and θ̃p denotes the person variable 
underlying aberrant response behavior. When a test taker shows PD, the proficiency 
variable θp can change to θ̃p, which would no longer be interpreted as proficiency. Equa-
tion  1 is a mixture 2PLM where the latent classes capture the magnitude of the indi-
vidual PD. If δp = I for all test takers in the sample, Eq. 1 is reduced to ηpi = αi · θp + βi, 
which is the standard 2PLM.

The joint distribution of θ and δ is defined based on the assumption of how proficiency 
and switching point are related. Typically, θ is considered to be a normally distributed 
continuous variable. By definition, δ is considered to be a discrete variable. One way of 
specifying the joint distribution P

(

θ, δ|G = g
)

 is to consider the conditional distribution 
of θ with respect to δ in group g (i.e., δ|G = g), that is, P(θ,δ|G = g) = P(θ|δ, G = g) · P(
δ|G = g). Within each class and each group, a normal distribution of θ is assumed, that 
is, P

(

θ|δ = i,G = g
)

= N
(

µig , σ
2
ig

)

. Typically, in the case of many classes, restrictions 
are imposed on the means μig and standard deviations σig (e.g., Yamamoto and Everson 
1997).

The dependencies between θ and δ as assessed by multigroup mixture PD models 
could be of substantive interest in real applications. For example, research suggests that 

(1)ηpi =

{

αi · θp + βi, if δp ≤ i,

α̃ig · θ̃p + β̃ig , if δp > i,

1  Note that the item difficulty bi is the negative of the ratio of intercept to slope parameter (Hambleton et al. 1991), that 
is, bi = − βi/αi.
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students with lower proficiency estimates are more likely to show aberrant response 
behavior, as reflected in PD (Bolt et al. 2002; De Boeck et al. 2011; Wise and Kong 2005); 
mixture PD models make it possible to examine such hypotheses. In addition, research-
ers might expect that the strengths of the relationship between θ and δ differ between 
groups (e.g., groups assessed in low-stakes vs. high-stakes conditions). Again, the multi-
group setup of mixture PD models allows such hypotheses to be explicitly tested.

In addition, the multigroup mixture PD models provide estimates for the proportions 
of decline classes in group g, πig = P(δ =  i|G = g) for i <  I, including the proportions 
of test takers not affected by PD, πIg = P(δ = I|G = g), thereby allowing researchers to 
examine whether the proportion of test takers not affected by PD differs between groups, 
and to investigate group differences in the prevalence of earlier and later onsets of PD.

However, the assessment of latent class probabilities, πig, might not succeed in mixture 
PD models that contain many latent classes without imposing additional constraints. In 
order to solve this problem, Cao and Stokes (2008) proposed a cumulative probability 
function of switching points, which was also employed by Jin and Wang (2014) in their 
mixture PD model. In the multigroup case, the function recurs on the probability of the 
no-decline class in group g, πIg, and the probabilities of the decline classes, πig, for i < I. 
Cao and Stokes (2008) assume that the cumulative probability function of δp depends on 
a shape parameter ω > 0, so that

The shape parameter ωg defines the form of the cumulative probability curve in group 
g: if ωg =  1, the probability increases linearly, if ωg  >  1, the increase is convex, and if 
ωg < 1, the increase is concave. With Eq. 2, the curve of πig is described as

In Eq.  3, only two parameters are estimated per group, the proportion of the no-
decline class πIg and the shape parameter ωg; this reduces the number of parameters for 
long tests with many switching points. Because of its parsimony, we used Eq. 3 in our 
study to model the probability distributions for the decline classes in mixture PD models 
with many classes. However, other functions could be used as well.

The cumulative probability function of δp (Eq.  2) used in our application allows 
researchers to explicitly test hypotheses about group differences in the proportion of 
examinees affected by PD via the estimates of πIg (Eq. 3). In addition, the function allows 
for a straightforward comparison of the ωg-parameters that indicate whether the onset 
of PD occurs later (higher values of ω) or earlier in the test (lower values of ω). However, 
as the group-specific proportions of PD onset points πig is a rather complex function 
of ωg and πIg (Eq. 3), we suggest using graphical aids for comparing the distribution of 
onset points across groups.

Finally, it should be noted that the multigroup mixture PD models make it possible to 
assess not only the group-specific distributions of the onset points of PD but also the 
magnitude of PD in each group. However, the magnitude of PD depends on the spe-
cific restrictions imposed on the general mixture PD model (Eq. 1): in some models, the 

(2)P
(

δp ≤ i|G = g
)

=
iωg

(I − 1)ωg
, for i < I .

(3)πig =
iωg − (i − 1)ωg

(I − 1)ωg
·
(

1− πIg

)

, for i < I .
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magnitude of PD is expressed via the β̃ig-parameters (Bolt et al. 2002; Yamamoto 1995), 
whereas, in others, the magnitude of PD is quantified by the person variable θ̃p (Jin and 
Wang 2014).

Multigroup mixture IRT models of performance decline

By placing specific parameter restrictions, the general mixture PD model can be trans-
formed into multigroup versions of each of the three aforementioned mixture PD models 
(Bolt et al. 2002; Jin and Wang 2014; Yamamoto 1995). Since PD is modeled differently in 
the specific mixture PD models, group comparisons for each mixture PD model involve 
different parameters. In the following, we will describe how the general mixture PD 
model can be extended to realize the mixture PD models of Bolt et al. (2002), Yamamoto 
(1995), and Jin and Wang (2014), allowing for multigroup comparisons.

The two‑class mixture model of Bolt et al. (2002)

Bolt et al. (2002) proposed a mixture PD model with two latent classes (which will fur-
ther be referred to as the 2PDM): while test takers in the no-decline class do not show 
PD, test takers in the decline class show lower performance on end-of-test items. There-
fore, in the decline class, items appear to be more difficult than in the no-decline class, 
resulting in lower item intercept parameter estimates after the switching point. In their 
original formulation of the 2PDM, Bolt et al. (2002) suggested specifying the switching 
point i0 in advance (see also De Boeck et al. 2011; Wollack et al. 2003), so that it refers to 
an item position up to which responses are expected to not be affected by PD. When put 
into the multigroup context, this specification implies that, in each group, the switching 
point is a dichotomous variable that can take two values, that is, δp = i0 for all test takers 
showing PD, and δp = I for all test takers not showing PD. Accordingly, in each group, 
there are two latent classes with proportions πi0g = P

(

δ = i0|G = g
)

 for the decline class 
and πIg = P(δ = I|G = g) for the no-decline class.

The model was first proposed as a mixture Rasch model with equal item discrimina-
tion parameters for all items. Recent applications have also considered extensions based 
on a 2PLM (Cao and Stokes 2008; Suh et al. 2012), which we also used in our study. For 
each group, we restricted the item discriminations to be equal in both latent classes (i.e., 
α̃ig = αi; see Cao and Stokes 2008). After the switching point, item intercept parameters 
were allowed to change but item responses to still depend solely on the item parameters 
and proficiency. Thus, the person variable underlying the aberrant response behavior 
would still be regarded as proficiency, hence θ̃p = θp. Within each group, item intercept 
parameters were constrained to be lower in the decline class (i.e., β̃ig ≤ βi for each g). 
Equation 1 can be altered to realize the multigroup version of the 2PDM with

The mean proficiency is allowed to vary across groups and classes, while the stand-
ard deviation is held equal across latent classes, that is, θ ∼ N (µig , σ

2
g). We assumed that 

groups could differ in the intercept parameters after the switching point, β̃ig (see Eq. 4). 
In addition, we did not impose any constraints on the latent class proportions, πi0g and 
πIg.

(4)ηpi =

{

αi · θp + βi, if δp ≤ i0,

αi · θp + β̃ig , if δp > i0.
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Note that, in the common specification of the 2PDM, the (arbitrarily) specified 
switching point i0 does not identify the item position in which PD first occurs. Rather, 
researchers are required to compare the estimates of βi and β̃ig and to identify the posi-
tion from which these estimates show meaningful deviations from each other. An alter-
native is to identify the point at which PD first occurs by comparing the model-data-fit 
of the 2PDM, specified with different values of i0, and selecting the switching point that 
provides the best fit to the data at hand. This procedure has the advantage that many 
βi-parameters that would otherwise be specified to be class- and group-specific (i.e.,  
β̃ig-parameters) are estimated on the basis of a larger number of item responses. The 
procedure can be extended to identify group-specific switching points, but the merits 
of such an approach seem to be limited. When a common switching point is assumed, 
researchers can inspect the results for group differences in the onset of PD by comparing 
the estimates of β̃ig with the corresponding estimates of βi. Results showing negligible 
discrepancies between β̃ig- and βi-parameters after the switching point i0 indicate a later 
onset point of PD in this group.

Hence, the multigroup 2PDM makes it possible to (1) assess the relationship between 
proficiency and PD on the basis of the latent class means μig, (2) estimate the proportion 
of examinees not affected by PD in each group (πIg), and (3) quantify the strengths of PD 
in each group by examining the discrepancies between β̃ig- and βi-parameters. In addi-
tion, the latter parameters also make it possible to (4) inspect the results for group differ-
ences in the onset points of PD.

The HYBRID model of Yamamoto (1995)

In his HYBRID model (further referred to as the HYBRID), Yamamoto (1995) assumes 
that, after the switching point, item responses no longer reflect test takers’ proficiency. 
Instead, the probability of a test taker providing a correct response to items after PD 
onset is independent of proficiency; rather, it corresponds to an item-specific response 
threshold. While the model was originally proposed to model random guessing in high-
stakes tests under speededness conditions, it can also be applied to other types of aber-
rant response behavior reflecting PD (e.g., Suh et al. 2012).

PD onset can occur in all item positions except the first one, hence, there are multiple 
decline classes, one for each item position, so that δp = 1, . . . , I in each group. Within 
each group, the response thresholds can be specified to be either item-specific or equal 
for all items. The latter assumption is reasonable in cases where all items share a similar 
response format, such as multiple-choice items with the same number of options.

Since item responses after the switching point do not depend on proficiency, the slope 
parameter after the switching point is set to zero in each group (α̃ig = 0, for each g). 
Since the slope parameters after the switching point are set to zero, the item responses 
do not depend on the person variable, θ̃p, meaning that the person variable underlying 
aberrant response behavior is not defined. To keep the model identified, we set θ̃p = θp. 
Note that θ̃p can be fixed to any other value, as it does not impact on ηpi after the switch-
ing point. The intercept parameter after the switching point is constrained to a common 
response threshold within each group, which we restricted to be the same for all items in 
all decline classes, that is, β̃ig = β̃g for all i.



Page 9 of 25List et al. Large-scale Assess Educ  (2017) 5:15 

Thus, within each group, the probability of a correct response after PD onset is the 
same for all test takers and items regardless of proficiency (or any other person vari-
able underlying aberrant response behavior) and regardless of the location of PD onset. 
Based on these specifications, the multigroup HYBRID can be derived by altering Eq. 1 
to

The distribution of decline class probabilities within each group was assumed to follow 
the function described in Eqs. 2 and 3. We assumed that the mean of θ in each PD class 
assessed in each group is a function of δ, while the standard deviation of θ is the same for 
all latent classes but differs between groups. More specifically, we modeled the mean of 
the conditional θ distributions across latent classes as a linear function (Yamamoto and 
Everson 1997) with the mean of the no-decline class, μIg, as the intercept and a group-
specific slope parameter ρg:

The value of ρg in Eq. 5 shows how θ and δ are related: if ρg is negative, average profi-
ciency is lower, the earlier the PD onset. If ρg is positive, average proficiency would be 
lower for later PD onsets.

Taken together, the multigroup HYBRID makes it possible to assess the group-spe-
cific (1) relationships between proficiency and PD via the parameters ρg, (2) proportions 
of examinees not affected by PD by means of the latent class proportions πIg, and (3) 
strengths of PD effects that are governed by the response thresholds β̃g. Compared to 
the multigroup 2PDM, the HYBRID model presented here allows for (4) a more finely-
grained assessment of the group-specific onset points of PD by inspecting the group-
specific cumulative probability functions of δp (Eq. 2) and their parameters ωg.

The multiclass mixture performance decline model of Jin and Wang (2014)

Jin and Wang (2014) proposed another multiclass mixture PD model (further referred 
to as the MPDM). Similar to the HYBRID, PD onset can occur after any item position 
throughout the test. In the MPDM, it is assumed that, after the switching point, θp is 
reduced according to a decrement function which depends on δp. Hence, when specified 
in a multigroup context, in the MPDM, PD is modeled via a group-specific change in the 
θ-variable instead of via changes in the intercept parameters as is the case in the 2PDM 
and the HYBRID model. More specifically, in the multigroup MPDM, it is assumed that, 
within each group, the value of the decrement function is the same for all test takers who 
have the same switching point. It is further assumed that, in all classes, the decrement is 
smaller when PD onset occurs later in the test.

Jin and Wang (2014) assume that, after PD onset, the item parameters are the same as 
before the switching point (α̃i = αi and β̃i = βi), but that the person variable underlying 
the aberrant response behavior, θ̃p, corresponds to the difference between proficiency 
and the decrement for the respective switching point, that is, θ̃p = θp − κg ·

(

I − δp
)

. 
The multigroup MPDM can be formalized by altering Eq. 1 to

(5)ηpi =

{

αi · θp + βi, if δp ≤ i,

0 · θp + β̃g , if δp > i.

(6)µig = µIg + ρg · (I − i).
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As shown in Eq. 7, the decrement in θ occurring after PD onset is a linear decreasing 
function across switching points with a group-specific decrement parameter κg > 0 as 
the slope so that, for the last decline class, the decrement is κg.2 Note that Jin and Wang 
(2014) modeled θ and δ to be independent of one another. However, we suggest applying 
Eq. 6 in the same manner as described for the HYBRID for two reasons. First, in this 
way, it is possible to empirically investigate whether the independence assumption that 
Jin and Wang (2014) propose holds. Second, we wanted to base our comparisons of the 
three mixture PD models on similar assumptions regarding proficiency and PD through-
out all models. In our multigroup version of the MPDM, the proportions of decline 
classes were defined in the same way as for the HYBRID, with group-specific shape 
parameters ωg (Eqs. 2, 3).

Hence, it can be summarized that the multigroup MPDM shares some similarities 
with the HYBRID: it makes it possible to examine the group-specific (1) relationships 
between proficiency and PD (ρg-parameters), (2) proportions of examinees showing no 
PD (proportions πIg), and (3) distributions of PD onsets δp (Eq. 2). However, the MPDM 
differs from the HYBRID because it assumes (4) that the magnitude of PD depends on 
δp, although the size of PD could be group-specific, and (5) that the responses affected 
by PD still depend on proficiency.

The present investigation

The aim of the present study was to examine the extent to which the multigroup mixture 
PD models make it possible to assess PD, and whether the conclusions about the pres-
ence and group differences in PD that can be drawn from these models differ. In addi-
tion, we examined whether accounting for group differences in PD affected the results 
of the group comparisons of students’ proficiencies, and whether the mixture models 
envisaged differed in their estimates of group differences in proficiencies. Finally, we 
investigated whether the mixture PD models provided item parameters estimates that 
differed from those given by the multigroup 2PLM (Suh et  al. 2012). To this end, we 
drew on a LSA of German students who worked on a mathematics test. We fitted the 
multigroup versions of the 2PDM, the HYBRID, the MPDM, and a standard multigroup 
2PLM. We chose school track as a grouping variable, since school track comparisons are 
at the core of many large-scale educational programs, and school track has been found 
to be strongly related to PD, as reflected in item position effects (Nagy et al. 2016).

In Germany, after attending primary school, children are assigned to different school 
tracks based on their school achievement. There is one academic school track (higher 
secondary school, Gymnasium) and there are several non-academic school tracks, 
including comprehensive (Gesamtschule), intermediate (Realschule), and lower second-
ary schools (Hauptschule), though the number of non-academic school tracks can vary 
(Pietsch and Stubbe 2007). Achievement differences between students at academic and 

(7)
ηpi =

{

αi · θp + βi, if δp ≤ i,
αi · [θp − κg · (I − δp)] + βi, if δp > i.

2  Although Jin and Wang (2014) also discuss quadratic functions for the decrement function, in their empirical applica-
tion, they found that a linear function was sufficient.
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non-academic school tracks are known to be large (e.g., Prenzel et  al. 2013). Further-
more, students at the non-academic tracks appear to take participation in LSAs less seri-
ously (Baumert and Demmrich 2001), possibly giving rise to stronger PD. As such, group 
differences in PD are likely, and group comparisons of students’ proficiencies could be 
affected by group differences in PD (Mittelhaëuser et al. 2015; Nagy et al. 2016).

Research questions

The analyses reported in this article examined both substantive and methodological 
research questions. From a substantive point of view, we applied the multigroup mixture 
PD models in order to examine (Q1) the existence of PD in item responses and track dif-
ferences therein. Regarding the differences between tracks, we examined (Q2) the pro-
portions of students not affected by PD, (Q3) the distributions of onset points of PD, 
(Q4) the magnitude of PD effects in each group, and (Q5) the relationships between PD 
behavior and students’ proficiencies.

We expected to obtain the following results: regarding Q1, since the assessment con-
sidered was a low-stakes test, we assumed that our data would show some degree of PD 
and, thus, we expected all mixture PD models to provide a better fit to the data than the 
2PLM. Regarding Q2–Q4, in line with research on school track differences regarding 
item position effects (Nagy et al. 2016) and test-taking motivation (Baumert and Dem-
mrich 2001), we expected the amount of PD to be larger for students attending the non-
academic tracks. More specifically, we expected the proportion of students not affected 
by PD to be higher in the academic track (Q2). We did not feel able to derive detailed 
expectations about group differences in the onset point of PD (Q3), or in the magni-
tude of PD effects (Q4) because, to the best to our knowledge, such issues have not been 
investigated previously. We therefore treated Q3 and Q4 as open research questions to 
be examined in our application.

So far, only few studies have dealt with the relationship between PD and proficiency 
(Q5). However, as research on response times indicates that low test-taking effort is 
associated with low proficiency (Wise and DeMars 2005; Wise et  al. 2009), it seemed 
reasonable to assume that less proficient students would be more likely to show PD. We 
therefore expected that, within each school track, average proficiency would be lower, 
the earlier PD occurs.

Our second set of research questions targeted methodological issues. Here, we were 
interested in (Q6) whether accounting for PD affects the estimates of item parameters, 
(Q7) whether the multigroup mixture PD models differ in the conclusions that can be 
drawn from them about the prevalence of PD, and (Q8) the impact that PD has on the 
results of group comparisons of proficiency.

When PD occurs, the intercept parameters of end-of-test items are likely to be under-
estimated, whereas their slope parameters are likely to be overestimated when a stand-
ard 2PLM is employed (Bolt et al. 2002; Oshima 1994; Suh et al. 2012). Thus, regarding 
Q6, we expected the estimates of the intercept parameters of end-of-test items in the 
no-decline class to be higher for the mixture PD models than for the 2PLM, whereas we 
expected to obtain the opposite result for the item discriminations. We expected this 
result to hold for all mixture PD models, as Suh et al. (2012) found that most mixture 
PD models showed quite similar behavior in this respect. Regarding Q7, we did not feel 
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able to derive detailed expectations because the results provided by the models depend 
on their representation of PD. Therefore, we treated the question of whether the models 
presented here converge to similar conclusions as an open research question.

Regarding Q8, we expected that not accounting for PD would lead to an underesti-
mation of the proficiency for the decline classes. Thus, we expected to obtain higher 
estimates of average proficiency when mixture PD models were employed (Q5a). Since 
PD was expected to be higher at the non-academic school tracks, we further expected 
the underestimation of proficiency to be more pronounced in the non-academic than 
in the academic group. As a consequence, accounting for PD was expected to result in 
smaller group differences in proficiency between both school tracks. However, the ques-
tion of whether all models lead to a similar reduction in group differences in proficiency 
remained open.

Methods
Sample and test design

We considered the mathematics achievement test of the first measurement point of a 
German large-scale longitudinal educational study, “Aspects of learning background and 
learning development”, which was conducted in the federal state of Hamburg (Behörde 
für Schule und Berufsbildung 2011). Participation in the assessment was mandatory. The 
test had no individual consequences for the test takers and, hence, it can be regarded 
as a low-stakes test. The sample consisted of N = 12,182 students in the fifth grade at 
different school tracks, an academic track (n = 5333 students) and two non-academic 
school tracks.

The mathematics assessment was presented as a paper-and-pencil test with a fixed 
item order, consisting of 30 multiple-choice items, scored as correct or incorrect. Miss-
ing item responses caused by omitted and not-reached items were also coded as incor-
rect. A distinction between incorrect and missing responses was not possible because the 
original item responses were not made available by the primary investigator. Although 
this means that PD effects were also influenced by the number of not-reached items, 
this issue does not appear to be of importance in mixture PD models. Suh et al. (2012) 
found the 2PDM and HYBRID model to perform equally well regardless of whether not-
reached items were coded as incorrect or missing. Furthermore, Jin and Wang (2014) 
explicitly recommended coding not-reached items as incorrect in their MPDM.

Statistical analyses

We applied the three mixture models (2PDM, HYBRID, MPDM) in the multigroup 
extensions presented and a multigroup 2PLM to the mathematics achievement test data. 
The grouping variable was school track and we considered two groups—students attend-
ing the academic school track, and students attending a non-academic school track. The 
models were compared by means of the Bayesian information criterion (BIC; Schwarz 
1978) and Akaike’s information criterion (AIC; Akaike 1987). Group differences in PD 
were investigated by comparing the group-specific parameters for each model, and 
Wald tests were used to test for significant parameter differences between groups. Note 
that some parameters could not be compared across models; therefore, we investigated 
whether the patterns found in each model led to similar conclusions regarding PD.
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Model specification and parameter estimation

For model identification purposes, the mean and standard deviation of the profi-
ciency variable in the no-decline class at the academic track were constrained to 0 and 
1, respectively. The item position of PD onset i0 for the 2PDM was defined by means 
of model fit comparisons: the model was repeatedly estimated with switching points 
δi0 = 10, . . . , 23, and the switching point was chosen where the BIC value was lowest. 
Based on the BIC, the model with a PD onset i0 = 18 showed the best fit to the data and 
was then used for the further analyses.

The models were estimated by means of marginal maximum likelihood estimation 
using an expectation–maximization algorithm and using numerical integration with 15 
integration points in Mplus 7.4 (Muthén and Muthén 1998–2012). One problem with 
maximum likelihood estimation for mixture IRT models is that the solution can con-
verge to a local rather than the global maximum (Finch and French 2012). Therefore, 
usage of multiple random starting values is recommended to ensure replication of the 
best likelihood value (Lubke and Muthén 2005). The Mplus code for the estimated mod-
els is given in the additional file to this article.

Results
We first present the goodness-of-fit statistics for the four models (Q1) and show how 
accounting for PD impacted item parameter estimation (Q6). Next, we present the com-
parisons between students at the academic track [academic group (aca)] and students at 
the non-academic school tracks [non-academic group (nac)] across models; these results 
are divided into three subsections. In the first subsection, we examine school-type differ-
ences in PD model parameters (Q2–Q4). The next subsection discusses our findings on 
the relationship between PD and proficiency (Q5) and, in the last subsection, we present 
the results concerning the impact of PD on proficiency estimates (Q5a, Q8). While pre-
senting the results, we also highlight the similarities and differences between the results 
provided by the different mixture PD models (Q7).

Model fit and item parameter estimates across models

Model fit

The model fit indices (AIC, BIC) for the different mixture PD models as well as for the 
2PLM are presented in Table  1. The MPDM had the best fit to the data, but all mix-
ture PD models were better than the 2PLM. Furthermore, the fit indices of the HYBRID 
appeared to be closer to the MPDM than to the 2PDM.

Table 1  Model fit

LL: log likelihood; AIC (BIC): Akaike’s (Bayesian) Information Criterion; 2PLM: multigroup 2PLM; 2PDM: multigroup two-class 
performance decline model; HYBRID: multigroup HYBRID model; MPDM: multigroup multiclass performance decline model

Model No. of free  
parameters

LL AIC BIC

2PLM 63 − 217,085 434,296 434,763

2PDM 91 − 214,224 428,630 429,304

HYBRID 71 − 213,978 428,098 428,624

MPDM 71 − 213,964 428,070 428,596
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Item parameter estimates for the no‑decline class

Accounting for PD is expected to reduce bias in the parameter estimates (intercepts 
and slope) of items affected by PD (Suh et al. 2012; Wollack et al. 2003). Since the true 
item parameters were unknown, we were not able to evaluate whether any of the mix-
ture PD models were able to do this. However, by comparing the item parameters of the 
no-decline class across models, we were able to investigate whether the estimates of the 
mixture PD models differed from the 2PLM as well as from one another.

In Fig. 1 the estimated item parameters of the no-decline class (intercept, slope) for 
all models are depicted. For the intercept parameters, we found differences between the 
2PLM and the mixture PD models for the end-of-test items. All of the mixture PD mod-
els showed higher estimates for the intercept parameters of the end-of-test items than 
the 2PLM, which means that items appeared to be less difficult than in the 2PLM. The 
mixture PD models also differed from one another: while the HYBRID and the MPDM 
appeared to have rather similar parameter estimates, the intercept estimates of the 
2PDM were somewhat lower and closer to the 2PLM.

The slope parameter estimates were quite similar across all of the mixture PD models. 
Slope estimates differed between the 2PLM and the mixture PD models, not only for 
the end-of-test items but also for the items at the beginning of the test: while, early in 
the test, the estimates for the decline models were higher than those for the 2PLM, they 
were lower at the end of the test. These results indicate that, in the 2PLM, end-of-test 

2PLM
2PDM
HYBRID
MPDM

Fig. 1  Estimates of item parameters across models. For the mixture PD models, the displayed item param-
eters are those of the no-decline class. 2PLM: multi-group 2PL model; 2PDM: multi-group two-class perfor-
mance decline model; HYBRID: multi-group HYBRID model; MPDM: multi-group multi-class performance 
decline model
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items appeared to be more discriminating, a result also reported by Suh et  al. (2012). 
However, in our application, items positioned early in the test appeared to be less dis-
criminating than in the mixture PD models.

Group differences in performance decline

The main results of all of the group comparisons regarding PD as well as proficiency are 
displayed in Table 2.

Proportions of no‑decline classes and distribution of decline class proportions

The proportions of the no-decline class within each group (i.e. πIg) are displayed in 
Table 2, in the section entitled Distribution of latent classes. The size of πIg indicates the 
number of students who did not show PD during the test. The smaller the πIg, the smaller 
the number of students who did not show PD was and, thus, the higher the proportion 
of students showing PD in the sample was.

Table 2  Parameter estimates of performance decline and proficiency

Note that parameters cannot be compared across models. See main text for more information

nac: non-academic group; aca: academic group; 2PDM: multigroup two-class performance decline mode; HYBRID: 
multigroup HYBRID model; MPDM: multigroup multiclass performance decline model. All parameter estimates are group-
specific
a  See Fig. 3. b Parameters are fixed

nac aca Group comparisons
Est. (SE) Est. (SE) Wald’s χ2 (df)

Distribution of latent classes

 Proportion of no-decline class (πI)

  2PDM 0.81 (0.01) 0.91 (0.01) 106.80 (1), p < 0.001

  HYBRID 0.62 (0.01) 0.82 (0.01) 226.86 (1), p < 0.001

  MPDM 0.48 (0.03) 0.68 (0.03) 41.60 (1), p < 0.001

 Shape parameter (ω)

  2PDM

  HYBRID 4.78 (0.15) 7.33 (0.27) 72.27 (1), p < 0.001

  MPDM 6.47 (0.26) 10.25 (0.47) 70.52 (1), p < 0.001

 Magnitude of PD

  2PDM –a –a –a

  HYBRID: response threshold (β̃) 3.76 (0.18) 3.48 (0.31) 0.65 (1), p = 0.42

  MPDM: decrement (κ) 0.80 (0.04) 0.91 (0.07) 2.85 (1), p = 0.09

Proficiency distribution

 No-decline class: mean (μI)

  2PDM − 1.02 (0.03) 0b 1637.64 (1), p < 0.001

  HYBRID − 1.01 (0.03) 0b 1385.61 (1), p < 0.001

  MPDM − 1.01 (0.03) 0b 1321.48 (1), p < 0.001

 No-decline class: standard deviation (σ)

  2PDM 0.82 (0.02) 1b 133.48 (1), p < 0.001

  HYBRID 0.82 (0.02) 1b 124.16 (1), p < 0.001

  MPDM 0.82 (0.02) 1b 127.80 (1), p < 0.001

 Decline classes

  2PDM: mean (µi0
) − 0.95 (0.04) 0.02 (0.08) 167.28 (1), p < 0.001

  HYBRID: slope (ρ) − 0.01 (0.004) − 0.05 (0.01) 17.29 (1), p < 0.001

  MPDM: slope (ρ) − 0.01 (0.004) − 0.03 (0.01) 5.66 (1), p = 0.02
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Consistently, in all mixture PD models, πIg was significantly lower in the non-aca-
demic group (Wald’s χ2-test statistics in Table 2), indicating that more students at the 
non-academic tracks showed PD. However, the no-decline class proportions varied 
across models. In the 2PDM, the proportions of the no-decline classes were highest: 
πI ,aca = 0.91 versus πI ,nac = 0.81 (see Table 2, section Proportion of no-decline class). As 
a consequence, the total number of students showing PD was smallest for the 2PDM. In 
contrast, the proportions of the no-decline class were smallest for the MPDM: here, the 
no-decline class proportion in the academic group was πI ,aca = 0.68, which means that 
one-third of the students showed PD. In the non-academic group, the no-decline class 
proportion was significantly lower, with πI ,nac = 0.47. Thus, one half of the students in 
the non-academic group showed PD.

While, for the 2PDM, there was only one decline class for each group, for the HYBRID 
and the MPDM, there were multiple decline classes. As displayed in Eq. 2, the distri-
bution of decline classes was defined by the no-decline class proportion, πIg, and the 
shape parameter, ωg: the higher ωg, the steeper the increase in decline class proportions 
across item positions; yet, the higher the πIg, the smaller the cumulated probability of 
the decline classes and, hence, the smaller the total number of students showing PD. 
The cumulated class probabilities across item positions for both models are displayed in 
Fig. 2. The values for ωg are displayed in Table 2 (Shape parameter).

For the HYBRID, ωg was significantly higher in the academic group, ωaca = 7.33 versus 
ωnac = 4.78. Thus, the increase in decline class proportions toward the end of the test 
was steeper in the academic group (Fig. 2). Similar results were obtained for the MPDM: 
likewise, ωg was significantly higher in the academic group (ωaca = 10.27 vs. ωnac = 6.47, 
Table 2), which means that the increase in class probabilities in the academic group was 
steeper than in the non-academic group (Fig. 2).

Thus, the HYBRID and the MPDM provided a qualitatively similar distribution of PD 
classes and group differences within those classes. In both models, the no-decline class 
was larger in the academic track (πI ,aca > πI ,nac) and the majority of academic track 
students showing PD experienced PD onset later in the test (ωaca > ωnac). However, in 
the MPDM, class proportions πI ,g were smaller and shape parameters ωg were higher 
in both groups, leading to a steeper increase in cumulated class probabilities for the last 
five item positions (i.e., for switching points δ ≥ 24; Fig. 2). However, in earlier positions, 
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the cumulated class probabilities for both models appeared to be almost identical (see 
Fig. 2). Thus, differences between the decline class proportions of the two models were 
mainly found for PD onset in the last five items.

Magnitude of performance decline

Group differences in the magnitude of PD were evaluated separately for each mixture 
PD model according to the respective model parameters assessing the magnitude of 
PD. In the 2PDM, the group differences found in the item intercept parameters after 
the switching point (i.e., β̃ig, Eq. 4) were regarded as a measure of differential PD effects, 
while the differences in item intercept parameters between classes affected by PD and 
no-decline classes (i.e., βi vs. β̃ig, Eq. 4) were regarded as a measure of the magnitude of 
PD. In Fig. 3, the intercept parameters for the no-decline class as well as for the decline 
classes for both groups are displayed. The intercept parameter estimates were lower in 
the decline classes and, thus, the probability of giving a correct response to items after 
the switching point was lower for students showing PD. Moreover, the intercept param-
eters decreased across item positions, so that items appeared to become gradually more 
difficult toward the end of the test in both groups. Furthermore, the results displayed 
in Fig.  3 do not provide a sound indication of group differences in the onset point of 
PD as the estimates of the β̃ig-parameters decreased immediately after the onset point 
in both groups. However, the intercept parameters after the switching point were sig-
nificantly lower in the non-academic group (Wald’s χ2(12) = 25.24, p =  0.01), which 
means that the average size of the PD appeared to be larger in the non-academic school 
tracks. However, compared to the large difference in intercept parameters between the 
no-decline and the decline classes, the group differences appeared rather small.

In the HYBRID, group differences in the magnitude of PD were reflected in differ-
ences in the response threshold β̃g (Eq.  5). The response thresholds were β̃nac = −3.76 
and β̃aca = −3.48 for the non-academic and academic group, respectively, which did not 
differ significantly from one another (see Table  2, section Magnitude of PD). After the 
switching point, the probability of a correct response being provided was 0.02 in the non-
academic group and of 0.03 in the academic group of obtaining a correct response after 
the switching point.

In the MPDM, the probability of obtaining a correct response was not constant after 
the switching point. Rather, in each decline class, this probability decreased, depending 
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on the PD onset point, with group-specific decrement parameters κg (Eq. 7). However, κg 
did not differ significantly between groups (κnac = 0.80 vs. κaca = 0.91, see Table 2, sec-
tion Magnitude of PD), indicating that the magnitude of PD depended only on the PD 
onset point, and not on the school track the students attended.

Hence, it can be summarized that, of the mixture PD models, the HYBRID and the 
MPDM provided no indication that the magnitude of PD differs between school tracks. 
In contrast, the 2PDM revealed statistically significant group differences in the mag-
nitude of PD, with stronger declines in non-academic track students. However, from a 
substantive point of view, the difference was rather small.

Relationship between performance decline and proficiency

In the 2PDM for both groups, the mean of θ appeared to be somewhat higher in the 
decline class. In the non-academic group, the mean proficiency was µθ,I ,nac = −1.02 in 
the no-decline class and µθ,i0,nac = −0.95 in the decline class, but the difference was not 
statistically significant at the p ≤ 0.05 level (Table 2, section No-decline class: mean). In 
the academic group, the mean and standard deviation in the no-decline class were fixed 
at 0 and 1, respectively. The mean proficiency in the decline class was µθ,i0,aca = 0.03 
which did not differ significantly from the no-decline class (Table 2).

For the HYBRID and the MPDM, the mean θ followed a linear function over δ with 
group-specific slopes ρg (Eq. 6). For the HYBRID, in both groups, ρg was negative. This 
indicates that the mean of θ was lower in the decline classes than in the no-decline class 
and that it further decreased when PD onset occurred in earlier item positions. Further-
more, ρg was significantly lower in the academic group (ρaca = −0.05 vs. ρnac = − 0.01, 
Table  2, section Decline classes), indicating a stronger negative association between 
θ and PD in the academic group. More specifically, the value of the ρaca-parameter of 
− 0.05 means that students who had a PD onset at item 25 (i.e., 5 items before the end 
of the test) were expected to score 0.25 units lower on the proficiency variable. As the 
standard deviation of θ was fixed to one in the no-decline class in the academic track, 
this result directly reflects a standardized effect size.

The results for the MPDM were quite similar to those for the HYBRID. In both groups, 
ρg was also negative and, likewise, the slope in the academic group was significantly 
lower (ρaca = − 0.03 vs. ρnac = − 0.01, Table 2). Thus, the average proficiency was lower 
in the decline classes and the decrease in proficiency when PD onset occurred earlier in 
the test was steeper in the academic group.

Hence, the HYBRID and the MPDM converged in their conclusion about the relation-
ships between students’ proficiencies and their PD onset points, as both models indicated 
that the earlier the students’ PD onset occurred, the lower their proficiency was, and, in 
both models, this relationship was more exaggerated in academic track students. In con-
trast, the 2PDM provided no indication of a relationship between proficiency and PD.

Impact of accounting for performance decline on proficiency estimation

Comparisons of individual proficiency scores

In order to illustrate how accounting for PD affects the proficiency distribution, we com-
pared the expected a posteriori (EAP) scores for each model between groups and PD 
classifications [i.e., students not showing PD (no-PD class) vs. students showing PD (PD 



Page 19 of 25List et al. Large-scale Assess Educ  (2017) 5:15 

class)].3 In order to be able to compare score estimates, we transformed the EAP scores 
obtained by the PD models to the metric of the 2PLM by means of linear equating (e.g., 
Livingston 2014).4

In Fig. 4, the equated EAP scores for each mixture PD model are plotted against the 
EAP scores estimated by the 2PLM, displayed separately for school tracks and PD clas-
sification. Across all mixture PD models and across both groups, for the no-PD classes, 
the EAP score estimates of the mixture PD models appeared to be almost identical to 
those of the 2PLM. However, for students belonging to the PD classes, the EAP scores 
appeared to be higher when estimated by one of the mixture PD models than those esti-
mated by the 2PLM model. Assuming that scores estimated by the mixture PD mod-
els are more accurate reflections of proficiency, the EAP scores estimated by the 2PLM 
appeared to underestimate the proficiency of test takers showing PD. Looking at the 
score estimates for the PD classes across models, the correspondence between the EAP 
scores of the 2PLM and the 2PDM was very high because, in the 2PDM, only one decline 
class was estimated for each group. For both the HYBRID and the MPDM, the difference 
in EAP scores between the mixture PD model and the 2PLM depended on the switch-
ing point and, thus, the correspondence between scores was lower (Fig. 4). Interestingly, 
the EAP scores derived from the HYBRID and the MPDM showed very high agreement, 
although they were based on models that differed in the specification of PD.

Group differences in proficiency

We also investigated whether accounting for PD would affect the estimation of group 
differences in proficiency. In order to compare the magnitude of group differences as 
estimated by the four models, we calculated effect sizes between the group means of 
proficiency. For the mixture PD models, the group means were calculated from the mar-
ginal distributions of θ across latent classes.5 The group means and standard deviations 
of θ and the effect sizes (d) for all models are displayed in Table 3.

Across all models, the average proficiency in the non-academic group was lower than 
in the academic group, as expected. In all of the mixture PD models, the effect sizes of 
the group difference appeared to be very similar to one another (about d = 1.09) and 
smaller than for the 2PLM (d = 1.17; Table 3). Thus, groups differed to a smaller degree 
when mixture PD models were employed, regardless of the specification of PD. How-
ever, in the present application, proficiency differences between groups were about one 
standard deviation for all models, which means that the differences in the results pro-
vided by the 2PLM and the mixture PD models are rather small when considered on a 
relative scale.

3  For PD classification purposes, the probability of the no-decline class was dummy coded so that students were classi-
fied as belonging to the no-PD class if their probability of belonging to the no-decline class was larger than 0.5. Other-
wise, they were classified as belonging to the combined PD class.
4  In order to obtain equating constants, the subsample of students classified to the no-PD class across all mixture PD 
models (n = 8,003) was used. Equating parameters were then applied to all students.
5  The resulting distribution is a normal mixture distribution with a group-specific mean µg =

∑I
i=1

πig · µig and a 

standard deviation as σg =

√

∑I
i=1

[

πig ·

(

µ2
ig + σ2g

)]

− µ2
g with i = 1, . . . , I.
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Fig. 4  EAP scores estimated by the 2PLM versus mixture PD models by group and PD classification. x-axis: 
EAP scores estimated by the multigroup 2PLM; y-axis: equated EAP scores estimated by the multigroup two-
class performance decline model (2PDM, a), by the multigroup HYBRID model (b), and by the multigroup 
multiclass performance decline model (MPDM, c)
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Summary and discussion
The aim of the present article was to compare the potential of three mixture PD mod-
els, the 2PDM (Bolt et  al. 2002), the HYBRID (Yamamoto 1995), and the MPDM (Jin 
and Wang 2014), for assessing PD in proficiency tests administered in LSAs. The models 
were extended to accommodate multiple groups, thereby making it possible to examine 
and test group differences in PD, and to adjust group differences in proficiencies for PD. 
In order to examine the similarities and discrepancies in the results and conclusions pro-
vided by the multigroup mixture PD models, the models were applied to a mathemat-
ics tests administered in a German LSA. The results indicate that the models provided 
similar conclusions about key aspects of PD, but differed with respect to some results. 
However, the main results gathered by the mixture PD models were in line with results 
obtained in other settings (e.g., Nagy et al. 2016).

The mixture PD models consistently indicated that the mathematics test was affected 
by PD, as all of the mixture PD models fitted the data better than a standard 2PLM. 
Thus, it seems reasonable to assume that, for a subsample of test takers, the responses 
obtained for end-of-test items reflected PD. In addition, in all of the mixture PD mod-
els, the decline class proportions were higher in the non-academic group, but the esti-
mates of the magnitude of PD, such as the intercept parameters of items affected by PD 
(2PDM), the response thresholds (HYBRID), and the decrement parameters (MPDM) 
appeared to be similar between groups. Thus, all models indicated that groups differed 
mainly in the proportions of students showing PD and not in the magnitude of PD. Fur-
thermore, in all models, group differences in the proportions of students showing PD 
affected the results of the group differences in proficiency. Interestingly, all mixture PD 
models adjusted the group differences provided by the 2PLM to a similar extent. How-
ever, the reductions in the effect sizes were not large when considered on a relative scale; 
this was due to the very strong track differences in proficiency. Nevertheless, in other 
settings, where group differences in proficiencies are smaller, the adjustments provided 
by the mixture PD models might lead to qualitatively different conclusions.

Additionally, all mixture PD models provided relatively similar estimates of item 
parameters that were different from the parameters estimated by the standard 2PLM. As 
expected, end-of-test items, that is, those items that were most strongly affected by PD, 
were estimated to be less difficult than in the 2PLM, and the slope parameters belonging 
to these items were estimated to be lower by the mixture PD models as compared to the 
2PLM. These results are in line with the simulation study of Suh et al. (2012). However, 

Table 3  Group differences in mean proficiency

nac: non-academic group; aca: academic group; 2PLM: multigroup 2PLM; 2PDM: multigroup two-class performance decline 
model; HYBRID: multigroup HYBRID model; MPDM: multigroup multiclass performance decline model. μ and σ obtained 
from the marginal distribution of θ within groups
a  Parameters are fixed

Model μnac σnac μaca σaca d (SE)

2PLM − 1.07 0.82 0a 1a 1.17 (0.020)

2PDM − 1.03 0.82 − 0.04 1.01 1.08 (0.020)

HYBRID − 1.00 0.82 0.00 1.00 1.10 (0.020)

MPDM − 1.03 0.82 − 0.03 1.00 1.09 (0.020)
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in contrast to Suh et al. (2012), we found that the mixture PD models provided higher 
slope parameters for items positioned at the beginning of the test. One reasonable expla-
nation for this result is that individual differences in PD onset points not only increased 
the dependencies between items at the end of the test, but also reduced the relationships 
between items at the beginning of test. Hence, when PD was not accounted for, the slope 
parameters of the 2PLM were estimated to account for the strong dependencies between 
end-of-test items (i.e., higher slopes for items affected by PD) and the weaker associa-
tions between items located at the beginning and the end of the test (i.e., lower slopes 
for items not affected by PD). Of course, more research is clearly needed to examine the 
plausibility of our explanation.

Despite the similarities, the three mixture PD models differed from each other in some 
respects. All of the mixture PD models differed in their estimation of the number of stu-
dents showing PD: the decline class proportions were smallest in the 2PDM and larg-
est in the MPDM. However, the differences between the MPDM and the HYBRID were 
rather subtle because the distribution of PD onset points differed only with respect to 
the last five items. In addition, the mixture PD models provided different conclusions 
about the relationships between PD onset points and proficiency. In the 2PDM, there 
were no significant proficiency differences between decline and no-decline classes, nei-
ther for students at the academic nor for students at the non-academic school tracks. For 
both the HYBRID and the MPDM, the mean proficiency was lower in the decline classes 
and it decreased when PD onset occurred nearer the beginning of the test. Furthermore, 
in both cases, this decrease was stronger in the academic group. Similarly, the mixture 
PD models differed in the adjustments of proficiency scores relative to the 2PLM. As 
we have shown for the EAP scores, for students showing PD, the individual proficiency 
scores were estimated to be higher in the mixture PD models than in the 2PLM, but the 
EAP scores provided by the 2PDM were closer to those estimated by the 2PLM. Here, 
the HYBRID and the MPDM provided EAP scores that were quite similar to each other.

Conclusions and future directions

Taken together, the HYBRID and the MPDM that both consist of many latent classes 
performed rather similar in many respects, although they differ in their representa-
tion of PD. Hence, the number of latent classes combined with the assumptions about 
their distribution appears to be the main divider between the mixture PD models envis-
aged in this article. The mixture PD models are based on different assumptions on how 
PD affects test-taking behavior. In the 2PDM, it is assumed that the switching point is 
identical for all test takers showing PD within a group. In contrast, in both the HYBRID 
and the MPDM, multiple switching points are considered, but the models differ in their 
assumptions about PD. In the HYBRID, it is assumed that the probability of a correct 
response occurring after the switching point no longer depends on proficiency, whereas, 
in the MPDM, it is assumed that responses given after the switching point still depend 
on proficiency. This assumption is also embedded in the 2PDM. However, the ques-
tion of whether the specification of PD provided by different mixture models are of less 
importance than the assumptions about the number of PD classes remains open, as sug-
gested by the results provided in this article. Therefore, further research on this issue is 
called for.
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In further applications, the suitability of the proposed model restrictions should be 
analyzed thoroughly and adapted if necessary. For the HYBRID and the MPDM, we 
assumed that there was a linear relationship between proficiency and switching points. 
For some applications, this restriction might be too strict, for example, the decrease in 
proficiency could be stronger for a switching point in earlier item positions and could 
diminish when PD affects only the very last items. Moreover, the distribution of decline 
classes could be modeled by functions other than the one proposed in our study. The 
issue of model restrictions warrants consideration in subsequent research.

In our study, the HYBRID and the MPDM lead to similar results. Thus, both models 
appear to be comparably well suited to explore PD in educational LSAs. However, more 
research is needed on the similarities between these two models.

Finally, the variations of PD effects across domains should be explored. Research on 
item position effects shows that the strength of the effects varies with respect to the 
domain being studied (Debeer and Janssen 2013; Nagy et  al. 2016). Comparing PD in 
several domains for the same population could also be useful in determining whether 
PD can be regarded as an overarching person characteristic or, rather, as a test-specific 
phenomenon. Mixture PD models with multiple decline classes provide estimates of 
the switching point and its covariation with proficiency, and this allows for fine-grained 
analyses of PD. In this sense, mixture PD models can be used to study how PD interacts 
with proficiency and other variables to provide a better understanding of the mecha-
nisms behind PD.
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