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Background
Reducing greenhouse gases and providing the world’s future energy require searching 
for clean alternative energy resources that can substitute for fossil fuel. Geopressured 
geothermal reservoirs along the US Gulf Coast are an alternative energy resource which 
have been considered as marginal and have not been developed extensively. The infor-
mation available about these resources comes from well test data performed at the time 
of their development (John et al. 1998). Assessing the uncertainties associated with the 
commerciality of these reservoirs by simulating and history matching each case inde-
pendently is an expensive and time-consuming process and should be reserved for the 
project design stage. One way for quickly assessing these assets is to study the sensitivity 
of produced energy to uncertain features using reservoir modeling.

Abstract 

Developing low-enthalpy geothermal resources along the US Gulf Coast is attractive 
for reducing global warming and providing clean energy. In this work, synthetic yet 
representative models for typical geopressured geothermal reservoirs located along 
the US Gulf Coast are considered. A Box–Behnken experimental design is used to select 
a small set of these models to perform detailed reservoir simulation runs. Full quadratic 
linear models are fit to the simulation results, and their sufficiency is confirmed by 
comparing them to kriging response surfaces. To achieve a higher degree of efficiency 
in using the response surfaces, Hammersley sequence sampling (HSS) method is 
used instead of traditional Monte Carlo sampling. HSS ensures that the factor space is 
sampled more uniformly and the response distribution is converged in less time. By 
evaluating these proxy models in the sampled factor space, the sensitivity and uncer-
tainty of the response to the factors can be assessed. In this work, the sensitivity and 
uncertainty of engineered convection is assessed. For quantifying engineered convec-
tion, five uncertain reservoir attributes were selected. The response was defined as the 
net extracted enthalpy. In particular, two different designs for harvesting energy from 
geothermal reservoirs were compared using the response surfaces. In the modeled 
systems, results show that the regular design is more effective than the reverse design 
for extracting energy from geopressured geothermal reservoirs.
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Though computational speed and memory for solving problems is improving over 
time, detailed modeling for history matching of each reservoir or using Monte Carlo 
simulations is not feasible because running many models are numerically expensive. To 
overcome this limitation, there are three alternatives as follows: (1) procedures that effi-
ciently create the history matched models; (2) surrogate reduced order models; and (3) 
statistical proxy models. The first approach uses efficient gradient-based or gradient-free 
algorithms for history matching production data and efficiently makes field development 
plans (Shirangi and Durlofsky 2015; Shirangi 2014). The second approach is to build sur-
rogate reduced order models using piecewise linearization algorithms. These algorithms 
increase the efficiency of the Newton loop by creating the Jacobian matrices around pre-
viously simulated points instead of traditionally solving the flow equations (Ansari 2014; 
He and Durlofsky 2014; Cardoso and Durlofsky 2010). The third approach, which is used 
in this work, is to run the detailed model using specific combinations of factors sam-
pled by experimental design and then fit a proxy response surface to the factor space 
(Ansari 2016). Experimental design and response models are popular and used widely 
(Fisher and Genetiker 1960; Mishra et al. 2015). Schuetter et al. (2014) compare the use 
of Box–Behnken sampling and quadratic polynomial regression with Latin Hypercube 
sampling, multivariate adaptive regression spline (MARS), and additivity variance sta-
bilization (AVAS) techniques for geological CO2 sequestration. They conclude that the 
model developed using Box–Behnken and quadratic polynomials performs the best. Fol-
lowing Schuetter et al. (2014), this work uses Box–Behnken experimental design. Exper-
imental design and response surfaces have also been used in the context of geothermal 
reservoir engineering (Hoang et al. 2005; Quinao and Zarrouk 2014). Response surface 
models are fast and have adequate accuracy to represent the detailed model. Response 
surface models can be efficiently run thousands of times for uncertainty assessments. 
Traditionally, simple linear models are used to represent the actual model (Montgomery 
et al. 2012). For most of the cases, quadratic linear models (polynomials) are adequate. 
Once the proxy response surface model is constructed using a very small, yet statisti-
cally representative, set of detailed model runs, it can be used for sensitivity analysis and 
uncertainty assessments using sampling methods such as Monte Carlo (MC) or Ham-
mersley sequences sampling (HSS).

This work compares different energy extraction designs for geopressured geothermal 
reservoirs and identifies the better technique. It further quantifies the uncertainty in the 
selected design using the developed proxy model and sampling methods.

This paper proceeds as follows: we first introduce design of experiments, response sur-
face modeling, and sampling. Then, we apply these methods to compare two different 
heat extraction designs: regular design and reverse design. We select the best design for 
extracting energy by comparing their energy output. Regular design shows better perfor-
mance than reverse design. For the regular design, the uncertainty of the factors is used 
to obtain the uncertainty in the cumulative energy produced.

Methods
Design of experiments (DOE)

Many factors influence the energy recovery and the focus should be on the factors that 
affect it the most. Experimental design is an efficient method for sampling the factor 
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space and calculating the response with minimum number of runs (Montgomery 2008). 
Instead of changing the factors one-at-a-time, by which, factor interactions cannot be 
obtained and a large number of simulation runs is needed, factors are changed system-
atically in the experimental design to reveal effects and interactions using a smaller set of 
designed simulation runs. We used Box–Behnken design to fit a full quadratic response 
surface including all interaction terms to the simulation results (Box et al. 2005). This 
design needs fewer runs compared with other three-level counterparts (e.g., central 
composite designs, Fig.  1). Five geologic factors were chosen to test for their effects 
and uncertain attributes on the response. The reason for selecting these factors is that 
because of sparse well locations and measurements, these factors cannot be accurately 
measured and the uncertainty in their values always persists. One reason for selecting 
the Box–Behnken design is that it requires 41 runs for five factors, compared to 243 runs 
required for a full three-level factorial and 32 for a full two-level factorial design. We 
avoid full two-level factorial design because it cannot be used for modeling quadratic 
effects (second-degree curvature).

In reservoir engineering, factors can be categorized into three types: controllable, 
observable, and uncertain. The controllable factors may be engineered or selected, such 
as well location. The observable factors may be accurately measured such as the reser-
voir thickness at each well location. However, some uncertain factors, such as porosity 
far from wells, can neither be measured nor engineered. These factors are the important 
factors, on which the sensitivity analysis should be based.

Response surface methods

Once the results of runs suggested by the designs are obtained, response surfaces are 
used to determine the correlation between the factors and the response (Montgomery 
and Myers 1995). Two widely used formulations for the response surfaces are regression 
and kriging.

Regression

The method of least squares is conventionally used to estimate the regression coeffi-
cients and develop response surface models (Montgomery et al. 2012). The fitted linear 
or quadratic model to the sparse detailed runs can be used to estimate the effect of each 
parameter on the objective function (Eq. 1).

Fig. 1  Two types of experimental design with three factors. The Box–Behnken design is used in this work 
[from Kalla (2005)]
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In this equation, ŷ stands for the predicted response, x stands for the variable factor of 
interest, and the β values are the regression coefficients. Equation 2 represents the least 
squares method for calculating the coefficient vector β.

A large regression coefficient does not imply that the factor is significantly influencing 
the response and a small regression coefficient does not imply that the factor is not influ-
encing the response. Thus, in order to eliminate the effect of factor units on the regres-
sion coefficient (for example using bar instead of pascal for pressure), it is necessary 
to scale the factors to have a range between −1 and 1 and make them scale-invariant. 
For accurately estimating the response and evaluating nonlinear effects, factor interac-
tion and quadratic effects may also be needed. In these situations, a second-degree or 
reduced polynomial model can be used. A reduced model is a second-degree polynomial 
model in which the unimportant factors and interactions are removed. The p value sta-
tistical parameter is generally used for selecting the important factors.

Kriging

An alternative to using polynomials for producing response surfaces is ordinary krig-
ing (Landa and Güyagüler 2003). This method linearly combines weighted observations 
(Eq. 3) and the weights depend on distances between the target point and the observa-
tions (Eq. 5). The distance is calculated in the k-dimensional factor space where k rep-
resents the number of factors (Eq. 6). In Eqs. 3, 4, and 5, R represents the correlation 
function and yields the relation between observations.

The correlation function can be modeled as a Gaussian, an exponential or any other pos-
itive definite function. Equation 6 shows a Gaussian representation for R.

In this equation, θ indicates a vector of parameters used to fit the model, n is the num-
ber of runs, k is the number of factors, and xmi and xmj are the mth factor levels of 
design runs. The distance between the target points and the observations is modeled 
using semivariogram models in the k-dimensional factor space. Covariance between 
points depends on the distance between them and decreases as the distance increases. 
Another useful feature of kriging is that it considers data redundancy and ensures that 
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close points impose appropriate effect in predicting the target. These properties of krig-
ing make it the best linear unbiased (BLUE) estimator for correlated data.

Sampling

Once the proxy models are constructed, a sampling method is needed to sample the fac-
tors and to translate the uncertainty from the input to the response. For doing this, a 
Monte Carlo or quasi Monte Carlo method, such as HSS, is generally used (Kroese et al. 
2011).

Unlike straight Monte Carlo which samples n-dimensional space randomly, Ham-
mersley sequence fills the space more uniformly (Fig.  2). This characteristic is known 
as low-discrepancy sequence sampling. In Hammersley sequences, the design point p 
(which is less than the total dimension n) is conditioned on the previous p− 1 points 
and the total dimension n, thus making the sample points dependent. The points gener-
ated in low-discrepancy sampling methods are highly ordered and exhibit much more 
regularity. The result of sampling using these sequences converges more efficiently than 
multidimensional Monte Carlo (Kroese et al. 2011). The only drawback of Hammersley 
sequences is that the number of points should be specified before simulation and if, due 
to lack of accuracy of the results, the number of points changes, the process needs to 
be repeated discarding previous results. The Hammersley sequences span the n-dimen-
sional space with a small yet representative sample. The procedure of obtaining a Ham-
mersley sequence is described below.

Any positive integer n can be expressed by a prime base p as follows:

where every βi is an integer number in the range [0, p− 1]. Now, a function φp of n can 
be defined as follows:

Hammersley points in the m-dimensional space can be given by

(7)n = β0 + β1p+ β2p
2 + · · · + βrp

r ,

(8)φp(n) =
β0

p
+

β1

p2
+

β2

p3
+ · · · +

βr

pr+1

(9)xm(n) =
( n

N
,φR1(n),φR2(n), . . . ,φRm−1(n)
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,

Fig. 2  Monte Carlo vs. Hammersley method for sampling a two-dimensional factor space. HSS fills the factor 
space uniformly (from Kalla (2005))
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where n = 1, 2, . . . ,N  and xm is the location of the point in the m-dimensional space. 
N is the total number of Hammersley sample points and R1,R2,Rm−1 are m− 1 prime 
numbers for m dimensions.

Regular vs. reverse design
A hypothetical yet representative base model was developed from data obtained from 
the Camerina A sand zone located in the Gueydan Dome area, Vermillion Parish, Lou-
isiana (Fig.  3). The model is a two-dimensional vertical cross section. This model has 
been proposed by Plaksina et  al. (2011) and its characteristics are shown in Table  1. 
Similar models have been used in waterflooding (Shook et al. 1992) and CO2 flooding 

Table 1  Characteristics of the base hypothetical model [after Plaksina et al. (2011)]

Factors shown by italic are used in the experimental design

Properties Base value Unit

Temperature of top cell 135 C

Matrix compressibility 2.0× 10−5 kPa−1

Dip angle 15 Degree

Reservoir length 2000 m

Cross-section width 100 m

Reservoir thickness 30 m

Permeability 300 md

Porosity 0.2 –

Rock heat capacity 2.6× 106 J/(m3C)

Rock bulk density 2.3 g/cm3

Thermal heat conductivity 172, 800 J/(mday C)

Water thermal expansion 8.8× 10−4 C−1

Water compressibility 4.5× 10−7 kPa−1

Water molecular weight 0.01802 kg/gmol

Water molar density 55, 500 gmol/m3

Water density 1.02 g/cm3

Fig. 3  Vertical cross section of the Gueydan dome (right figure is modified from Robinson (1967) and left fig-
ure is from Szalkowski and Hanor (2003). The Gueydan Dome, located in the Vermilion parish, LA, is shown by 
the red dot. The Gueydan salt dome and the Camerina A sand zone are shown schematically in the right figure
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studies (Wood et  al. 2008). The average temperature of the zone (Fig.  3) is calculated 
to be 142.5 ◦C with a range varying from 128 to 160 ◦C from top to bottom of the sand 
(Gray and Nunn 2010). A corner point grid system with 30 grids along the X-axis and 7 
grids along the Z-axis was found sufficient and accurate enough for modeling this verti-
cal cross section. The temperature of each grid block was calculated by setting the tem-
perature gradient along the Z direction to 18 ◦C/km and the temperature of topmost grid 
block to 135 ◦C. Viscosity and density of the water depend on temperature and pressure. 
The geopressure zone extends from 4200 m to between 4650 and 4880 m depth; thus, 
the depth assigned to the topmost grid block is 4200 m. In the Gueydan Dome area, 
a shale sequence with a thickness ranging from 365 to 426 m overlies the Camerina A 
sand and a shale sequence of 150 m underlies it. Hence, the Camerina A structure repre-
sents a four-way closure for an area with one side enclosed by a salt dome (Ansari et al. 
2014). The model does not consider the salt dome because Gray and Nunn (2010) found 
that the Gueydan salt dome does not have optimum burial depth to cause an increase in 
the temperature of the reservoir fluid.

The equilibrium state obtained from natural convection simulations (1000 years of 
simulation without injection or production) served as the initial condition for the forced 
convection. For the natural convection period, the temperature of the reservoir bound-
ary is the same as its surrounding cap/base rock. As sediment cools down by cold water 
injection, it starts to gain conductive heat from the cap/base rock. A model, developed 
by Vinsome and Westerveld (1980), is used for peripheral boundary heat gain. The 
model is based on a semi-analytical impermeable heat conduction formulation which 
adequately describes the boundary condition at the interface. This model ensures ade-
quate accuracy because in practice the thermal conduction coefficients between the res-
ervoir and the cap/base rock are not precisely known.

Figure 4 compares three different boundary conditions for the base case considered in 
Table 1. The first case assumes that the reservoir is sealed and there is no heat conduc-
tion between the reservoir and cap/base rocks. In the second boundary condition, the 
temperature of cap/base rocks does not change as the reservoir cools down. The third 

Constant Temperature Boundary

Overburden/Underburden Boundary

No Thermal Boundary

Energy Gained from Cap/Base Rock

Fig. 4  Different thermal boundary conditions
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case is the semi-analytical Vinsome and Westerveld’s (1980) model. The heat-insulated 
boundary condition shows much lower produced energy, and the constant temperature 
boundary condition shows much higher produced energy than that shown by the more 
realistic boundary condition proposed by Vinsome and Westerveld (1980). Cumulative 
produced energy from the semi-analytical model is 38% more than the insulated reser-
voir and 22% less than constant temperature boundary condition after 30 years.

Figure 4 also implies that the value of the natural heat flux from the earth (50 mW/m2 ), 
attributed to radioactive decay, has no perceptible influence on the reservoir once 
exploitation begins. The natural heat flux (i.e., 20,000 W for the considered vertical cross 
section with a length of 4000 m and a width of 100 m) is negligible compared with the 
amount of heat gained from the cap/base rock (order of 1011 W). Fig. 4 also shows that 
the rate of recharge from the cap/base rock to the reservoir initially increases and then 
decreases as the base/cap rock cools down.

Two designs for extracting energy are considered in this study: regular design and 
reverse design. Regular design places the production well at the bottom of the reservoir. 
The cool water is re-injected back into the reservoir at its top. Reverse design produced 
the hot geofluid from the updip reservoir and injects the cooled geofluid into the deeper 
sections. In the models, the wells are perforated only at the topmost and the bottom-
most grid blocks (Fig. 5). In all models, the produced geofluid is injected back into the 
reservoir. The production and injection rates are set to 2000m3/day. The temperature of 
the injected water is set to 70 ◦C which is typical for low-enthalpy geothermal reservoirs. 
The models were simulated for 30 years. No salt concentration or chemical reactions 
are considered for the geofluid. The permeability and porosity are uniform and remain 

Dip = ? 

Produced Energy= ? 

Regular Design 

(a) Regular design

Dip = ? 
Reverse Design 

(b) Reverse design

Fig. 5  Schematic of the regular design. In the regular design, the cool water is injected at the top and the 
hot water is produced from the bottom. In the reverse design, the hot water is produced from the top of the 
reservoir and is injected back at the bottom
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constant during the production period. Five factors are more uncertain than the oth-
ers which are colored as gray in Table 1. The range of possible change in these factors 
is summarized in Table  2. This study aims to recognize which heat extraction design 
is more effective and how the change in these factors affects the produced energy. A 
three-level Box–Behnken experimental design with 41 runs is used for developing the 
response surface models. Both polynomial and kriging types of the response surface 
models are investigated.

Results and discussion
The regular and reverse designs are compared for all the combinations of factors using 
Eq. 10 

in which ǫr shows the percent difference between the energy that can be extracted from 
the regular and reverse designs.

In Fig.  6, the blue dots show the detailed model runs using the simulator. The con-
tour lines show the response surface fitted to these model runs and projected onto the 
various subsets of factor space. These plots clearly demonstrate local gradients (i.e., local 
sensitivity) and average change in the response. The ǫr increases as the dip angle and 
length increase. At small dip angles, the effect of length on the ǫr is small and at large 
dip angles, the effect of length is great (sharp gradient in Fig. 6a). The ǫr is more sensitive 
to the dip angle than thickness (Fig. 6b). The increase in the thickness from 30 to 50 m 
increases ǫr 0.2%, while the increase in porosity increases ǫr 0.05% (Fig. 6c). Permeability 
has less effect on the ǫr compared with other factors (Fig. 6d).

The kriging response surface (Fig. 7) is comparable to the polynomial response surface 
(Fig. 6), and there are only subtle differences between them with the biggest difference 
being the permeability–porosity relationship. ǫr in all of these figures is positive indicat-
ing that the regular design is more effective than the reverse design in the modeled sys-
tems. For the modeled systems, the permeability range tested does not favor one energy 
extraction design over the other.

Regular design

The regular design was modeled in detail. A quadratic linear response surface model was 
fit to the simulation results. Our experience shows that using a second-degree polyno-
mial instead of a first degree results in a better polynomial fit. The factors and interac-
tion terms with p values less than 0.05 were selected as important (Table 3). Then, each 
factor was assigned a specific distribution. Both Monte Carlo and Hammersley sequence 

(10)ǫr =
Ereg − Erev

Erev
× 100

Table 2  Levels of factors in the Box–Behnken design [Plaksina et al. (2011)]

Levels Length (m) Thickness (m) Dip angle Porosity Permeability (md)

+1 2000 30 0 0.15 200

0 3000 40 15 0.20 500
−1 4000 50 30 0.25 800



Page 10 of 15Ansari and Hughes ﻿Geotherm Energy  (2016) 4:15 

sampling methods were used to sample these factors’ distribution and translate the 
uncertainty from the factors to the response (net extracted energy).

The p value for all the factors except the permeability is less than 0.001 (Table 3) which 
means that all the factors have significant effect on the heat production except perme-
ability. For the range of permeability considered for modeling, knowledge of the per-
meability map is less important for predicting the thermal energy recovery presumably 
due to the constant well rates assumption. This makes sense because the pressure of a 
geopressured geothermal reservoir is very high and this pressure constraint can provide 
the flow rate constraint imposed on the production well for the modeled range of per-
meability (Table 2).

A low p value and a positive coefficient for the porosity in Table  3 indicate that an 
increase in porosity would increase the produced energy. The fundamental idea in geo-
thermal reservoirs is to extract the heat stored in the rock and use the fluid as the con-
duit. The increase in the fluid content of the system increases produced energy because 
the thermal capacity of the brine is more than the rock.
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Fig. 6  Response surface results for the ǫr using the polynomial method. The blue dots show the detailed 
model runs using the simulator. The contour lines show the response surface fitted to these detailed model 
runs and projected into the various subspaces of factor space. The reservoir’s length and the dip angle have 
the maximum effect on the ǫr. At high dip angles, the permeability has the least effect on the ǫr
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The dip angle, length, and thickness of the reservoir affect the heat production because 
all of these factors increase the temperature of the production well grid block. When the 
change in the response caused by the level change of one variable is not the same at all 
levels of another variable, the interaction term between the two variables is nonzero. For 
example, the impact of the reservoir’s length on the produced energy for zero dip angle 
differs from when the dip angle is high. Thus, the interaction term between the length 
and the reservoir’s dip angle is significant. Similarly, when the regular design was being 
compared with the reverse design (Figs. 6a, 7a), the interaction term between the length 
and the reservoir’s dip angle was significant.

To test the model, the observation is plotted versus the model prediction (Fig. 8). The 
observation versus the model prediction falls on the 45◦ line which means the model is 
adequate. This model can be used for the Monte Carlo sampling of factor distributions. 
For quantifying the uncertainty in produced energy, a distribution was assigned to each 
factor. It is assumed that length, thickness, reservoir dip angle, and porosity, each follow 
a normal distribution (Fig. 9). A log-normal distribution is assigned to permeability.

Both MC and HSS methods give comparable results for the distribution of the 
response (Fig. 10). HSS was about 10 times more efficient than the MC simulation (MC 
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Table 3  Summary of the second-order linear regression for the regular design: represent-
ing the interaction between two factors

Estimate stands for the coefficient value of the regression model. Standard error, t value and p value for each coefficient is 
given. Gray color shows the important terms that should be retained in the reduced model. The p value is used for selecting 
the important predictors for the reduced model

Factors β value Standard error t   value Pr (>|t|)

(Intercept) −0.027 0.009 −3.037 0.006

Thickness 0.218 0.003 83.748 0.000

Length 0.745 0.003 289.663 0.000

Permeability 0.000 0.003 0.162 0.873

Porosity 0.039 0.003 15.264 0.000

ReservoirDip 0.230 0.003 88.528 0.000

I (thickness2) −0.007 0.005 −1.277 0.214

I (length2) −0.050 0.005 −9.904 0.000

I (porosity2) −0.001 0.005 −0.245 0.809

I (permeability2) 0.001 0.005 0.216 0.831

I (reservoirDip2) −0.035 0.005 −6.750 0.000

Thickness: length 0.041 0.005 7.929 0.000

Thickness: porosity 0.007 0.005 1.344 0.192

Thickness: permeability 0.001 0.005 0.220 0.828

Thickness: reservoirDip 0.020 0.005 3.927 0.001

Length: porosity 0.007 0.005 1.316 0.201

Length: permeability 0.002 0.005 0.353 0.727

Length: reservoirDip 0.138 0.005 26.580 0.000
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took 121.81 s while HS 12.73 s) due to its quasi-random and low-discrepancy property. 
The mean and median of the energy recovery distribution are around 8.1× 1015  J for 
both. The obtained distribution for the extracted energy has a normal shape. The shape 
of this distribution makes sense because the response is sensitive to the length, dip, and 
thickness; all of which have a normal distribution. The extracted energy ranges between 
6.8 and 9.2× 1015  J and the box plot above the distribution indicates that 50% of the dis-
tribution lies between 7.85 and 8.35× 1015 J.

Histogram of Dip Angle

Dip Angle

D
en

si
ty

10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

Histogram of Permeability

Permeability (md)

D
en

si
ty

100 200 300 400

0.
00

0
0.

00
4

0.
00

8

Histogram of Porosity

Porosity

D
en

si
ty

0.16 0.18 0.20 0.22 0.24

0
5

10
15

20
25

Histogram of Reservoir Thickness

Thickness (m)

D
en

si
ty

34 36 38 40 42 44

0.
00

0.
10

0.
20

Histogram of Reservoir Length

Length (m)

D
en

si
ty

2000 2500 3000 3500 4000

0.
00

00
0.

00
04

0.
00

08
0.

00
12

Fig. 9  Distribution of the factors

Produced energy (J)

D
en

si
ty

7.0e+15 7.5e+15 8.0e+15 8.5e+15 9.0e+15

0e
+0

0
2e

−1
6

4e
−1

6
6e

−1
6

8e
−1

6
1e

−1
5

Produced Energy Distribution (MC)

(a)MC (121.81 seconds)

Produced energy (J)

D
en

si
ty

7.0e+15 7.5e+15 8.0e+15 8.5e+15 9.0e+15

0e
+0

0
2e

−1
6

4e
−1

6
6e

−1
6

8e
−1

6
1e

−1
5

Produced Energy Distribution (Hammersley)

(b)HS (12.73 seconds)

Fig. 10  Distribution of the extracted energy
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Conclusion
Regular design outperforms reverse design for heat production in the modeled systems. 
This result is confirmed using polynomial and kriging response surfaces. The heat recov-
ery from the regular design improves as the reservoir length, dip angle, or thickness 
increase. The results indicate that important criteria in evaluating a set of geothermal 
reservoirs with adequately high temperature is the size of the reservoir. For the reservoir 
models within the studied ranges, reservoir dip angle is less important that the reser-
voir size. The proxy models were efficiently used to construct produced energy distribu-
tion from the factor distributions. For having even more efficiency, HSS was used. HSS 
was about 10 times faster than the Monte Carlo simulation. For the considered problem, 
the produced energy was between 7× 1015 and 9× 1015 J. Future research should focus 
on testing the uncertainty in structural and isopach maps of a real reservoir model and 
compare the results with the results published in this work.
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